LABORATORY OF MATHEMATICS

Class notes

ESCUELA TECNICA SUPERIOR DE
INGENIERIA DEL DISENO

DEPARTAMENTO DE MATEMATICA APLICADA
UNIVERSIDAD POLITECNICA DE VALENCIA

Contents

1 Matlab

1.1 Introduction

1.1.1

Preliminaries

1.2 How to work with Matlab

1.3

1.4

1.2.1
1.2.2
1.2.3
1.24
1.2.5
1.2.6

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

Matrices L

Control flow

1.4.1
1.4.2
1.4.3
144

Logical and relational operators
Conditional code execution
Loops

Evaluation of logical and relational expressions in the
control flow structureso

1.5 Script and function m-files L.
1.5.1 Seript m-files
1.5.2 Function m-file

1.6 Plots with Matlab
1.6.1 Plots2D
1.6.2 Plots3D

1.7 Storing and retrieving information L0

1.8 Exercises

Interpolation and fitting of data

2.1 Polynomials in Matlabo 000
2.2 Interpolation
2.3 Fittingofdata oL
24 ExXercises

Roots, integrals and differential equations

3.1 Finding roots of equations
3.2 Approximate integration
3.3 Differential equations,
3.4 Exercises o

Some topics on signal analysis

4.0.1 Filtering signals using the DFT
Filters
5.1 Analog filters
5.2 Butterworth filters o oo 0oL
5.2.1 Chebyshev filters L
5.3 Filters from transfer functions
5.4 Discretizacion de sistemas continuos
5.4.1 Discretizacion ‘backward” L.

52
52
54
56
57

60
60
63
63
64

67
70

ot

ot

5.4.2 Discretizacién ‘forward” 81

5.4.3 Discretizaciéon por el Método de los Trapecios 83

5.4.4 Discretization of the impluse response 88

Ejercicio Lo 89
4

Chapter 1

Matlab

1.1 Introduction

During this course you will learn how to use Matlab, to design, and to per-
form mathematical computations. You will also get acquainted with basic
programming. If you learn to use this program well, you will find it very use-
ful in future, since many technical or mathematical problems can be solved
using Matlab.

This text includes all material (with some additional information) that
you need to know, however, many things are treated briefly. Therefore, “The
Student Edition of Matlab. User’s guide” should be used as a complementary
book during the course.

It is important that you spend enough time to learn the Matlab basics that
are introduced in the first few sections. If you notice that you need more time
than laboratory hours, please consider doing some examples during the rest
of the time. Since learning Matlab is a challenging task, you are encouraged
to prepare each laboratory; You may read a part of text at home or try the
examples yourself. This way, you can use laboratory time to ask questions
in order to make things become more clear to you.

1.1.1 Preliminaries

Below you find a few basic definitions on computers and programming. Please
get acquainted with them since they introduce key concepts needed in the
coming sections:

e A bit (short for binary digit) is the smallest unit of information on a

computer. A single bit can hold only one of two values: 0 or 1. More
meaningful information is obtained by combining consecutive bits into
larger units, such as byte.

A byte - a unit of 8 bits, being capable of holding a single character.
Large amounts of memory are indicated in terms of kilobytes (1024
bytes), megabytes (1024 kilobytes), and gigabytes (1024 megabytes).

Binary system - a number system that has two unique digits: 0 and 1.
Computers are based on such a system, because of its electrical nature
(charged versus uncharged). Each digit position represents a different
power of 2. The powers of 2 increase while moving from the right most
to the left most position, starting from 2° = 1. Here is an example of
a binary number and its representation in the decimal system:

10110 =152 + 0% 28 + 1522 +1%2' 4+ 0%x2° =16 +0+44+24+0 =24

Data is information represented with symbols, e.g. numbers, words,
signals or images.

A command is a instruction to do a specific task.

An algorithm is a sequence of instructions for the solution of a specific
task in a finite number of steps.

A program is the implementation of an algorithm suitable for execution
by a computer.

A variable is a container that can hold a value. For example, in the
expression: x+y, x and y are variables. They can represent numeric val-
ues, like 25.5, characters, like ¢’ or character strings, like Matlab’.
Variables make programs more flexible. When a program is executed,
the variables are then replaced with real data. That is why the same
program can process different sets of data.

Every variable has a name (called the variable name) and a data type.
A variable’s data type indicates the sort of value that the variable
represents (see below).

A constant is a value that never changes. That makes it the opposite
of a variable. It can be a numeric value, a character or a string.

A data type is a classification of a particular type of information. The
most basic data types are:

- integer: a whole number; a number that has no fractional part, e.g.
3.

- floating-point: a number with a decimal point, e.g. 3.5 or 1.2e-16
(this stands for 1.2 * 107'6).

- character: readable text character, e.g. ’p’.

A bug is an error in a program, causing the program to stop running,
not to run at all or to provide wrong results. Some bugs can be very
subtle and hard to find. The process of finding and removing bugs is
called debugging.

e A file is a collection of data or information that has a name, stored in a
computer. There are many different types of files: data files, program
files, text files etc.

e An ASCII file is a standardized, readable and editable plain text file.

e A binary file is a file stored in a format, which is computer-readable
but not human-readable. Most numeric data and all executable pro-
grams are stored in binary files. Matlab binary files are those with the
extension tt "*.m’.

1.2 How to work with Matlab

Matlab is a tool for mathematical (technical) calculations. First, it can be
used as a scientific calculator; it provides simple mathematical operations,
but handles complex numbers, powers, logarithms, trigonometric operations
as well. Next, it allows you to plot or visualize data in many different ways,
perform matrix algebra, work with polynomials or integrate functions. Like
in a programmable calculator, you can create, execute and save a sequence
of commands in order to make your computational process automatic. It can
be used to store or retrieve data. In the end, Matlab can also be treated as
a user-friendly programming language, which gives the possibility to handle
mathematical calculations in an easy way. Running Matlab creates one or
more windows on your screen. The most important is the Matlab Command
Window, which is the place where you interact with Matlab. The string >>
is the Matlab prompt (except for the Student Edition that has the EDU>>
prompt). When the Command window is active, a cursor appears after the
prompt, indicating that Matlab is waiting for your command, which can be
e.g. 17/3 or cos(x).

1.2.1 Input via the command-line

Matlab is an interactive system; commands followed by Enter are executed
immediately. The results are, if desired, displayed on screen. However, exe-
cution of a command will not be possible or will go wrong when the command
is not typed according to the rules. Table 1 shows a list of commands used
to solve the indicated mathematical equation (a, b, x and y are numbers).

Mathematical notation | Matlab-command
a+b a+b

a—>b a-b

ab a*b

3xy 3kxky

al a" b

VT sqrt(x) or x~ 0.5
m pi

e exp(1)

7 i

4-10° 4e3 or 4%10” 3
3—4i 3-4%1 or 3-4%]
sin(z), arctan(x),. .. sin(x), atan(x), ...
e’ exp(x)

In(z) log(x)

log(x) log10(x)

|| abs (x)

Table 1: Translation of mathematical notation to Matlab commands.

There are also commands that perform a specific task, such as help; work
with a file-system, like cd; or work with matrices, like rank. Below you find
basic information that is important when starting with Matlab:

e Commands in Matlab are executed by pressing Enter or Return. The
output will be displayed on screen immediately. Try the following:

3+ 7.5
18/4
3 x7

Note that spaces are not important in Matlab.

e The result of the last execution is called ans. It can be used on the

next command line. Try, for instance:

14/4
ans =
3.5000
ans” (-6)
ans =
5.4399e-04

Note that ans is always overwritten by the last command.

ans is an example of a Matlab built-in variable. It stores the result
of the recently performed computation. You can also define your own
variables. Look how the information is stored in the variables a and b:

a = 14/4
a =

3.5000

b = a~(-6)
b =
5.4399e-04

When the command is followed by a semicolon (;), the output is sup-
pressed. Check the difference between the following expressions:

3+ 7.5
3+ 7.5;
x = 3/4;

It is possible to execute more than one command at the same time; the
separate commands should then be divided by commas (to display the
output) or by semicolons (to suppress the output display), e.g.:

sin(pi/4), cos(pi); sin(0)
ans =

0.7071

ans =

0

Note that the value of cos(pi) is not printed.

e The output may contain some empty lines; this can be suppressed
by the command format compact. In contrast, the command format
loose will insert extra empty lines.

e Matlab is case sensitive. There is a difference between capital and
normal letters; for example, a is written as a in Matlab, A will result
then in an error.

e All text after a percent sign % until the end of a line is treated as a
comment. Enter e.g. the following:

sin(3.14159) \% this is an approximation of sin(pi)

You will notice that some examples in this text are followed by com-
ments. They are meant for you and you should skip them while typing
those examples.

1.2.2 Help-facilities

Matlab provides assistance through extensive online help. The help com-
mand is the simplest way to get help; that is, if you know the topic or
command on which you want help. For example:

help elfun

gives information on the elementary math functions of Matlab. The com-
mand help displays a list of all possible topics. The topic you want help on
must be exact and spelled correctly. The command lookfor is more useful
if you do not know the exact name of the command or topic. For example:

lookfor inverse

displays all commands for which the word inverse is included in its help-text.
This command results in a list of commands with a short description. Besides
the help and lookfor commands, there is also a separate mouse driven help.
The helpwin command opens a new window on screen which can be browsed
in an interactive way.

10

1.2.3 Interrupting a command or program

Sometimes you might spot an error in your command or program. Due to this
error it can happen that the command or program does not stop. Pressing
Ctrl-C forces Matlab to stop the process. After this the Matlab-prompt ()
re-appears. This may take a while, though.

1.2.4 Workspace issues

If you work in the Command Window, Matlab memorizes all commands that
you entered and all variables that you created. This can be verified with the
commands who, which gives a list of variables present in the workspace, and
whos, which includes information on name, number of allocated bytes and
class of the variables. For example, assuming that you performed all com-
mands given in the beginning, after typing who you should get the following
information:

who
Your variables are:
a ans b x

The command clear <name> deletes the variable <name> from the Matlab
workspace, clear or clear all removes all variables. This is useful when
starting a new exercise. For example:

clear a, x

who

Your variables are:
ans b

1.2.5 Saving and loading data
The command save allows for saving your workspace variables either into
a binary file or an ASCII file. Binary files automatically get the ’.mat’

extension, which is not true for ASCII files. However, it is recommended to
add a ’.txt’ or ’.dat’ extension.

Learn how to use the save command by exercising:
sl = sin(pi/4); s2 = sin(pi/2);

11

cl = cos(pi/4); c2 = cos(pi/2);

str = ’hello world’; % this is a string example;
% you will learn about strings later!

save % saves all variables in binary
% format to the file matlab.mat

save data 7% saves all variables in binary

% format to the file data.mat

save numdata sl1, cl % saves numeric variables:
%s1l and cl to the file numdata.mat

save strdata str % saves a string variable: str

% to the file strdata.mat

save allsin s* 7% saves all variables that

% match the pattern to allsin.mat

save allcos.dat c* —-ascii % saves c1,c2 in
% 8-digit ascii format to allcos.dat

The load command allows for loading variables into the workspace. It
uses the same syntax as save.

Assuming that you have done the previous exercise, try to load vari-
ables from the created files. Important: before each load command, clear
the workspace and after loading check which variables are present in the
workspace (using who).

load % loads all variables from the file matlab.mat
load data s1 cl % loads only specified

% variables from the file data.mat

load strdata % loads all variables

% from the file strdata.mat

It is also possible to read ASCII files that contain rows of space separated
values. Such a file may contain comments that begin with a percent charac-
ter. The resulting data is placed into a variable with the same name as the
ASCII file (without the extension). Check, for example:

load allcos.dat % loads data from the

% file allcos.dat into variable allcos
who % lists variables present in the workspace now

12

1.2.6 Path

In Matlab, commands or programs are contained in m-files, which are just
plain text files and have an extension ’.m’. The m-file must be located in
one of the directories which Matlab automatically searches. The list of these
directories can be listed by the command path. One of the directories that
is always taken into account is the current working directory, which can be
identified by the command pwd. Use path, addpath and rmpath functions
to modify the path. Here is an example:

path

h:\matlab

h:\matlab\toolbox\matlab\general
h:\matlab\toolbox\matlab\ops

addpath h:\mywork % assume that this is your directory
path

h:\mywork

h:\matlab

h:\matlab\toolbox\matlab\general
h:\matlab\toolbox\matlab\ops

It is also possible to access the path browser from the File menu-bar, instead.

1.3 Mathematics with numbers, vectors and
matrices

The basic element of Matlab is a matrix (or an array). Special cases are:

e a1 x I-matrix: a scalar or a single number;

e a matrix existing only of one row or one column: a vector.

1.3.1 Single numbers

You have already got some experience with Matlab and you know that it can
be used as a calculator. For example, simply type:

13

312/56
The result will be:

ans =
5.5714

By default, Matlab displays only 5 digits. The command format long in-
creases this number to 15, format short reduces it to 5 again. For example:

format long
312/56

ans =
5.57142857142857

1.3.2 An introduction to floating-point numbers

In a computer, numbers can be represented only in a discrete form. Tt means
that numbers are stored within a limited range and with a finite precision.
Integers can be represented exactly with the base of 2. The typical size of an
integer is 16 bits, so the largest positive integer, which can be stored, is 2! =
65536. If negative integers are permitted, then 16 bits allow for representing
integers between -32768 and 32767. Within this range, operations defined
on the set of integers can be performed exactly. However, this is not valid
for other real numbers. In practice, computers are integer machines and are
capable of representing real numbers only by using complicated codes. The
most popular code is the floating point standard. The term floating point
is derived from the fact that there is no fixed number of digits before and
after the decimal point, meaning that the decimal point can float. Note
that most floating-point numbers that a computer can represent are just
approximations. Therefore, care should be taken that these approximations
lead to reasonable results. If a programmer is not careful, small discrepancies
in the approximations can cause meaningless results. Note the difference
between e.g. the integer arithmetic and floating-point arithmetic:

Integer arithmetic | Floating-point arithmetic
24+4=6 18/7 = 2.5714
3*%4=12 2.5714 * 7 = 17.9998
25/11 =2 10000/3 = 3.3333e+03

14

When describing floating-point numbers, precision refers to the number
of bits used for the fractional part. The larger the precision, the more exact
fractional quantities can be represented. Floating-point numbers are often
classified as single precision or double precision. A double-precision num-
ber uses twice as many bits as a single-precision value, so it can represent
fractional values much better. However, the precision itself is not double.
The extra bits are also used to increase the range of magnitudes that can be
represented. Matlab relies on a computer’s floating point arithmetic. You
could have already noticed that in the last 408-410 exercise since the value of
sin(7) was almost zero, and not completely zero. It came from the fact that
both the value of 7 is represented with a finite precision and the sin function
is also approximated.

The fundamental type in Matlab is double, which stands for a represen-
tation with a double precision. It uses 64 bits. The single precision obtained
by using the single type offers 32 bits. Since most numeric operations require
high accuracy the double type is used by default.

The exact machine precision might be defined as the smallest positive
number € that added to 1 does not change the result, so 1+ ¢ = 1, in
floating-point arithmetic this value is larger than zero (in exact arithmetic
of course € = 0 holds). Matlab machine precision is stored in the built-
in variable epsa 2.2204e — 16. This means that the relative accuracy of
individual arithmetic operations is about 16 digits.

1.3.3 Assignments and variables

Working with complex numbers is easily done with Matlab. For example we
can type

N
1]

-3 + 2%i;
5 — Tx*i;
yl=z+w,y2=2z-w,y3=2zx*w, yd=2z/w

Formally, there is no need to declare (i.e. define the name, size and
the type of) a new variable in Matlab. A variable is simply created by an
assignment (the way it has been done above). Each newly created numerical
variable is always of the double type. You can change this type by converting
it into e.g. the single type !

la variable a is converted into a different type by performing e.g. a = single(a),a =
int16(a) etc.

15

In some cases, when huge matrices should be handled and precision is not
very important, this might be a way to proceed. Also, when only integers
are taken into consideration, it might be useful to convert the double repre-
sentations into e.g. int16 or int321 integer types. Since most computations
should be performed with a high accuracy, Matlab automatically chooses the
double type. It means that real numbers are approximated with the highest
possible precision. However, it is important to emphasize that integer num-
bers are always represented exactly, no matter which numeric type is used.
Bear in mind that undefined values cannot be assigned to a variable. So, the
following is not possible:

clear x; % to make sure that x does not exist
fun = x”2 + 4 * sin (x)

It becomes possible by:

x =pi/ 3; fun = x"2 + 4 * sin (x)

1.3.4 Vectors

Row vectors are lists of numbers separated either by commas or by spaces.
They are examples of simple arrays. The number of entries is known as the
length of the vector (the command length exists as well). Their entities are
referred to as elements or components. The entries must be enclosed in [:

v = [-1 sin(3) 7]

v =

-1.0000 0.1411 7.0000
length(v)

ans =

3

A number of operations can be done on vectors. A vector can be multi-
plied by a scalar, or added/subtracted to/from another vector with the same
length, or a number can be added/subtracted to/from a vector. All these op-
erations are carried out element-by-element. Vectors can be also built from
the already existing ones.

[-127]; w=1[234];

z=v +tw

<
]

16

z =
1511
v3
v3 =

149

t = [2%v, -w]
ans =

-2 4 14 -2 -3 -4

v + 2 % add 2 to all elements of vector v3

Also, a particular value can be changed or displayed:

v(2) = -1, w(2) % change the 2nd value of v,
% display the 2nd value of w

v =

-1 -17

ans =

3

The colon notation is an important shortcut, used when producing row
vectors:

2:5
ans =
2345

-2:3
ans =
-2-10123

In general, first:step:last produces a vector of entities with the value
first, incrementing by the step until it reaches last:

0.2:0.5:2.4
ans =
0.2000 0.7000 1.2000 1.7000 2.2000

-3:3:10

ans =
-30369

17

1.6:-0.5:-0.5 % negative step is also possible
ans =
1.5000 1.0000 0.5000 0 -0.5000

Parts of vectors can be extracted by using a colon notation:

r = [-1:2:6, 2, 3, -2] % -1:2:6 => -1 1 3 5
r =
-113523-2

r(3:6) % get elements of r on the positions from 3 to 6
ans =
3523

r(1:2:5) 7 get elements of r on the positions from 1 to 5
% with the step of 2

ans =

-132

r(5:-1:2) % what will you get here?

To create column vectors, you should separate entries by a ; or by new
lines:

Hh
]

[-1; 3; 5]

The same operations as on row vectors can be done on column vectors.
However, you cannot for example add a column vector to a row vector. To
do that, you need an operation called transposing, which converts a column
vector into a row vector and vice versa:

f = [-1; 3; 5]; % a column vector
£ % £’ is a row vector

ans =

-1356

v=1[-127]; % a row vector
f + v % you cannot add a column vector f to a row vector v

18

7?77 Error using ==> + A=10123; 456; 7 89] % row by row input
Matrix dimensions must agree.

N e
© Gl NIl
o O W

£ +v
ans =
-2 512
A matrix can be also automatically extended, e.g.:

f+ v’
ans = A(5,2) = 5 7 assign 5 to the position (5,2);
-2 % the uninitialized
5 % elements become zeros
12 A=

1 2 3

If x is a complex vector than x’ gives the conjugate transpose of x, e.g.: 4 5 6

7 8 9
x = [1+21, -1+i] 0 0 O
X = 0 5 0
1.0000 + 2.0000i -1.0000 + 1.0000i

If needed, the other zero elements of the matrix A can be also defined, by

x’ % this is the conjugate transpose e.g.:
ans =
1.0000 - 2'00001_ A(4,:) = [1, 2, 3]; Y% assign vector [1, 2, 3]
-1.0000 - 1.00001 % to the 4th row of A

A(5,[1,3]) = [4, 5]; % a ’shortcut’ when assigning:
x.’ % this is the ’normal’ transpose % A(5,1) = 4 and A(5,3) = &
ans =

A % how does the matrix A look like now?
1.0000 + 2.00001

~1.0000 + 1.00001 As you have seen an example above, it is possible to manipulate (groups

of) matrix-elements.

1.3.5 Matrices We have

Defining a matrix is similar to defining a vector. The generalization is E = [] % this is an empty matrix of O-by-0 elements!
straightforward, if you know that a matrix consists of row vectors (or col- E =

umn vectors). Commas or spaces are used to separate elements in a row, and 0

semicolons are used to separate individual rows. For example, the matrix

B = rand(2,3) % a matrix of random numbers;
% you will get a different one!

0.0227 0.9101 0.9222

1

A= 4
7

0.0299 0.0640 0.3309

3
6
9

oo Ot N

is defined as:

19 20

= ones(3,2)

= = = OO0
e |

B + 0’ % add 2 matrices;
% why 0’ is needed instead of 07
ans =
1.0227 1.9101 1.9222
1.0299 1.0640 1.3309

S = ans./4 % divide all elements
% of the matrix ans by 4

S =

0.2557 0.4775 0.4806

0.2575 0.2660 0.3327

c=1[1-14;70-11;

B * C % matrix multiplication is not defined!
7?7 Error using ==> *

Inner matrix dimensions must agree.

B .x C % but you can multiply element by element
ans =

0.0227 -0.9101 3.6888

0.2093 0 -0.3309

D =B * C’ % or you can make the
% multiplication legal; C’ is now 3-by-2
D =
2.8014 -0.7633
1.2895 -0.1216

D"3 % this is equivalent to D * D * D
ans =

16.5899 -4.9902

8.4304 -2.5198

D."3 - 2 ¥ perform for all elem.:
% raise to the power 3 and subtract 2

21

ans =
19.9849 -2.4447
0.1442 -2.0018

r=1[13-2];

13

R = diag(r) % create a diagonal matrix with r on the diagonal
R =

100

030

00 -2

r * 0 % this is a legal operation:

% r is a 1-by-3 matrix and 0 is

% 3-by-2 matrix; 0 * r is an illegal operation
ans =

22

<
]

linspace(1,2,4)
v =

1.0000 1.3333 1.6667 2.0000

You can now compute the inner product between two vectors x and y,

T
T 1:5 TiYi,
i

in a simple way:

f = [-1; 3; 5] % a column vector

v = [-1; 2; 7] % a column vector

£’ % v % this is the inner product!

ans =

42

f x v’ 7} be careful! now a 3-by-1
% matrix is multiplied by a 1-by-3
% matrix, which results in a 3-by-3
% matrix (the outer product)

22

-5 10 35

f .x v 7 this is element-by-element multiplication
1
6
35

sum (f .* v) % this is an another way to compute the inner product

ans =
42

1.4 Control flow

As you know, it is possible to execute more than one command at the same
time. The separate commands should then be divided by commas (to display
the output) or by semicolons (to suppress output display). Control flow loops
increase the number of possibilities. A control flow structure is a block of
commands that allows conditional code execution and making loops.

1.4.1 Logical and relational operators

To use control flow commands, it is necessary to perform operations that
result in logical values: TRUE or FALSE. In Matlab the result of a logical
operation is 1 if it is true and 0 if it is false. Table 2 shows the relational
and logical operations. Another way to get to know more about them is to
type help relop. The relational operators <, <=, >, >=, == and = can
be used to compare two arrays of the same size or an array to a scalar. The
logical operators &, | and allow for the logical combination or negation of
relational operators. In addition, three functions are also available: xor, any
and all (use help to find out more).

Important: The logical & and | have the equal precedence in Matlab,
which means that those operators associate from left to right. A common
situation is:

23

(11 b>0) & 0% this indicates the same as above
ans =
0

11 (d>0%&0
ans =
1

This shows that you should always use brackets to indicate in which way
the operators should be evaluated.

Command | Result

a=(b>c) ais 1 if b is larger than c. Similar are: <, >= and <=
a=(b==c) |aislifbisequal toc

a=(b =c) |ais1ifbisnotequal c

a="b logical complement: a is 1 if bis 0

a=(b&c) logical AND: ais 1if b= TRUE AND ¢ = TRUE
a=(blc) logical OR: a is 1 if b = TRUE OR ¢ = TRUE

Table 2: Relational and logical operations.

1.4.2 Conditional code execution

Selection control structures, if-blocks, are used to decide which instruction
to execute next depending whether expression is TRUE or not. The general
description is given below. In the examples below the command disp is
frequently used. This command displays on the screen the text between the
quotes.

e if ... end

One example of this structure is the following one:

if (a > 0)
b = a;
disp (’a is positive’);
end
e if ... else ... end Oneexample of this structure is the following
one:

24

if (temperature > 100)
disp (’Above boiling’);

toohigh = 1;
else
disp (’Temperature is O0K’);
toohigh = 0;
end
e if ... elseif ... else ... end One example of this structure

is the following one:

if (height > 190)
disp (’very tall’);
elseif (height > 170)
disp (’tall’);

elseif (height < 150)
disp (’small’);

else

disp (’average’);

end

Remark: To check the examples below, the notion of a script m-file will
be useful. A script is an external file that contains a sequence of Matlab
commands. What you need to do is to open an editor, (Matlab environment
usually includes ones in one in the frontend) enter all commands needed for
the solution of a task, save it with the extension ’.m’ (e.g. myscript.m) and
then run it from the Command Window, by typing myscript. All commands
in the script will be executed in Matlab. You will learn more on script m-files
later.

Important: m-script file must be saved in one of the directories in Mat-
lab’s path.

Another selection structure is switch, which switches between several
cases depending on an expression, which is either a scalar or a string. An
example where this structure is used is the following one

switch method

case {1,2}

disp(’Method is linear’);
case 3:

disp(’Method is cubic’);

25

case 4:

disp(’Method is nearest’);
otherwise:

disp(’Unknown method’);
end

The statements following the first case where the expression matches
the choice are executed. This construction can be very handy to avoid long
if .. elseif ... else ... end constructions. The expression can be
a scalar or a string. A scalar expression matches a choice if expression
== choice. A string expression matches a choice if strcmp(expression,
choice) returns 1 (is true) (strcmp is a command comparing two strings).

Note that the switch-construction only allows the execution of one group
of commands.

1.4.3 Loops

Iteration control structures, loops, are used to repeat a block of statements
until some condition is met. Two types of loops exist:

e the for loop that repeats a group of statements a fixed number of
times; An example of this loop is the following one:
sumx = 0;
for i=1:length(x)
sumx = sumx + x(i);

end

You can specify any step, including a negative value. The index of the
for-loop can be also a vector. See some examples of possible variations:

%Example 1
for i=1:2:n

end

%Example 2
for i=n:-1:3
end

26

%Example 3
for x=0:0.5:4
disp(x~2);
end

%Example 4

for x=[25 9 81]
disp(sqrt(x));
end

e while loop, which evaluates a group of commands as long as expression
is TRUE. One example of this kind of loop is the following one

N = 100;
iter = 1;
msum = 0;

while iter <= N
msum = msum + iter;
iter = iter + 1;
end;

1.4.4 Evaluation of logical and relational expressions
in the control flow structures

The relational and logical expressions may become more complicated. It is
not difficult to operate on them if you understand how they are evaluated.
To explain more details, let us consider the following example:

if (“isempty(data)) & (max(data) < 5)

end

This construction of the if-block is necessary to avoid comparison if data
happens to be an empty matrix. In such a case you cannot evaluate any
expression and Matlab gives an error. The & operator returns 1 only if both
expressions: isempty (data) and max(data) < 5 are true, and 0 other-
wise. When data is an empty matrix, the next expression is not evaluated
since the whole &-expression is already known to be false. The second ex-

pression is checked only if data is a non-empty matrix. Remember to put
logical expression units between brackets to avoid wrong evaluations!

27

Important: The fact that computers make use of floating-point arith-
metic means that often you should be careful when comparing two floating-
point numbers just by:

if (x ==y)
end
(Of course, such a construction is allowed e.g. when you know that x and

y represent integers.) Instead of the above construction, you may try using
this:

if (abs (x - y) < tolerance) % e.g. tolerance = 1e-10

end
1.5 Script and function m-files

1.5.1 Script m-files

Matlab commands can be entered at the Matlab prompt. When a problem is
more complicated this becomes inefficient. A solution is using script m-files.
They are useful when the number of commands increases or when you want
to change values of some variables and re-evaluate them quickly. Formally,
a script is an external file that contains a sequence of Matlab commands
(statements). However, it is not a function, since there are no input/output
parameters and the script variables remain in the workspace. So, when you
run a script, the commands in it are executed as if they had been entered
through the keyboard.

It is possible to create a script opening the Matlab editor, and writing,
for example:

x = input(’write your name ’);
disp(x)

saving the file as name.m’ and then run it by:

name

28

The name script affects the workspace. Check:

clear % all variables are removed from the workspace
who % no variables present

name

who

Your variables are:

X

These generic name, x, may be easily used in further computations and this
can cause side effects. Side effects occur in general when a set of commands
change variables other than the input arguments. Since scripts create and
change variables in the workspace (without warning), a bug, hard to track
down, may easily appear. So, it is important to remember that the commands
within a script have access to all variables in the workspace and all variables
created in this script become a part of the workspace. Therefore, sometime
it is better to use function m-files, when there is a specific problem to be
solved.

1.5.2 Function m-file

Functions m-files are true subprograms, since they take input arguments
and/or return output parameters. They can call other functions, as well.
Variables defined and used inside a function, different from the input/output
arguments, are invisible to other functions and the command environment.
The general syntax of a function is presented below:

function [outputArgs] = function_name (inputArgs)

outputArgs are enclosed in []:

- a comma-separated list of variable names;
- [] is optional when only one argument is present;

- functions without outputArgs are legal.
inputArgs are enclosed in ():

- a comma-separated list of variable names;

29

- functions without inputArgs are legal.

Matlab provides a structure for creating your own functions. The first line
of the file should be a definition of a new function (also called a header). After
that, a continuous sequence of comment lines should appear. Their goal is to
explain what the function does, especially when this is not trivial. Not only a
general description, but also the expected input parameters, returned output
parameters and synopsis should appear there. The comment lines (counted
up to the first non-comment line) are important since they are displayed in
response to the help command. Finally, the remainder of the function is
called the body. Function m-files terminate execution and return when they
reached the end of the file or, alternatively, when the command return is
encountered. As an example, the function average is defined as follows:

funtion y=add5(x)
% add5 function returns y=x+5
y=x+5;

Important: The name of the function and the name of the file stored on
disk should be identical. In our case, the function should be stored in a file
called add5.m. When we type help add5 we obtain the message

add5 function returns y=x+5
Another example of a simple function is the following one:

function [media,desv]=estad(x)
Tt To oo o ToTo o o o o To T o o o o o T T o o o VT o o o T o
% estad function computes the
% mean and the standard deviation
% of the elements of vector x

% INPUTS:

% vector x

% OUTPUTS:

% media: mean of the elements of x

% desv: standard deviation of the elements of x

Tt T T T T T Tt o o o o o o o o o o o o o e e T T T T T T T
[m,n]=size(x);

if ==1

m=n;

end

30

media =sum(x)/m;
desv =sqrt(sum(x."2)/m-media~2);

To calculate the standard deviation it takes into account that

n

o= iZ(zlff:?llixff

i=1

Warning: The functions mean and std already exist in Matlab. As
long as a function name is used as variable name, Matlab can not perform
the function. Many other, easily appealing names, such as sum or prod are
reserved by Matlab functions, so be careful when choosing your names.

The return statement can be used to force an early return. An exemplary
use of the return is given below:

function d = determinant (A)

%DETERMINANT Computes the determinant of a matrix A
[m,n] = size(A);

if (m “= n)

disp (’Error. Matrix should be square.’);

return;

else

d = det(A); % standard Matlab function

end

return;

Special function variables

Each function has two internal variables: nargin - the number of function
input arguments that were used to call the function and nargout - the number
of output arguments. Analyze the following function:

function [outl,out2] = checkarg (inl,in2,in3)

%CHECKARG Demo on using the nargin and nargout variables.
if (nargin == 0)

disp(’no input arguments’);

return;

elseif (nargin == 1)

s = inl;

p = ini;

31

disp(’1 input argument’);
elseif (nargin == 2)

s = inl+in2;

p = inl*in2;

disp(’2 input arguments’);
elseif (nargin == 3)

s = inl+in2+in3;

p = inl*in2*in3;

disp(’3 input arguments’);

else

error(’Too many inputs.’);
end

if (nargout == 0)
return;

elseif (nargout == 1)
outl = s;

else

outl = s;

out2 = p;

end

Local and global variables

Each m-file function has access to a part of memory separate from Matlab’s
workspace. This is called the function workspace. This means that each
m-file function has its own local variables, which are separate from those of
other function and from the workspace. However, if several functions and/or
the workspace, all declare a particular variable as global, then they all share
this variable (see help global). Any assignment to that variable is available
to all other functions and/or the workspace. However, you should be careful
when using global variables. It is very easy to get confused and end up with
serious errors

Indirect function evaluation

Using indirect function evaluation makes programming even more general,
since functions can become input arguments. The crucial Matlab command
here is feval, an abbreviation of function evaluation. The feval command
allows execution of a function specified by a string. The general definition is
as follows:

32

[y1,..,yn] = feval (F,x1,...,xn),

where F is a name of a function defined in Matlab, x1, ... ,xn are input argu-
ments and y1,...,yn are possible output parameters. Consider an example:

X = pi;
cos(x);
feval(’cos’,x);

N <
non

The last command is also equivalent to the following two expressions:

F = ’cos’;
feval(F,x)

z

1.6 Plots with Matlab

Matlab can be used to visualize both curves and surfaces. It allows to group
and superpose graphics and it has several options that control colors and
appearance.

1.6.1 Plots 2D

The 2D representation of a function can be obtained when a representation
of this function is given in Cartesian or parametric coordinates.

The command plot(x,y) represents the couples (z;, y;) stored in vectors
x and y, which should be vectors of equal length. plot(y) draws the points
(17 le), (27 y2)a R (n7 Z/n)

The command linspace(a,b,N) generates a vector of N equally spaced
points between a and b. Hence, to generate the plot of a function we can
write, for example,

x=linspace(0,2%pi,30) ;
y=sin(x) ;

plot(x,y)

obtaining the following plot

33

It is possible to generate the same plot with ‘lines’ and ‘crosses’ writing
plot(x,y,x,y,’+’)

obtaining:

) 1 2 3 4 5 6 7

On the other hand, it is possible to control colors and styles for the lines
in the plot using the symbols of the following table:

34

Symbol Color Symbol Style

y yellow . dots

m magenta || o circles

c cyan X x-S

T red + crosses

g green * stars

b blue - line

w white : dots line

k black - lines and dots
- - dash line

For example, it is possible to write:

y=sin(x)

plot(x,y,’g:’,x,y,’wo’,x,y,’r:’,x,y, ’ct’)

obtaining

) 1 2 3

Each time the command plot is executed the figure we has previously ob-
tained disappears. If we want to superpose two or more plots, the command
hold allows to keep the plots obtained in previous executions. For example,

if we write:

plot(x,y,’g:’,x,y,’wo’ ,x,y,’r:’,x,y, ’ct’)

hold on

z=cos (x)

plot(x,z)

the following plot is obtained,

35

) 1 2 3 4

There are different commands to control the polt appearance. Thus, grid
on adds a grid to the plot and grid off removes the grid. The commands
xlabel and ylabel generate a label for the axes x and y, respectively. The
command title generates a label for the plot. The command text allows
to place a text in a determinate position of the plot.

An example of use of these functions is the following one

plot(x,y)

title(’title of the function sin’)
xlabel(’axe x’)

ylabel(’sin(x)’)
text(2.5,0.7,’sin(x)’)

getting the following plot:

titulo de la funcion seno

sen(x)

sen(x)

eie x

The command axis controls the axes appearance, for example

36

axis([xmin, xmax, ymin, ymax])

sets the axis r and the axis y in such a way that the maximum value for the
2-s is xmin, the maximum value for the z-s is xmax, the minimum value for
the y-s is ymin, the maximum value for the y-s is ymax.

axis auto: returns the axes scale to their default values.
axis equal: sets the same scale for the z-s and for the y-s.
axis normal: returns the scales to their default values.
axis off: removes the axes.

axis on: plots the axes.

The command subplot allows to divide the plot region in different regions
and in each region to plot a different graphic. An example of the use of the
command subplot is the following one:

x=linspace(0,2#pi,30);
y=sin(x);
z=cos (x) ;
a=2%sin(x) .*cos(x);
b=sin(x) ./ (cos(x)+eps);
subplot(2,2,1) % Divides the plot region
% in 2 x 2 graphics and the first
% region is selected (up left).
plot(x,y)
axis([0, 2*pi, -1, 11)
title(’sin(x)’)
subplot(2,2,2) % the second region is selected
plot(x,z)
axis([0, 2*pi, -1, 11D
title(’cos(x)’)
subplot(2,2,3) % the third region is selected
plot(x,a)
axis([0, 2*pi, -1, 11D
title(’sin(2x)?)
subplot(2,2,4) % the fourth region is selected
plot(x,b)
axis([0, 2#pi, -15, 15])
title(’sin(x)/(cos(x)+e’))

37

sen(x) cos(x)

0 2 4 6) 2 4 6

sen(2x) sen(x)/(cos(x)+e)

4 0
-5
-05
-10
-1

o 2 4 3 (] 2 4 6

Matlab can make plots of curves using logarithmic and semi-logarithmic
scales. Thus,

loglog : Is a function similar to plot but uses a logarithmic scale for axes
v and y.

semilogx : Is a function similar to plot but uses a logarithmic scale for
axis « and a linear scale for axis y.

semilogy : Is a function similar to plot but uses a logarithmic scale for
axis y and a linear scale for axis x.

If we want to plot curves expressed in parametric coordinates, we can
use the command ezplot. An example where this command is used is the

following one:

ezplot(’sin(2*t)’, ’cos(2xt)’, [0,2*pil)

x=sin(21), y = cos(2t)

A curve in polar coordinates can be plot using the command polar, as it
is shown in the following example:

t=0:0.01:2%pi;
r=sin(2%t) .*cos(2xt) ;
polar(t,r)

The command bar generates a bar diagram. An example where a bar
diagram associated with a Gaussian function is generated, is the following
one:

x=-2.9:0.2:2.9; J sets the number of divisions
y= exp(-x.*x);
bar (x,y)

The command hist generates the histogram associated with the data
stored in a given vector. An example for a random numbers vector is the
following one

x=-2.9:0.2:2.9; % sets the number of divisions
y= randn(5000,1);
hist(y,x)

What happens if we use randn instead of rand?.

It is possible to plot graphics of data with an error bar associated. To
do this, we make use the command errorbar, as it is shown in the following
example

x=0.1:0.1:10;

y= log(x);

e=rand(size(x))/10; Y% creates a vector with random errors
errorbar(x,y,e)

40

The function fplot generates the plot of a function of one variable,
without generating vectors with the numeric data. The general form of
the command is fplot (’fun’, [xmin xmax]) or fplot(’fun’, [xmin xmax
ymin ymax]).

An example is the following one

fplot(’sin(x)./(x+eps)’,[-20 20 -0.4 1.2]);
title(’Plot of sin(x)/(x + eps)’);
xlabel(’x’)

ylabel("£(x)’)

grafica de sin(x)/(x+eps)

41

1.6.2 Plots 3D

To generate the plot of a curve in the space it is possible to use the function
plot3. Let us suppose that we want to plot the spiral

x(t) = cos(t)
E =< y(t) =sin(t)
z(t)=t, tel0,107] .

We can write

t=0:pi/50:10%pi;

x=sin(t);

y=cos(t);

z=t;

plot3(x,y,z,’r’);

title(’espiral’)

xlabel(’x’), ylabel(’y’),zlabel(’z’)

obtaining

espiral

1t is possible to control the axes scale using axis ([xmin, xmax, ymin,ymax,zmin,zme
in a similar way to what it is done for 2D plots. It is also possible to use
text(x,y,z, texto’) to write a label in the position (z, y, z) of the graphic.

If we want to obtain a representation of the surface Z = z(z,y), we can
use different functions implemented in Matlab. Let us consider the function

z(x,y) = sin (m) _

A possible representation is obtained in the following example:

42

x=-7.5:0.5:7.5;

y=x;
[X,Y]=meshgrid(x,y);
Z=sin(sqrt(X. 2+ Y."2));
mesh(X,Y,Z)

o
4«\\.1/ “ '
\\\\\mll'" m

&HII

Vi

7

‘—

2,
=)
’

=

—

==~

/4
il \

-

7—

=

>
e

=

=

fr—;/’;-

)

“, 'III

Another possibility is
mesh(Z)

An alternative to the function mesh is the function surf. Hence, it is
possible to use

surf(X,Y,Z)

It is possible to generate level curves for a determinate function using the
commands contour y contour3. The following example

contour(X,Y,Z,20)
generates 20 level curves of the function z(x,y) in the plane and
contour3(X,Y,Z,20)

gives the rame representation in the space.

It is possible to obtain a color bidimensional representation of a function
z(z,y) using the command pcolor. Thus,

43

pcolor(Z)

produces this representation using the default colormap. This colormap can
be changed using the command colormap. Different possibilities are shown
in the following table

option Description

hsv Tones saturation

hot Black, red, yellow and white
pink pink shadows

gray grey scale

bone grey scale with blue tones
Jjet A variant of hsv

copper Copper tones

prism prism

flag red, white, blue and black

This options can be used as it is done in the following example:
colormap (hot)
pcolor(X,Y,Z)
shading flat % removes the grid
hold on
contour(X,Y,Z,20,°k’)
hold off

It is possible to change the view point of the 3D plots using the command
view. One possibility is to use the azimuth and the elevation in degrees of
the direction we want to look at
view(phi,theta)

or we can use a vector in this direction

view([x1,x2,x3])

1.7 Storing and retrieving information

If we want to save the contents of a variable to an ascii file, we can make use
of the function save(). For example, the following code

44

x=1:100;
save vector.dat x -ascii

saves the contents of the variable x into the file vector.dat in ascii format.
You can inspect the contents of this file using Notepad editor, for example.

On the other hand, if we have a file vector.dat and we want to assign
its contents to a variable y, we can use the following commands

load vector.dat
y=vector

the load command reads the data in file vector.dat and assigns its contents
to the variable vector.

To store and retrieve information from the hard disk we can use structures
similar to the ones existing in the C language. In this way, the following code

x=1:10;

A=[x;log(x)];
fid=fopen(’fichero.dat’,’w’);
fprintf (fid, %g\thg’,A);
fclose(fid);

stores in the file fichero.dat the contents of matrix A. If you inspect the
file fichero.dat you will observe that the matrix is stored in 2 columns and
10 rows, which is different from the real structure of A which has 10 columns
and 2 rows.

Now, we can read the contents of the file fichero.dat and assign them
to the variable B with the following instructions

fid=fopen(’fich’,’r’);
Bt=fscanf (fid, ’%g’, [2,10]);
B=Bt;

now, the variable B is stored with the same structure as the file fichero.dat.
To learn more about the different options of fscanf() and fprintf() see
the Reference Manual pages.

Another useful function to read ascii files with a tabular structure is
textread(). Let us suppose that we have a file called mydata.dat with the
following structure

Name type score Y Y/N

Sally Typel 12.34 45 Yes
Joe Type2 23.54 60 No
Bill Typel 34.90 12 No

we can assign the different columns of data to Matlab variables using the
instruction

[names,types,score,y,answer]=
textread(’mydata.dat’,’%s %s %f %d %s’,’headerlines’,1);

The following set of instructions creates 10 figures and stores them in
10 files called figl.ps, fig2.ps, ... , £iglO.ps, which are in postscript
format

x=0:0.1:1;

y=sin(x*pi) ;

z=[y];

hold on

for j=1:10
z=[z;y.*exp(-0.05%3)];
plot(x,z(j,:))
filename=[’fig’,int2str(j),’ .ps’];
eval([’print ’,filename,’-dps’]);

end

hold off

You can learn more about print() and eval() functions looking at the
Reference Manual pages.

46

1.8 Exercises

1. If z; =3+ 5¢ and 23 = 1 — 2i. Obtain
|21], 21 + 29, 21 % 29, 21/22
Check that arg(z1/20) = arg (z;) — arg (22)
2. Calculate

In(9) + sin (7/5) _

1
8)5 . ¢ +In(5
®)F . e +G) =)

3. Given
1 2 3 1
A=101 6 vyb=1 2 |,
019 3
obtain

4. Introduce the following matrices

1 -3 4 2 46 1
D=|2 =5 7|, E=|456]|,c=]|2
0 -1 1 31 2 0

a) Calculate D + E, DE, DTE.
(a)

(b) From matrices D and E extract their row and column vectors and
a submatrix 2x2 constituted by the rows 1 and 2 and the columns
2 and 3.

(¢) Solve the system
Er=c

(d) Construct a diagonal matrix whose diagonal contains the diagonal
elements of matrix E.

47

(e) Construct a matrix with block structure [DE].

5. Calculate, using the function sum()
10
S
i—1

And, using the function prod()

6. (a) Write a loop to calculate the sum of the first 25 natural numbers.

(b) Calculate the largest natural number satisfying
3"+ In (n) < 2000.

(¢) Calculate the product of the first 10 odd numbers.

7. Given the function . .
F(s) = o
5%+ ES + m

associated with the transfer function of a simplified model of an auto-
movil suspension mechanism. Define this function as a Matlab function.
Use it to store in a vector the values of F(s) when s =0,1,2,...,100.
Consider b =1, m =2, k = 3.

8. Write a program to take in a set of 10 exam marks from the keyboard
together with the name of the student. Sort the marks into increasing
numerical order and print them out. The program should produce in
the output the mean and the standard deviation of the marks.

9. La following expression
log(n!) ~ nlog(n) — n ,

is the Stirling’s approximation of log(n!). Write a program to check
this approximation for n = 100, n = 1000 y n = 5000, bearing in mind
that 5000! is much too large number to be stored in a standard way
by the computer.

10. Plot the following curves:

48

11.

12.

13.

14.

a) y=a2+32+5
b) y = € +sin(x)

¢) { x(t) =t — sin(t)

y(t) =t — cos(t)
d) p=cos(f) +sen(0/4)

Using the proper function divide the plotting window in four sub-
windows and plot in each sub-window one of the following functions:

y = tan(z)

y = cosh(bxx)
= €+ 5sin(22)
= 2243z +4

Estimate the crossing point of the following functions in the interval
[0, 2]

223 +5.42% + 4.8z + 1.4
Tz — 10

Obtain a representation of the surface
for (z,y) € [-1,1] x [-1,1].

Plot the surface
2(z,y) = 2" + 97,

in the square [—1,1] x [—1, 1] and superpose to the plot 5 level curves.

. Create a matrix of the form

M = (xl,:rlz,zf) ,
being = the vector
z=(01,0.2,...,10)T .

Store this matrix in a file called matrix.dat. Use to do this the func-
tions save() and fprintf().

Read the data from the file matrix.dat, assign them to the variable A
and compute MM?* and ML M.

49

16.

17.

18.

Create a file in ascii format with the following data corresponding to
the marks obtained in a test

Name | mark ‘
Maria 8
Pepe 5
Juan 2.5
Luisa 7
Samuel 3
Rafa 100

Read the data with Matlab and calculate the mean and the variance
of the marks.

A traveling pulse has the equation
y(z,t) = exp(—20(z — 0.1¢)?) .

create 10 files called pulsel.bmp, pulse2.bmp, ... , pulsel0.bmp
containing the plot of the shape of the pulse for the each one of the
first 10 seconds of evolution in windows bitmap format.

Solve the following assignment?: ACME (the company you work for) is
currently under contract to help the Corporation Of Nuclear Electrical
Devices, one of the nation’s largest commercial producers of electricity,
to build a laser fusion reactor. This reactor will be powered by a single
strong laser pulse targeted at a some small object in the middle of
this device. The details of how this works are unimportant, but the
characteristics of the laser pulse, at least for this particular project, are
crucial.

The people in CON ED’s laboratory have made several measurements
on the laser pulse during the time when it is turned on, but they still
have no idea what the pulse looks like as a function of time. Because of
your excellent reputation in doing numerical computations, the people
at CON ED have decided that they would like to have you produce a
picture of this function. Your boss has agreed that you are just the
person for the job.

The power produced by the pulse can be considered a function of time,
say P(t). The measurements produced by CON ED are the total energy

2From the book: T.A. Grandine, The Numerical Methods programming Projects Book.

Oxford University Press, (1990).

50

of the pulse during the first second of operation, the first and second
moments of the power function, and two pieces of spectral information.
More precisely, CON ED has measured the following numbers which
estimate the following integrals

0.43843

Il
o\
>
e
—~
~
)
<
~

1
0.16475 = /tP(t)dt,
0

0.07844

Il
N
~
N
)
—~
~
=
8
~

1
0.33298 / sin(rt)P(t) dt |
0

1
0.14434 = /cos(7rt)P(t)dt7
0

You will approximate P(t) by a function S(¢) which has the form
S(t) = ay + agt + azt® + aq sin(7t) + as cos(wt) .
Thus, it will your job to compute a;. This is done by projecting P(t)

onto the space of functions which are of the same form as S(t) above.
That is you insist that the five equations

/0 1 S(t)dt

/OltS(t)dt _ /OltP(t)dt,
/1t25(t)dt = /OltzP(t)dt,

0

/ Cin(rt)S() dt — / Sin(mt) P(t) dt
/1cos(m€)5(t) dt = /1 cos(mt)P(t) dt

Il
C\
>
e
~
~
)
8
=~

be satisfied. Once you have computed the a;, you have a function
which should be a good approximation to P(t). Produce a graph of
this function in the interval [0,1]. Be sure this will be a contribution
to provide future energy to the World.

Chapter 2

Interpolation and fitting of data

Matlab has implemented several functions for the interpolation and fitting
of data. We will review these functions and we will study some examples.

2.1 Polynomials in Matlab

To represent a polynomial Matlab uses a vector whose components are the
coefficients of the polynomials ordered in decreasing powers of the variable
x. Thus, the vector

1-4-3-410

represents the polynomial

P(z) =2" — 42> - 32" — 42 + 10 .

If p is a vector of the coefficient of a given polynomial, we can evalu-
ate the polynomial for a given value of the variable sy using the command
polyval(p,s0). This function allows to obtain a graphic representation of
the polynomial in a certain interval. For example the following instructions

p=[1 -4 -3 -4 101;
x=2:0.01:4;
y=polyval(p,x);
plot(x,y)

allow to obtain the plot of the polynomial P(z) in the interval [2,4], which
is of the form,

The roots of a given polynomial can be obtained using the function
roots(). Thus, the command

raices=roots(p)
provides the result
4.7200
-0.8600+1.1743i
-0.8600-1.17431
1.0000
A polynomial can be reconstructed from its roots using the instruction
p=poly(raices)
Let us suppose that we have the following polynomials

a(r) = 22 +3x+2,
b(r) = 2 +5r+1,

and we write the vectors of the coefficients

[13 2]
[15 1]

a
b

the product of polynomials can be calculated by means of the function conv(
), hence,

conv(a,b)
provides the result
1818 13 2

which corresponds to the polynomial

#4827 + 1822 + 13z + 2 .

2.2 Interpolation

Given a table with a series of data, as the following one

To | Ty |- ||| Ty

the function interp() allows to calculate interpolated values for data placed
between the extrema values collected in the table.

The function works in the following way
yi=interp(x,y,xi, ‘method’)

where x is the vector of xs from the table, whose components must be ordered
in an increasing or a decreasing way. y is the vector of ys from the table.
xi is the value or a vector of values we want to interpolate. ’method’ is
the particular technique we want to use to obtain the interpolation. This
argument is an optional one, and it can take the following values:

’linear’ A linear interpolation is performed.

>spline’ The interpolation is performed constructing a cubic spline for the
data of the table.

’cubic’ A cubic interpolation is calculated for the data of the table. To be
able to use this option the data in vector x must be equally spaced.

Let us see an example. In the following table it is shown the population
of the U.S.A., expressed in millions of people from 1900 to 1990

54

aho 1900 1910 1920 1930 1940
Pobl. | 75.995 | 91.972 | 105.711 | 123.203 | 131.669
aho 1950 1960 1970 1980 1990
Pobl. | 150.697 | 179.323 | 203.212 | 226.505 | 249.633

We can write the following commands

tiem=1900:10:1990;
pob=[75.995 91.972 105.711 123.203 131.669 ...
150.697 179.323 203.212 226.505 249.633];

obtaining two vectors with the data of the table.

We can estimate the population of 1975 writing
interpi(tiem,pob,1975)

obtaining as a result 214.8585 millions.

On the other hand, we can plot the evolution of the population with the
following instructions:

x1=1900:2000;
yi=interp(tiem,pob,xi,’spline’)

plot(tiem,pob,’0’,xi,yi)

obtaining

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

ot
ot

2.3 Fitting of data

The function polyfit() provides a polynomial fitting for the data in a
table. This function works in the following way:

p=polyfit(x,y,n)

where x and y are vectors with the data of the table, n is the degree of the
polynomial used in the interpolation, and p is the coefficients vector obtained
from the fitting.

Let us see an example of use of this function.

It is known that the data in the following table

1 2 3 4)
4.52 | 4.09 | 3.70 | 3.35 | 3.03
6 7 8 9 10
274|248 225|203 | 184

< B R

correspond with an exponential decay of the form
y = aexp(bx) .

To estimate the values of a and b from the data in the table we write the
following instructions.

x=1:10;

y=[4.52,4.09,3.70,3.35, ...
3.03,2.74,2.48,2.25,2.03,1.84];
yi=log(y);

p=polyfit(x,y1,1)

and we obtain

-0.0999 1.6082

which are the parameters of a model of the form
In(y) = bz + In(a) ,

thus, we have that b = —0.0999 and a = 4.9938.

56

2.4 Exercises

1. Calculate:

a) The fifth roots of -1.
b) (z*+ 3z% 4+ 2z + 0.5)(a® + 3z + 0.3)
¢) The real roots of the polynomial 2% —32° — 2%+ 723 — 14224+ 102 —12.

. The following table shows the time evolution of the mineralization ni-
trogen in the ground

Time | Nmin
(dias) | (mg/kg)
7 9.466
14 8.211
27 15.590
41 17.615
55 20.215
83 21.734

Obtain the time necessary to obtain a value of mineralization nitrogen
of 18.5 mg/Kg. To do this, use a linear interpolation and a spline and
compare the obtained results.

. Interpolate the function

1
)= —
f@) = s
in two ways. First, using a set of points z, = =5+ n, y, = f(zn)
with n = 0,1,2,...,10, and second, using the set z, = 5 cos(wn/10),

Yo = f(xp) with n = 0,1,2,...,10. Use a polynomial of degree 9
to perform the interpolation. Make a graphic representation of both
results.

. It is known that the relation between the live weight of a butterfly, W
(g), and the consumed oxygen, R in ml/h, is approximately of the form

R=0W".

Obtain the values of a and b using the data in the following table

w R
0.017 | 0.154
0.087 | 0.296
0.174 | 0.363
1.11 | 0.531
1.74 | 2.23
4.09 | 3.58
5.45 | 3.52
5.96 | 2.40

5. It is known that, under certain conditions, the time evolution of a

given population can be modeled using the logistic equation that is of

the form
1000

T 14 Gt
Obtain C' and A for the data in the following table:

P()

P(t) || 200 | 400 | 650 | 850 | 950
t 0 1 2 3 4

6. From the calibration of a motor the following data have been obtained

Time (milliseconds) Distance (cm)

0.00 0.0
1.40 1.0
2.37 2.0
3.30 3.0
3.37 4.0
It 50 Chapter 3
5.42 6.0
5.71 7.0
6.39 8.0 . . o
7.26 0.0 Roots, integrals and differential
7.82 10.0 .
8.67 11.0 equations
9.12 12.0
9.66 13.0
10.70 14.0
11.23 15.0 Now, we will show some Matlab functions to perform approximate calcula-
12.47 17.0
12.79 18.0
1320 19.0 3.1 Finding roots of equations
14.12 20.0
Ezg ;;8 Let us suppose that we want to find the roots of the function
16.04 23.0 1 1
1@ = o3 +001 T w—o9rs0a O
Perform a fitting using a polynomial of degree 4 to obtain a model of
the distance as a function of time. Make a plot of the fitted polynomial First, we make a plot of the function together with the axis of z-s. To do
and the data of the table. this we define the function

function y=func(x)
y =1/((x-0.3).72 +0.01) + 1/((x-0.9).72 + 0.4)- 6;

and we use the function fplot(), in the following way:
fplot(’func’, [0 2])

hold on

fplot(’0’, [0 2], ’g?)

hold off

obtaining

We see that there is a zero near x = 0.8. We can improve this result using
the function fzero(), Hence, we can write

fzero(’func’, 0.8)

obtaining the result x = 0.8222.

Let us suppose now, that we want to obtain a root of the system of
equations

2} — 102, +23+8=0,
rz2 4z — 102, +8=0. (3.1)

The following Matlab function is a possible implementation of Newton'’s
method for a system of equations,

function [xr,k]=newtonsi(x,tol,imax)
ToloToToToTototatototototo oo o o o toioio oo o o oo oo oo To oo o o o

% Metodo de Newton para sistemas de ecuaciones
% Uso: [xr,k]l=newtonsi(x,tol,imax)

% Input:
% x = vector x1,x2,...,xn inicial,
% tol=tolerancia

% Se ha de disponer de las funciones:

% f.m funcion y=f(x) donde se define el sistema
% jac.m funcion df=jac(x) donde se define la matriz

61

% derivada del sistema.
pA
% Output: xr= raiz, k= numero de iteraciones.
Tt o o161 ToTo T o o o o o o 1o 1o T T T T o oo oo o o o o 1o 1 o o o oo o o oo
k=1;
epi=1;
x1=x;
while norm(epi)>tol

x=x1;

fxn=f () ;

axn=jac (x) ;

epi=axn\fxn’;

xl=x-epi’;

k=k+1;

if k>imax

disp(’no converge’)
break

end
end
xr=x1;

This function uses two auxiliary functions, f.m where it is defined the func-
tion associated with the system of equations and jac.m that defines the
derivative of this function. For the system (3.1) these functions are of the
form

function y=f(x)
y(1)=x(1)"2-10*x (1) +x(2) ~2+8;
y(2)=x(1)*x(2) "2+x (1) -10*x(2) +8;

and

function df=jac(x)

% matriz jacabiana para usar con newtonsi.m
df (1,1)=2%x(1)-10;

df (1,2)=2%x(2);

df (2,1)=x(2) "2+1;

df (2,2)=2*x (1) *x(2)-10;

Once we have written these functions, we can execute the following in-
struction

62

[xr,k]=newtonsi([0 0],1.e-5,100)

obtaining as results the root xr= [1.00, 1.00] in k= 10 iterations.

3.2 Approximate integration
To calculate definite integral numerically Matlab has the functions trapz,
quad y quad8.

If we want to calculate

l sen(z) dzx |

h
wlA

we can write

x=0:pi/10:pi/2;
y=sin(x);
integral=trapz(x,y)

The function trapz() uses the trapezoidal rule based on the divisions

of the interval defined by the elements of vector x.

Other possibilities are
integral=quad(’sin’,0,pi/2)
or,

integral=quad8(’sin’,0,pi/2)

3.3 Differential equations

Matlab has implemented, among other ones, the functions ode23 and ode45,
to solve initial values problems associated with differential equations.

Let us suppose that we want to solve an initial value problem associated
with Van der Pol’s oscillator
d*x

N

dt
63

First, we have to rewrite the differential equation into its normal form, that
is, we introduce the auxiliary variables y; = x and y = Z—f, obtaining the
following system of differential equations

dy

dt Y2,

d

% = vl—y)p—un .

In an m-file we write a function with the following structure

function yprime=vdpol(t,y)
% devuelve las derivadas del oscilador de Van der Pol
% se escoge mu = 2
mu=2;% se suele elegir 0 < mu < 10
yprime = [y(2);
mu* (1-y (1) "2)*y(2) - y(1) 1 ;

After this, we can calculate the initial value problem associated with Van
der Pol’s oscillator with initial conditions y;(0) = 1, y2(0) = 0 for ¢ € [0, 30]
in the following way
[t,yl=0de23(’vdpol’,0,30,[1;01);
and to plot the solutions in the phase plane we write:
yl=y(:,1);
y2=y(:,2);
plot(y1,y2)

The function ode45 works in a similar way.

3.4 Exercises

1. Obtain the roots of the equation
o2
r =a’sen(z) ,

placed in the interval [0, 10].

64

ot

. Use the function £slove to obtain a root of the system of equations

27— 10z, +25+8=0,
x1x§+x1—10:v2+8:0.

. We have to build a roof using a machine that compresses a flat sheet

of aluminium converting it into a sheet whose transversal section is a
sinoidal wave. Let us suppose that we need a roof of 50 cm and that
each undulation has a height with respect to the horizontal line of 1
cm and a period of 2 ¢cm. The problem of finding the length of the
original sheet is solved calculating

50
L:/ V14 cos?(z)dx .
0

Estimate this length using Matlab.

* cos(2x)
/0 cosh(z) ’

and compare it with the exact value, J sech(r).

. Estimate the value of

. The current through a RCL circuit which is driven by an alternating

tension E(t) is described by the equation

dl 1
L—+RI+—=Q=E({).
o PRI+ 5Q=E()
Let us suppose that we have a resistance of 22, a capacitance of 1 F
and an inductance 0.5 H. If E(t) = 5sen(t), knowing that the following
relation holds

4Q _

dt
that the condenser at ¢ = 0 is uncharged, and that initially there is no
current through the circuit, obtain a plot with the time evolution of
the current through the circuit from ¢ = 0 to ¢ = 1 seconds, and the
charge in the condenser at ¢ = 0.5 seconds.

I,

. In the circuit we show in the figure

65

Ry

e(t)

M+

/

| L

1T
.M

N

<

we have a linear resistance Ry = 1 Ohm, a capacitance C' = % F, an
alternating tension generator e(t) = 18 + 5 cos(50t), and a non-linear
resistor Ry, which follows a law ¢ = 2V3, where V is the tension drop
through the element. The circuit is modeled using the equation

1dV

sa T V +2V3 = 18 4 5 cos(50t)
If V(0) = 0 V., obtain and plot the time evolution of V'(¢) in the interval
[0,1].

66

Chapter 4

Some topics on signal analysis

Correlation is an operation used in many applications in digital signal pro-
cessing. It is a measure of the degree to which two sequences are similar.
Given two real-valued sequences z(n) and y(n) the cross-correlation of z(n)
and y(n) is a sequence r4y(n) defined as

+00

Tay(l) = Z x(n)y(n —1) . (4.1)

The index [is called the shift or lag parameter. The special case of (4.1)
when y(n) = x(n), is called autocorrelation and is defined by

+00

raa(l) = Y x(n)a(n—1). (4.2)
n=-—0o0
It provides a measure of self-similarity between different alignments of the
sequence.
Given two sequences z(n) and h(n) the linear convolution of these se-
quences is defined as

+00

y(n) =z(n) *y(n) = Z z(k)h(n — k) . (4.3)

k=—o0

1. In a certain concert hall, echoes od the original audio signal x(n) are
generated due to the reflections at the walls and ceiling. The audio
signal experienced by the listener y(n) is a combination of z(n) and its
echoes. let

y(n) =x(n) + azx(n — k) ,

67

where k is the amount of delay in samples and « is its relative strength.
We want to estimate the delay using the correlation analysis.

(a) Determine analytically the autocorrelation r,,(l) in terms of the
autocorrelation ().

(b) Let x(n) = cos(0.2mn) + 0.5cos(0.67n), & = 0.1, and k = 50.
Generate 200 samples of y(n) and determine its autocorrelation
(use xcorr()). Can you obtain a and k by observing 7, (1)?.

. When we have two finite sequences z(n) and h(n) of lengths N, and Ny,

respectively, then their linear convolution (4.3) can also be implemented
using matrix-vector multiplication. If elements of y(n) and z(n) are
arranged in column vectors z and y, respectively, then (4.3) can be
written

y=Huz,

where the linear shifts h(n—k), n =0,... , N, —1 are arranged as rows
in the matrix H. This matris has an interesting structure and is called
a Toeplitz matrix. To investigate this matrix, consider the sequences

z(n) ={1,2,3,4} , h(n) ={3,2,1} .

(a) Determine the convolution y(n) = h(n) * z(n).

(b) Express z(n) as a 4 x 1 column vector z and y(n) as a 6 x 1 vector
y. Now determine the 6 x 4 matrix H so that y = Hz.

(¢) What can you say about the first row and the first column of H?

3. Matlab provides a function called toeplitz to generate a Toeplitz ma-

trix, given the first row and the first column.

(a) Using this function develop an alternate Matlab function to im-
plement linear convolution. The format of the function should
be

function [y,Hl=conv_tp(h,x)
% Linear convolution using Toeplitz matrix

% [y,H] = conv_tp(h,x)

% y = output sequence in column vector form

% H = Toeplitz matrix corresponding to sequence h
% h = Impulse response in column vector form
Input sequence in column vector form

=
Lol
]

68

(b) Verify your function on the sequences given in the exercise exposed
above.

For a given finite sequence, z(n), n =0,... , N — 1 it is possible to define
its discrete Fourier transform as

N-1

X(k) =" a(n)e 5k (4.4)

n=0

that can be viewed as an approximation to the Fourier Transform of the
function z(t) such that x(nT) = x(n), where T is the sampling time. This
Fourier transform is evaluated at frequencies w;, = %7 k=0,1... N —1.
The inverse discrete Fourier transform is defined as
] Nl
;27
x(n) = X(k)e'xmk (4.5)

N
k=0

The following Matlab functions implement the discrete Fourier transform
of a sequence and its inverse.

function [Xk]=dft(xn,N)

% Computes the Discrete Fourier Transform
/)
% [Xk] = dft(xn,N)

% Xk = DFT coeff. array

% xn = N-point finite-duration sequence
% N = Length of DFT

)

n=[0:1:N-1]; % row vector for n
k=[0:1:N-17; % row vector for k
WN=exp (-i*2*pi/N); % Wn factor

nk=n’x*k; % creates a NxN values of nk values
WNnk=WN. "nk; % DFT matrix
Xk=xn*WNnk ;

function [xn]=idft (Xk,N)

% Computes the Inverse Discrete Fourier Transform
h
% [Xk] = idft(Xk,N)

% xn = N-point sequence

69

% Xk = DFT coeff.

% N = Length of DFT

%

n=[0:1:N-1]; % row vector for n

k=[0:1:N-1]; % row vector for k

WN=exp (-i*2%pi/N); % Wn factor

nk=n’*k; % creates a NxN values of nk values
WNnk=WN. " (-nk) ; % IDFT matrix

xn=(Xk*WNnk) /N;

Compare the performance of these functions with the Fast Fourier Trans-
form algorithm implemented in the Matlab functions £fft and ifft. To do
this comparison use the function etime.

The Fourier transform of a given signal provides information about its
frequency contents. In this way, for example, if we want to know if two
signal have a common frequency we can calculate the Fourier transform of the
cross-correlation of both signals. The magnitude of the Fourier transforms
give us the main frequency, and the phase of the Fourier transform indicates
the phase shift between the two signals. Check these assertions using the
sequences z(n) = sin(0.1n) and y(n) = cos(0.1n).

4.0.1 Filtering signals using the DFT

Generally the experimental studies are carried out performing a series of mea-
surements. In this measurements we obtain, together with the information
associated with the system under study, some other unwanted contributions
known as noise. The set of measurements obtained are called signal, and a
process to eliminate the noise is called filtering.

Now we will show that the DFT can be used to filter noise in some cases.
Let us start from a function

z(t) = sin(0.1¢) + 3sin(0.3¢) ,

which plays the role of process under study. The function is sampled using
a sample time of T = 0.05 seconds and N = 1024 samples are considered,
obtaining

z(n) = sin(0.1n7") + 3sin(0.3n7) .
To simulate the noise we add to the signal a uniform random process, &,
obtaining the noisy signal

z,(n) = sin(0.1nT) + 35in(0.3nT) + &, .

70

In the figure 4.1 we show the noisy signal, z,.(n) and the clean signal z(n).

10 T T

senall sin ru1ﬁo —
senal con rui

Figure 4.1: Noisy signal and clean signal.

The next step consists of calculating the discrete Fourier transform of the
signals z(n) y z,(n), called X (k) and X, (k), respectively,

In figure 4.2 the magnitude of these transforms is shown, | X (k) | and
| X,(k) |. In this figure we can distinguish two fundamental harmonics
associated with the clean signal and some secondary harmonics, associated
with noise with lower amplitude. To filter the signal from a plot similar to 4.2

a threshold, U, is selected and the filtered sequence in the frequency domain
is of the form

where H(k) is the filter

s IXE U
H(’“)*{o S| X (k) |<U .

To obtain the filtered signal it is enough to calculate the inverse discrete
Fourier transform of X(k),

p(n) = D7 [X; (k)]

71

1.6 : ; —
]?% Son ru}‘go .
cop ruido-——-
umbra. 1

‘senn?l sin ruido -
. senal gop rui
i senal filtrada A

Figure 4.3: Filtered signal, clean signal and noisy signal.

In figure 4.3, the filtered signal, the noisy signal and the clean signal are
shown

We observe that in this simple case it is possible to design a filtering
process using the DF'T.

Design a Matlab function to filter a given signal using the DF'T. This func-
tion should select an adequate threshold and produce a plot for comparison
and the filtered signal as outputs.

72

Chapter 5

Filters

5.1 Analog filters

Here we will present a brief introduction ! to two popular analog kind of
filters, the Butterworth filters and the Chebyshev filters.

5.2 Butterworth filters

We will represent an analog filter by its transfer function H(s), which is
related to the frequency response of the filter, 7'(w), by the relation T'(w) =
H(iw). In this way the magnitude of the frequency response of the filter is
given by
J 2
T(w)]" = H(s)H(=5)|,=, -

The Butterworth response is characterized by

1

T,(w)f = ——
() = 1

(5.1)

which for large n constitutes a good approximation for the ideal response, as
can be seen in figure 1.

!Mainly from the book: M.E. Valkenburg, ‘Analog Filter Design’. Harcourt Brace
Jovanovich College Publishers. (19982).

73

I T I
0 0.5 1 L5
s

Figure 1.- Butterworth response.

To obtain the transfer function of the filter, we rewrite (5.1) in terms of

s
1
H(s)H(—s) = ———- .
1+ ()"
Thus, the poles are given by
52n — _,L'Zn _ ei‘lreirm .
That is, _
5 =T FF2RT 01, 20— 1.

For example, if we select n = 3, we have the poles

iZr 1 V3

5 = (’,. :_5"!‘17,
sy = e =-1,

s3 = €7 = 1fié
3 2 2)
s o ﬁli _.\/g

4 = €3 = 2)

s = €73 =

1
2
S5 = e =1,
1
2

There is symmetry with respect to the imaginary axis in the poles. To obtain
a stable transfer function we associate to this transfer function the poles with

74

real part negative. That is,
1 1

B = G =G =) ~ G DA +s 5

In the following table we present the polynomial constituting the denom-
inator of the transfer function of Butterworth filters for different orders n.

Table 1.- Butterworth polynomials.

sy}
3
N
B
—|&

©
+

—

Jr

s

14145 + 1)

Vo)
+

1) (s + s1)

C’Jl\?
+

7655 + 1) (52 + 1.8485 + 1)

1

s

+

(24 0.618s 4 1) (s> 4 1.618s + 1)

5185+ 1) (s2+ 1.414s + 1) (s2 + 1.9325 + 1)

1

Vo)
+

(s2+0.445s + 1) (s> + 1.247s + 1) (s + 1.802s + 1)

2

V)
+

.390s + 1) (s* 4+ 1.111s + 1) (s + 1.663s + 1) (s® + 1.962s + 1)

O| 00| ~I| O O x| W N =3
|||~

V) ff.)w
! +
—| O —| O~ O

1) (s> +0.347s + 1) (s> + s + 1) (s> + 1.532s5 + 1) (s + 1.879s5 + 1)

5.2.1 Chebyshev filters

A generalization of Butterworth frequency response can be such that
1

B Sy

)

where F),(w) is a given function.

The Chebyshev magnitude response is defined as
1

T (w)[* = TF22C(w) (5.2)
where C, (w) are the Chebyshev polynomials, which can be defined as
Cn(w) = cos(narccos(w)) , |w|<1, (5.3
Cn(w) = cosh(nargcosh (w)) , |w|>1. (5.4
These polynomials satisfy the recurrence relation
Cri1(w) =2wC,(w) — Cpy(w), Co(w) =1, Ci(w)=1. (5.5)

This relation allows to obtain the different polynomials, showed in the
following table

5

Table 2.- Chebyshev polynomials.

n | Cp(w)

01

1| w

2 [2uw?—1

3 | 4w — 3w

4 | 8wt —8uw?+1

5 | 16w® — 20w + 5w

6 | 32w® — 48w* + 18w? — 1

7 | 64w™ — 112w° + 56w® — Tw

8 | 128w® — 256wS + 160w? — 32uw? + 1
9 | 256w°® — 576w” + 432w° — 129w + Jw

Choosing, for example, ¢ = 0.2, in figure 2, we compare the magnitude
of the frequency response of Butterworth and Chebyshev filters for n = 4.

12

Figure 2.- Chebyshev and Butterworth responses.

To obtain the transfer function associated to the Chebyshev filter we
calculate the poles of the magnitude of the response, taking into account the
equation

1+&2C%w) =0,
that is,
1+ &2C2 (?) =0.

Assuming that | s |< 1, and using the definition (5.3), we have

S)
cos (narccos (—)) =4-.
i €

76

We call 5
w = arccos (7) =u+iv,
i

thus,
cos(nw) = cos(nu) cosh(nv) — isin(nu) sinh(v) ,

and we obtain the equations
cos(nu) cosh(nv) =0 ,

1
sin(nu) sinh(nv) = £= .
€
The solutions are
m
=—02k+1
u= (k1)
1 1
= +(—1)*= argsinh | =
v (-1) - argsin <8> ,
and the poles
s=icos (2 + 1)+ i(—1)* L argsinh (1 (5.6)
N 2n — £ ’ ’
To obtain a stable transfer function for the Chebyshev filter only the poles

with negative real part are selected.

5.3 Filters from transfer functions

The filters exposed above are given by generic transfer functions. To ob-
tain low-pass filters, high-pass filters, band-pass filters and band-stop filters
from this kind of transfer functions we make use of the following practical
substitutions

Low-pass s — =
High-pass s — %=
Band-pass s — 3 (2 %)

wo

-1
Band-stop s — Bz (24 “’”)

wo \ wo s

where w, is the cut-off frequency, wy = \/WeWe1, By = Wey — We1.

T

5.4 Discretizacion de sistemas continuos

Seguidamente pasaremos a estudiar, mediante un ejemplo concreto, tres posi-
blidades de discretizar un sitema dinamico asociado a una ecuacién diferencial
lineal de segundo orden con coeficientes constantes. Estudiaremos la solucién
de las ecuaciones en diferencias mediante la Transformada Z y compararemos
estas soluciones con la solucién del sistema continuo.
Partimos del problema de valores iniciales
Py | dy .
— +—+12y=1; y0)=y(0)=0 . 5.7
D - y(0) =4/0) (57)

Para obtener su solucién, tomamos la Transformada de Laplace y hacemos
uso de las condiciones iniciales, con lo que se obtiene

s°Lly] + sLly] + 1.25L[y] = L[1] ,
que da lugar a la relacién

1

Ly = ——
L

Ly (5.8)

y, por tanto, la solucién serd el producto de convolucién

1
=L |0———|*1
Y {32+s+1.2a} *

Sin mas que descomponer en fracciones simples, obtenemos

1 1
—1 _ ait ast
L {52+s+1.25}_27(61762) ’

donde «; 5 son las soluciones de la ecuacién
S4+5+125=0

que son
ajp=—-05%¢ , (5.9)
asi,
1

Y= /Ut e % sen(z) do = 1_25(1 — (cos(t) +0.5sen(t))e %) . (5.10)

El comportamiento asintético de la solucién es

1
lim = —=0.8
t—o+oo 1.25

78

Pasaremos a ver ahora, posibles sistemas discretos que se pueden obtener
a partir de (5.7). Para pasar de un sistema continuo a uno discreto hay
que aproximar las derivadas de la funcién. La utilizacién de una u otra
aproximacion nos caracterizara las distintas discretizaciones de un sistema
continuo.

5.4.1 Discretizacion ‘backward’

Si en el sistema (5.7) utilizamos la aproximacién

7~ kD) —y((k=1)T))

, (5.11)
Y e L (y(T) — 29((b = D) + (k= 2T))
obtenemos el sistema discreto
3 (W(KT) = 2y((k ~ DT) +y((k — 2T)) +
+%(y(kT) — (k= 1)T)) + 1.25y(kT) = 1,
y(0)=0. (5.12)

Para obtener la solucion de este sistema, se toma la Transformada Z de
la ecuacion
1 _ _ 1 _ -
ﬁ(l — 227 + 22y + T(l — 2 M2y +1.25Z[y] = 2Z[1] ,

con lo que

—_

Zly] = z[. (5.13)

(7z(1— 212+ £(1 — z71) + 1.25)

Si comparamos esta expresiéon con la expresién (5.8), correspondiente al
caso continuo, observamos que basta hacer la sustitucién

1
s =(1-27 (5.14)
T
y cambiar la transformada de Laplace por la transformada Z, para pasar de
una expresion a la otra. Esta relacién es general para los sistemas lineales de
coeficientes constantes cuando se realiza una discretizacion del tipo (5.11).

79

La solucién de la ecuacién (5.12) viene dada por

. 1
=z [(%(1 — 2 L1 —)+ 1.25)(1 - z*l)}

Utilizando la férmula de inversién

T2ZIC+2
y(kT) = Res <((z TP ATz 1) 1125 (2 1) ﬁl)
T2Zk+2
- Res <((z TP ATz 1) 1125 (2 1) ﬁ2>
T22k+2
- Res <((z 1P+ Tz 1) + 12575 (e = 1) 1)
k=1,2,... , (5.15)

donde S 5 son las raices de la ecuacién
(1.25T2 +T+1)22 —(T+2)z2+1=0,

o0 sea,
T +2+2T

bra = 2(1.2572 + T +1)

Como es conocido, para que la solucién de un sistema continuo sea asitéticamente
estable, o sea, exista el limite de la solucién cuando la variable tiende a +o0o,
se ha de satisfacer que la parte real de las raices del polinomio caracteristico
sea menor que cero. La relacién existente entre las raices (5.4.1) y las corre-
spondientes del caso continuo, (5.9), viene dada por la expresién (5.14). Asf,
Re(s) < 0 implica que Re(1 — 27') < 0 y tomando z = z + iy, tenemos

Re(1 — z7') = Re <x+iy—1> :x2+y2—x

1 1
<0 (z—)2 +y* < (3)?
T+ 1y 2 + 12 (= 2) <)

2
y, por tanto, esta transformacién lleva el semiplano real negativo a la circun-
ferencia de centro (1/2,0) y radio 1/2.

Por tanto, como las raices del caso continuo tienen su parte real negativa,
podemos asegurar que | 81, |< 1, independientemente del valor de 7.

Calculando los residuos obtenemos,

T25{€+2
(12572 4+ T +1)(B1 = f2)(f1 — 1)
TZB§+2
(12572 + T+ 1)(Bs— B1)(Bo— 1)

y(kT) = 08+ +

80

y si tomamos el limite cuando k tiende a +00, obtenemos como valor asintético
de la solucién
li kT) =0.8
Jim y(kT) :

independientemente del valor de 7. Con esta discretizacién, recuperamos
pues, el comportamiento asintético de la solucién del sistema continuo.

A continuacion, presentamos en un grafica la solucién del sistema discreto
para los valores del periodo T' = 0.5 y T = 1, observandose que en ambos
casos se alcanza el valor asintético.

Fig. 5.1 Comparacién de las soluciones ‘backward’ para T =05y T = 1.

5.4.2 Discretizacién ‘forward’

Si en el sistema (5.7) utilizamos la discretizacién

W Ly((k+1)T) — y(kT))

dt =~ T
, (5.16)
T4 ~ Lyl +2T) = 29((k +)T) + y(KkT))
obtenemos el sistema discreto
S0k +2)T) = 25((k + DT) +y(KT)) +
%(y((k +1)T) — y(kT)) + 1.25y(kT) =1,
y(0) = y(1) =0 (5.17)

81

Para obtener la solucién, tomamos la Transformada Z de la ecuacién
1 1 -
772(22 — 22+ 1) Z[y] + ?(z —1)Z[y] +1.25Z[y] = Z[1]
con lo que
1
(F=(z—1)2+ L(z — 1) + 1.25)

Zly] = 21 . (5.18)
Si comparamos esta expresiéon con la expresion (5.8), correspondiente al
caso continuo, observamos que al utilizar esta discretizacion, la relacién entre
el ‘plano s’ y el ‘plano z’ viene dada por
1

5> f(zfl) . (5.19)

La solucién de la ecuacién (5.17) viene dada por

=2 e e

y utilizando la férmula de inversiéon

TZ k
Y(T) = Res <((z TP+ T(- D+ 1207 (z—1) 71) *

T2k

+ Res <((zf 2T 1) +1250%) (1) ° :%> +
T2 k

* ReS<((z—1)2+T(z—1)+1.25T2)(z—1)’ Z:1> '

k>1,
donde 7, 5 son las raices de la ecuacién
2+ (T =2)z2+(1-T+1251%) =0,

0 sea,

2—-T
’Yl,ziTiiT

Calculando los residuos, tenemos
T2 k T2 k
y(kT) = 0.8+ Ny k-
Mm=r)n-=1) (e=7)0e-1)

0.8+ Im (w) . (5.20)

1 -
-3 + T

82

A diferencia de lo que ocurria anteriormente, si tomamos el limite cuando &
tiende a +o0, la solucién convergerd, o no, dependiendo del valor de T, como
se pone de manifiesto en la siguiente grafica, donde se representa la solucién
de la ecuacién en diferencias para los valores del periodo 7' = 0.5 (estable) y
T =1 (inestable).

5l hod

Fig.- 5.2 Comparacién de las soluciones ‘forward’ para T = 0.5y T = 1.

Esta dependencia en el valor del perodo de muestreo hace que la discretizacion
‘forward’ no se utilice en la practica a la hora de construir sistemas discretos
a partir de un sistema continuo.

5.4.3 Discretizacién por el Método de los Trapecios

Otro método para obtener una discretizacion del sistema continuo, consiste
en lo siguiente. Se parte de la ecuacién diferencial de segundo orden

d*y dy
— 4+ — + 125y =1
az " T :

y se reduce de orden introduciendo una nueva variable u = 3', obteniendo

QU 125y +1

dy _
%711, .

83

Integrando estas ecuaciones entre (k — 1)T y T, obtenemos

kT kT
d
/ —udt:/ (—u—1.25y+1)dt |

(k-7 dt (k—1)T

kT kT

d
/ YW = / wdt |

(k—vyr dt (k—1)T

y aproximando el valor de las integrales por la Regla de los Trapecios

kT T
/ (cu— L2y +) dt = 3 (kD) + u((k 1)) -
(k-1)T

- 1.25%(;;(/@) +y((k=1)T)) +

£ TAGT) (k- 1T)

kT T
/ udt —(u(kT) +u((k —1)T))
(k=1)T 2
obtenemos el sistema de ecuaciones en diferencias
T
u(kT) —u((k—1)T) = fg(u(kT) +u((k—1)7T)) —

- 1.25§(y(kT) +y((k—1)T)) +
£ LG (k- T)
YD)~ y((k=DT) = T@ED) +u(E-1T) . (21)

con las condiciones iniciales u(0) = y(0) = 0.

Tomando la Transformada Z de la segunda igualdad de (5.21) y susti-
tuyendo en la primera, obtenemos

2 - 2 ()2

2 (1—271)2 1 T -1

— Z = —(1-— Zly] —1.25—(1 — Z

Ty 2 = 02 12550 -)2+

v Ta-zn,
y, por tanto,
1
Z[y) = - - — Z[1]
#(EP+ A + 12

84

Comparando esta expresion con la expresion (5.8), correspondiente al caso
continuo, observamos que al utilizar la discretizacién por el Método de los
Trapecios la relacién entre el ‘plano s’ y el ‘plano 2z’ viene dada por

2 (z2—1
= . 5.22
SHT(z—i—l) (5.22)

z—1
z+

Si Re(s) < 0 se ha de cumplir que Re () < 0, y si tomamos z = x + iy,

z—1 21442 s 9
R = <0—=z <1
e(z—l—l) @+12+y2 vy

asi pues, esta transformacién nos lleva el semiplano real negativo a la circun-
ferencia de centro el origen y radio uno.

La solucién para y de la ecuacién (5.21) es de la forma

y=2" [T]
|(EEh+ 2EDh +129)(:- 1)
Utilizando la férmula de inversién, obtenemos
y(0) =0
T25% (6, +1)?
ET) = 08 L
y(kT) TG =00 —)(d+ 2T + 12577
T2k (6, +1)2
(62 — 61) (62 — 1)(4 + 2T + 1.25T?)
k Z ’

)+

+

donde d; 5 son las races de la ecuacién
(4+2T +1.25T%) 2% + (=8 + 2.57%) 2z + 4 — 2T + 1.2512 = 0

cuya relacién con las del caso continuo viene dadas por (5.22). Podemos
afirmar pues que | 415 |< 1y, por tanto, al tomar el limite cuando & tiende
a 400 obtenemos el valor asintético
lim y(kT) = 0.8
k%Jrooy() ’
lo que se pone de manifiesto en la siguiente grafica, donde se compara la

solucién para esta discretizacién con los valores del periodo de muestreo
T=05yT=1.

85

Fig.- 5.3 Comparacién de las soluciones ‘trapecios’ para T = 0.5 y T = 1.

A continuacién, presentamos la comparacién de las soluciones del sistema
continuo con la solucién obtenida para cada uno de los sistemas discretos,
con un valor del periodo 1" = 1.

Sol. Cont.
Backward T=1 °

3
AN

O © ©o o © © ©o o o
o B N W Bk Ul oy N © WV B
T
L

Fig.- 5.4 Solucién del sistema continuo y solucién del sistema ‘backward’

86

T
Sol. Cont. °
Forward T=1 o

Fig.- 5.5 Solucién del sistema continuo y solucién del sistema ‘forward’

T
Sol. Cont.
Trapecios T=1 ¢

Fig.- 5.6 Solucién del sistema continuo y solucién del sistema ‘trapecios’

Podemos observar que el sistema discreto que mejor se comporta es el que se
obtiene mediante la discretizacién por el Método de los Trapecios. Esta es
una caracterstica que se da en general para todos los sistemas.

87

5.4.4 Discretization of the impluse response

Let us suppose now that we start from the transfer function of a system of

the form
YooA
H(s) =Y ——. (5.23)

p §— Sk

We assume that the multiplicity of the poles of the transfer function is 1, but
the discretization method presented here can be generalized for poles with
multiplicity larger than 1.

The impulse response of the system can be obtained computing the inverse
Laplace transform of (5.23)

N
h(t) = Age™t . (5.24)
k=1

On the other hand,
H(s) = / h(t)e=*t dt . (5.25)
0

If we assume that the only information we have of the system are the samples
h(nT), n=0,1,..., and T is the sampling time, we can approximate (5.25)
by

H(s) ~ Z h(nT)e™"TT

n=0

and using the variable z = ¢!, we have
H(z) = ZTh(nT)z”L .
n=>0

Making use of (5.24), we have the transfer function of the discrete system

00 N N 00
H(z) = ZT (Z Akes’“"T> 2 "= ZTAk Z (@‘”‘Tz’l)" =
k=1 k=1 n

n=0 =0

=

AT

1—esklz1 "
1

=
Il

88

5.5 Ejercicio

Compute the low-pass filters of orders 4, 5 and 6 derived from the analog
filters of Butterworth and Chebyshev, using the backward discretization, the
trapezoidal rule, and the discretization of the impulse response. Compare
their performance to eliminate the noise of a signal of the form

x(t) =sin(0.2t) + ¢ ,

where ¢ is a Gaussian noise process of mean 0 and variance 0.2.

89

