
PRECONDITIONING SPARSE NONSYMMETRIC LINEAR
SYSTEMS WITH THE SHERMAN–MORRISON FORMULA∗

R. BRU† , J. CERDÁN† , J. MARÍN† , AND J. MAS†

SIAM J. SCI. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 25, No. 2, pp. 701–715

Abstract. Let Ax = b be a large, sparse, nonsymmetric system of linear equations. A new
sparse approximate inverse preconditioning technique for such a class of systems is proposed. We
show how the matrix A−1

0 −A−1, where A0 is a nonsingular matrix whose inverse is known or easy

to compute, can be factorized in the form UΩV T using the Sherman–Morrison formula. When this
factorization process is done incompletely, an approximate factorization may be obtained and used
as a preconditioner for Krylov iterative methods. For A0 = sIn, where In is the identity matrix and
s is a positive scalar, the existence of the preconditioner for M -matrices is proved. In addition, some
numerical experiments obtained for a representative set of matrices are presented. Results show that
our approach is comparable with other existing approximate inverse techniques.

Key words. nonsymmetric linear systems, factorized sparse approximate inverses, Sherman–
Morrison formula, preconditioned iterative methods

AMS subject classifications. 65F10, 65F35, 65F50

DOI. 10.1137/S1064827502407524

1. Introduction. Let

Ax = b(1.1)

be a linear system of n equations with n unknowns, where A is a large, sparse,
nonsymmetric matrix. An approximate solution of (1.1) is usually obtained by us-
ing a preconditioned iterative Krylov-type method, such as the GMRES [22] and
BiCGSTAB [24] methods.

In general, to obtain good convergence rates, or even to converge, these methods
are applied to the right preconditioned linear system

AMy = b, x = My,

where the matrix M is the preconditioner. Left preconditioning and two-side precon-
ditioning are also possible [21]. The matrix M should be chosen in such a way that the
preconditioned matrix AM has better spectral properties. Typically, since AM ≈ In
is desired, the eigenvalues should be clustered about 1. But, for most problems, other
distributions of the eigenvalues may be satisfactory. If the eigenvalues of AM are
clustered away from the origin, one can expect a good performance of the iterative
solver. Moreover, the preconditioner should be easily and inexpensively computed
and applied. Clearly, both requirements are difficult to fulfill for a general purpose
preconditioner. A considerable effort is being made to develop suitable methods which
perform well for a wide range of problems.

Several preconditioning techniques have been proposed. Among them, we are
interested in the study of approximate inverse preconditioners. With such precondi-
tioners an approximation of the inverse of A is computed and stored explicitly. As

∗Received by the editors May 14, 2002; accepted for publication (in revised form) February 6,
2003; published electronically November 11, 2003. This research was supported by Spanish DGI
grant BFM2001-2641.

http://www.siam.org/journals/sisc/25-2/40752.html
†Departament de Matemàtica Aplicada, Universitat Politècnica de València, 46022 València,

Spain (rbru@mat.upv.es, jcerdan@mat.upv.es, jmarinma@mat.upv.es, jmasm@mat.upv.es).

701

702 R. BRU, J. CERDÁN, J. MARÍN, AND J. MAS

a result, the preconditioning step can be made by computing sparse matrix-vector
products. Since this operation is easy to parallelize, this approach is particularly
convenient when a parallel computer is to be used. This observation is motivation
enough, yet recent studies show that sparse approximate inverse preconditioners are
also of interest because of their robustness [2].

There are a number of approximate inverse preconditioners which appear in the
literature. Among the most successful techniques, Frobenius norm minimization
methods and factorized sparse approximate inverse preconditioners must be consid-
ered. Briefly, Frobenius norm methods compute a preconditioner by minimizing the
norm ‖In−AM‖F , subject to some sparsity constraints on M . This problem reduces
to solving independent linear least square problems. This feature makes them attrac-
tive for parallel environments. Examples of this class are the SPAI [17] and MR [12]
preconditioners.

Factorized sparse approximate inverse preconditioners compute an approximation
of the inverse of A in a different manner. If A has an LDU decomposition, A = LDU ,
these methods compute a sparse approximate inverse of the form M = Z̄D̄−1W̄T ≈
A−1, where Z̄ ≈ U−1 and W̄ ≈ L−T are upper triangular matrices, and D̄ ≈ D is a
nonsingular diagonal matrix. For instance, the AINV method [7, 8] computes these
sparse factors by means of an A-orthogonalization process on the unit vectors. This
preconditioner, or its variant SAINV [3], has been successfully applied to a variety of
challenging problems [4, 5], showing that it is one of the most effective approximate
inverse techniques.

For a comparative study of these and other techniques we refer to [9]. In this
work the authors conclude that factorized forms tend to deliver better convergence
rates for the same amount of nonzero elements in the preconditioner. In addition,
they can benefit from reorderings applied to the coefficient matrix A [4, 10].

This paper presents a new framework for computing factorized sparse approxi-
mate inverse preconditioners based on the Sherman–Morrison formula [23, 1], which
establishes that, given a nonsingular n× n matrix B and two vectors x and y in Rn

such that r = 1+yTB−1x �= 0, the matrix A = B+xyT is nonsingular, and its inverse
is

A−1 = B−1 − r−1B−1xyTB−1.(1.2)

The Sherman–Morrison formula (1.2), or its variants, have been applied in many
contexts: to update linear models by using least squares in statistics, in networks and
structures analysis to compute a new solution when the system is modified, to update
a factorization of a matrix, etc. For a complete survey of the use of these formulas we
refer to [18]. In particular, the formula can be used to invert a matrix, for example,
by using the reinforcement method [16].

We will show how the matrix A−1
0 −A−1 is factored in the form UΩV T using the

Sherman–Morrison formula. If incomplete factors are computed by applying some
dropping strategy, a sparse approximate factorization of the matrix A−1

0 − A−1 is
obtained which can be used as a preconditioner. In this paper we shall analyze the
specific choice A0 = sIn, where In is the identity matrix and s is a positive scalar
factor. It will be shown that the computation of the preconditioner is breakdown-free
when A is an M -matrix.

Throughout the paper, we consider the kth column of A as a column vector
denoted by ak and the kth row of A as a row vector denoted by ak. For the identity
matrix In, ek and ek will be used.

PRECONDITIONING WITH THE SHERMAN–MORRISON FORMULA 703

The paper is organized as follows. In section 2 the factorization of the matrix
A−1
0 −A−1 is obtained. In section 3 this factorization is used as a preconditioner for

A0 = sIn. Some theoretical properties are also shown. In section 4 the results of the
numerical experiments for a representative set of matrices are presented. Finally, in
section 5 the main conclusions are drawn.

2. Factorization of A−1
0 − A−1 using the Sherman–Morrison formula.

Let {xk}nk=1 and {yk}nk=1 be two sets of vectors in Rn, and let A0 be a nonsingular
n× n matrix whose inverse is either known or easy to obtain, such that

A = A0 +

n∑
k=1

xky
T
k .(2.1)

If we define Ak := A0 +
∑k

i=1 xiy
T
i , k = 1, . . . , n, then Ak+1 = Ak + xk+1y

T
k+1 and

An = A.
If xk and yk are vectors such that rk = 1+yTk A

−1
k−1xk �= 0, then by applying (1.2)

the inverse of the matrix Ak is given by

A−1
k = A−1

k−1 −
1

rk
A−1

k−1xky
T
k A

−1
k−1, k = 1, . . . , n.

Since A−1 = A−1
n , it follows that

A−1 = A−1
0 −

n∑
k=1

1

rk
A−1

k−1xky
T
k A

−1
k−1

or

A−1
0 −A−1 =

n∑
k=1

1

rk
A−1

k−1xky
T
k A

−1
k−1,

which can be written in matrix notation as

A−1
0 −A−1 = ΦΩ−1ΨT ,(2.2)

where

Φ =
[
A−1
0 x1 A−1

1 x2 · · · A−1
n−1xn

]
,

Ω−1 =




r−11
r−12

. . .

r−1n


 , and ΨT =




yT1 A
−1
0

yT2 A
−1
1

...
yTnA

−1
n−1


 .

This process depends explicitly on the matrices {Ak}nk=1. The following result
shows how the factorization (2.2) can be computed without these matrices explicitly
appearing.

Theorem 2.1. Let A and A0 be two nonsingular matrices, and let {xk}nk=1 and
{yk}nk=1 be two sets of vectors such that condition (2.1) is satisfied. Moreover, suppose

that rk = 1 + yTk A
−1
k−1xk �= 0 for k = 1, . . . , n, where Ak−1 = A0 +

∑k−1
i=1 xiy

T
i . Then

uk := xk −
k−1∑
i=1

vTi A
−1
0 xk
ri

ui(2.3)

704 R. BRU, J. CERDÁN, J. MARÍN, AND J. MAS

and

vk := yk −
k−1∑
i=1

yTk A
−1
0 ui
ri

vi(2.4)

are well defined for k = 1, . . . , n. In addition, the relations

A−1
k−1xk = A−1

0 uk,

yTk A
−1
k−1 = vTk A

−1
0 ,

(2.5)

and

rk = 1 + yTk A
−1
0 uk = 1 + vTk A

−1
0 xk(2.6)

are satisfied.
Proof. The proof proceeds by induction. For k = 1, u1 := x1 and v1 := y1 and

the relations (2.5) and (2.6) are trivially satisfied. Suppose that for i = 1, . . . , k − 1
the relations are true. Applying the inductive process, the vectors uk and vk are well
defined. Moreover,

A−1
k−1xk = (A−1

0 −∑k−1
i=1

1
ri
A−1

i−1xiy
T
i A

−1
i−1)xk

= A−1
0 xk −∑k−1

i=1

yT
i A−1

i−1
xk

ri
A−1

i−1xi
= A−1

0 xk −∑k−1
i=1

vT
i A−1

0 xk

ri
A−1
0 ui

= A−1
0 (xk −∑k−1

i=1
vT
i A−1

0 xk

ri
ui)

= A−1
0 uk

and

yTk A
−1
k−1 = yTk (A−1

0 −∑k−1
i=1

1
ri
A−1

i−1xiy
T
i A

−1
i−1)

= yTk A
−1
0 −∑k−1

i=1

yT
k A−1

i−1
xi

ri
yTi A

−1
i−1

= yTk A
−1
0 −∑k−1

i=1
yT
k A−1

0 ui

ri
vTi A

−1
0

= (yTk −∑k−1
i=1

yT
k A−1

0 ui

ri
vTi)A−1

0

= vTk A
−1
0 .

Finally, (2.6) is obtained by substituting (2.5) into rk = 1 + yTk A
−1
k−1xk.

Corollary 2.2. Under the assumptions of Theorem 2.1, let U and V be the
matrices whose columns are the vectors uk and vk as defined in (2.3) and (2.4), re-
spectively. Then

A−1
0 −A−1 = A−1

0 UΩ−1V TA−1
0 ,(2.7)

where Ω = diag(r1, r2, . . . , rn). Moreover, there exist unique unit upper triangular
matrices TX and TY such that

X = UTX , Y = V TY ,(2.8)

where X and Y are matrices whose columns are the vectors xi and yi, respectively,

TX =




1 t12 · · · t1n
0 1 t2n
...

. . .
...

0 0 1 tn−1,n
0 0 · · · 1


 , tij =

vTi A
−1
0 xj
ri

, i < j,

PRECONDITIONING WITH THE SHERMAN–MORRISON FORMULA 705

and

TY =




1 t̂12 · · · t̂1n
0 1 t̂2n
...

. . .
...

0 0 1 t̂n−1,n
0 0 · · · 1


 , t̂ij =

yTj A
−1
0 ui

ri
, i < j.

Thus, the matrix U (V) is nonsingular if and only if the matrix X (Y) is nonsingular.
Proof. Equation (2.7) follows from (2.2) and (2.5). Equation (2.8) corresponds to

(2.3) and (2.4) written in matrix notation.
We note that this factorization process resembles the rank reducing process used

in [13] to characterize different factorizations of a matrix as a biconjugation process.
In [13] the Wedderburn formula, which resembles the Sherman–Morrison formula, is
used. But the sets of vectors {ui} and {vi} defined in Theorem 2.1 are not biconju-
gated.

3. Approximate inverse preconditioning based on the Sherman–Morrison
formula. Different choices of the vectors {xk}, {yk} and the matrix A0 may lead to
different factorizations of the matrix A−1

0 −A−1. In this work we take

A0 = sIn, s > 0,
xk = ek,
yk = (ak − ak0)

T ,
(3.1)

where ak and ak0 denote the kth row of the matrices A and A0, respectively, and ek is
the kth column of the identity matrix. In this case, the factorization (2.7) simplifies
to

s−2UΩ−1V T = s−1In −A−1.(3.2)

Denoting by (x)k the kth entry of a vector x, we rewrite the expressions for the vectors
u and v (equations (2.3) and (2.4)) as

uk := xk −
k−1∑
i=1

(vi)k
sri

ui(3.3)

and

vk := yk −
k−1∑
i=1

yTk ui
sri

vi.(3.4)

We note that since xk = ek, the matrix X in Corollary 2.2 is the identity matrix.
Thus U = T−1

X is a nonsingular unit upper triangular matrix. Moreover, V = Y T−1
Y

is nonsingular if and only if s �∈ σ(A), where σ(A) is the spectrum of A. To compute
the factorization (3.2) Algorithm 1 can be used.

Even if A is a sparse matrix, in general the matrices U and V in (3.2) tend to be
dense. In order to preserve sparsity, one can apply different dropping strategies. Fill-
in is reduced by removing suitable off-diagonal entries in the computation of the u and
v vectors. A common rule consists of dropping an element if it is less in absolute value

706 R. BRU, J. CERDÁN, J. MARÍN, AND J. MAS

Algorithm 1 (computation of the factorization (3.2)).

(1) Set xk = ek, yk = (ak − sek)T , (k = 1, . . . , n)
(2) for k = 1, . . . , n

uk = xk
vk = yk
for i = 1, . . . , k − 1

uk = uk − (vi)k
sri

ui

vk = vk − yT
k ui

sri
vi

end for
rk = 1 + (vk)k/s

end for
(3) Return U = [u1, u2, · · · , un], V = [v1, v2, · · · , vn], and

Ω = diag(r1, r2, . . . , rn).

than a relative or absolute threshold. In this work the best results have been obtained
using an absolute threshold for the factor U and relative for V , as is explained later.

After applying a dropping strategy the incomplete factorization algorithm com-
putes sparse matrices Ū and V̄ and a diagonal matrix Ω̄ such that

s−2Ū Ω̄−1V̄ T ≈ s−1In −A−1.(3.5)

If A is a nonsingular M -matrix, then the incomplete factorization runs to com-
pletion, and the pivots are strictly positive. Moreover, the pivots in the incomplete
factorization are not smaller than the pivots in the exact factorization, as established
below. We need the following results.

Lemma 3.1. Let uk, vk, and rk be the vectors and pivots computed by the complete
factorization algorithm, and let u∗k, v

∗
k, and r∗k be the vectors and pivots computed by

the complete factorization algorithm for s∗ = 1, respectively. Then,

uk = u∗k,(3.6)

vk = v∗k − (s− 1)wk where wk = xk −
k−1∑
i=1

(y∗i)
Tu∗k
r∗i

wi,(3.7)

rk = r∗k/s.(3.8)

Proof. The proof follows by induction over k. For k = 1, we have from (3.3)
u1 = x1 = u∗1. From (3.4) and (3.1), it follows that

v1 = y1 = (a1 − se1)T = (a1 − e1)T − (s− 1)e1 = y∗1 − (s− 1)e1 = v∗1 − (s− 1)w1.

Moreover,

r1 = 1 +
1

s
yT1 u1 = 1 +

1

s
(y∗1 − (s− 1)e1)

Tu∗1

= 1 +
1

s
((y∗1)

Tu∗1 − (s− 1)eT1 u
∗
1) = 1 +

1

s
((y∗1)

Tu∗1 − (s− 1))(3.9)

=
1

s
(1 + (y∗1)

Tu∗1) =
1

s
r∗1 .

PRECONDITIONING WITH THE SHERMAN–MORRISON FORMULA 707

Suppose that for i = 1, . . . , k−1 the relations are true. Note that in (3.7) (wk)i = 0
for i > k and (vk)i = (v∗k)i for i > k. Then, from (3.3) uk = u∗k. Now observe that
yTk ui = (y∗k)

Tu∗i for i < k. From (3.4)

vk = (y∗k − (s− 1)ek) −
k−1∑
i=1

(y∗k)
Tu∗i
r∗i

(v∗i − (s− 1)wi)

=

(
y∗k −

k−1∑
i=1

(y∗k)
Tu∗i
r∗i

v∗i

)
− (s− 1)

(
ek −

k−1∑
i=1

(y∗k)
Tu∗i
r∗i

wi

)

= v∗k − (s− 1)wk.

Finally, rk = r∗k/s follows as in (3.9).
Lemma 3.2. Let A be a nonsingular M -matrix. Then, the pivots rk computed by

the complete factorization (Algorithm 1) are positive.
Proof. The pivots r∗k as defined in Theorem 3.1 are the same pivots computed by

the Gauss–Jordan algorithm without pivoting [11]. Since these pivots coincide with
those appearing during the Gaussian elimination process, which are positive for an
M -matrix [20], then rk = r∗k/s > 0 by (3.8).

Theorem 3.3. Let A be a nonsingular M -matrix. The pivots rk computed by the
complete factorization (Algorithm 1) and the pivots r̄k computed by the incomplete
factorization algorithm verify r̄k ≥ rk > 0.

Proof. We proceed by induction over k. We show that r̄k ≥ rk > 0 for 1 ≤ k ≤ n.
We show that the columns of the matrices U and V of the complete factorization
algorithm and the columns of the matrices Ū and V̄ of the incomplete one satisfy

uk ≥ ūk ≥ 0 (componentwise),
0 ≥ (v̄k)j ≥ (vk)j , j = k + 1, . . . , n.

It is clear that u1 = x1 = e1 ≥ 0. Since ū1 is obtained from u1 zeroing some
off-diagonal entries, then u1 ≥ ū1 ≥ 0. On the other hand, y1 = (a1− se1)T coincides
with the first row of A, except in the first component. From the equality v1 = y1, since
v̄1 is obtained annihilating some off-diagonal entries of v1, one has (v1)j ≤ (v̄1)j ≤ 0
for j > 1. Thus, r̄1 = 1 + 1

sy
T
1 ū1 ≥ 1 + 1

sy
T
1 u1 = r1. By Lemma 3.2 r̄1 ≥ r1 > 0.

Now assume that for i ≤ k − 1

ui ≥ ūi ≥ 0, 0 ≥ (v̄i)j ≥ (vi)j , j = i+ 1, . . . , n,

holds, and r̄i ≥ ri > 0. Clearly,

0 ≥ (v̄i)k
sr̄i

ūi ≥ (vi)k
sri

ui, i = 1, . . . , k − 1 .

Then, uk = xk −
∑k−1

i=1
(vi)k
sri

ui ≥ xk −
∑k−1

i=1
(v̄i)k
sr̄i

ūi = ūk ≥ 0. Since U is an unit
upper triangular matrix, then

yTk ui = (yk)i +

i−1∑
j=1

(yk)j(ui)j ≤ (yk)i +

i−1∑
j=1

(yk)j(ūi)j = yTk ūi ≤ 0, i = 1, . . . , k − 1,

and then

yTk ui
sri

≤ yTk ūi
sr̄i

≤ 0, i = 1, . . . , k − 1.

708 R. BRU, J. CERDÁN, J. MARÍN, AND J. MAS

By the induction hypothesis over the entries of the lower triangular part of V ,

0 ≤ yTk ūi
sr̄i

(v̄i)j ≤ yTk ui
sri

(vi)j , j = k + 1, . . . , n, i = 1, . . . , k − 1.

Then

0 ≥ (v̄k)j = (yk)j −
k−1∑
i=1

yTk ūi
sr̄i

(v̄i)j ≥ (yk)j −
k−1∑
i=1

yTk ui
sri

(vi)j = (vk)j , j = k+1, . . . , n.

Finally, r̄k = 1 +
yT
k ūk

s ≥ 1 +
yT
k uk

s = rk > 0.

Remark 3.4. In Theorem 3.3 it has been proved for a given M -matrix A that

U ≥ Ū ≥ 0,

Ω̄ii ≥ Ωii > 0, i = 1, . . . , n,

0 ≥ V̄ij ≥ Vij , i > j.

In addition, if s > maxi=1,...,n {aii}, then the last relation extends to 0 ≥ V̄ ≥ V .

Remark 3.5. Observe that a column oriented version of Algorithm 1 can be
obtained with the choice xk = ak − sek and yk = ek, which is equivalent to applying
the algorithm to AT . Since the M -matrix property is invariant under transposition,
the theoretical study remains true. Therefore, the same study made for the Ū and V̄
factors applies to the V̄ and Ū factors of the column oriented version.

The incomplete factorization (3.5) can be used to define two different precondi-
tioner matrices:

M1 := s−1In − s−2Ū Ω̄−1V̄ T ≈ A−1(3.10)

and

M2 := s−2Ū Ω̄−1V̄ T ≈ s−1In −A−1.(3.11)

The relation between these preconditioners is given by

M2 = s−1In −M1.(3.12)

The spectrum of the preconditioned matrix for these preconditioners is

σ(AM1) ≈ σ(In),

σ(AM2) ≈ σ(A)

s
− 1.(3.13)

If s > ρ(A), the spectrum of the matrix AM2 is contained in the left-half complex
plane which is good for Krylov iterative methods. Moreover, compared with M1, the
application of the preconditioner M2 over a vector requires less arithmetic operations
per iteration.

In the next section the results of the numerical experiments with these strategies
for a representative set of matrices are presented.

PRECONDITIONING WITH THE SHERMAN–MORRISON FORMULA 709

Table 4.1
Size (n) and number of nonzero elements (nnz) of the test matrices.

Matrix n nnz Description
ADD20 2395 17319 Circuit simulation
FS5414 541 4285 Chemical kinetics
HOR131 434 4710 Network flow
ORSIRR1 1030 6858 Reservoir simulation
ORSIRR2 886 5970 Reservoir simulation
ORSREG1 2205 14133 Reservoir simulation
SAYLR3 1000 3750 Reservoir simulation
SAYLR4 3564 22316 Reservoir simulation

SHERMAN1 1000 3750 Reservoir simulation
WATT1 1856 11360 Petroleum engineering
WATT2 1856 11550 Petroleum engineering

4. Numerical experiments. In this section, the row and column oriented ver-
sions of the two different Sherman–Morrison-based preconditioning strategies (equa-
tions (3.10) and (3.11)) are compared. The experiments show that both precondi-
tioners exhibit similar performance for the tested problems. In addition, they are
compared with the AINV preconditioner [7, 8], which has been widely compared with
other preconditioning techniques showing good performance [9].

The test matrices come from the Harwell Boeing [15] collection and Tim Davis’s
collection [14]. Table 4.1 shows the size, number of nonzeros, and the problem where
each matrix arises. A solution vector with random entries uniformly distributed in
(0, 1) was used to construct the right-hand side of each linear system. No signifi-
cant differences were observed for other choices of the right-hand side vector. An
approximate solution was computed with the BiCGSTAB method [24] with right pre-
conditioning. The iterative solver and the preconditioner AINV are coded in Fortran
77 and compiled with -O3 optimization using the IFC Intel Fortran compiler. Fortran
codes were kindly provided by M. Benzi. The results were obtained by running the
codes on a 450 MHz Intel Pentium III computer. The initial guess was always x0 = 0,
and the iterative solver was stopped when the initial residual was reduced at least by
a factor of 10−8, or after 2000 iterations.

To simplify the application of the preconditioner, the V̄ factor used was the
product of the factors Ω̄−1 and V̄ of the approximate factorization (3.5).

To preserve sparsity, for the row (column) oriented version (see Algorithm 1) fill-
in on the factor U (V in the column version) is reduced by removing the elements
whose absolute value is less than an absolute drop tolerance, typically tolU = 0.1.
However, for the factor V (U in the column version) a relative threshold was found
to be a better strategy. In this case, an entry of V is zeroed if its absolute value is
less than a drop tolerance tolV multiplied by the maximum of the matrix |A|. The
motivation for this strategy comes from the observation that scaling A produces the
same scaling in V and leaves invariant the factor U . In the numerical experiments the
same drop tolerance was used for both factors U and V , i.e., tolU = tolV . From now
on, for the sake of clarity, we mainly refer to the row oriented version and we point
out the main differences with the column oriented one.

4.1. Comparative study of the Sherman–Morrison preconditioners. In
this subsection we study the performance of the Sherman–Morrison based precon-
ditioners M1 and M2 (equations (3.10) and (3.11)) for different dropping tolerances
and with different values of the parameter s (see (3.1)). To ensure s > ρ(A), this

710 R. BRU, J. CERDÁN, J. MARÍN, AND J. MAS

−1 0 1 2 3 4 5

x 10
4

−0.5

0

0.5

−1.5 −1 −0.5 0 0.5 1 1.5
−5

0

5
x 10

−7

Fig. 4.1. Spectrum of the matrix FS 5414 (top) and the preconditioned matrix AM1 (bottom
◦) and AM2 (bottom ×)) with s = 1.5‖A‖∞ and tol = 0.

Table 4.2
Experimental results for the matrix FS 5414 with the row oriented version.

tol s/‖A‖∞ nnz(Ū) nnz(V̄) nnz iter. M1 iter. M2

0.1 1 547 708 1255 55 63
0.1 1.5 547 751 1298 51 53
0.1 5 547 871 1418 44 44
0.1 10 547 1047 1594 47 47
0.1 100 547 1589 2136 43 43
0.01 1 592 1092 1684 44 44
0.01 1.5 592 1188 1780 47 48
0.001 1 778 1794 2572 46 46
0.001 1.5 778 1852 2630 45 45
0.0001 1 1418 3425 4843 32 32
0.0001 1.5 1418 3584 5002 28 28
0.00001 1 2598 5532 8130 6 6
0.00001 1.5 2598 5707 8305 6 6

parameter is taken as a multiple greater than or equal to one of the ∞-norm of the
matrix A. Thus, the factor V is nonsingular, and the spectrum of the preconditioned
matrix is on the left-half complex plane when the preconditioner M2 is used. This is
illustrated in Figure 4.1 where the factorization (3.2) was computed with a drop tol-
erance equal to zero, i.e., without dropping any element, and s = 1.5‖A‖∞. Observe
that, according to the equations (3.13), the spectrum of the preconditioned matrix
AM1 is clustered around 1, and the eigenvalues of the matrix AM2 are on the left-half
complex plane clustered approximately around −1. A similar situation is illustrated
in Figure 4.2 for the matrix SAYLR3 but with a drop tolerance equal to 0.1.

Tables 4.2 and 4.4 show the results of the numerical experiments for the matrices
FS5414 and SAYLR3 with Algorithm 1, which are representative of the set of the

PRECONDITIONING WITH THE SHERMAN–MORRISON FORMULA 711

−6 −5 −4 −3 −2 −1 0 1
−1

−0.5

0

0.5

1

−2 −1.5 −1 −0.5 0
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.5 1 1.5
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Fig. 4.2. Spectrum of the matrix SAYLR3 (top) and the preconditioned matrix AM1 (bottom
right) and AM2 (bottom left) with s = 1.5‖A‖∞ and tol = 0.1.

Table 4.3
Experimental results for the matrix FS 5414 with the column oriented version.

tol s/‖A‖∞ nnz(Ū) nnz(V̄) nnz iter. M1 iter. M2

0.1 1 1914 541 2455 62 62
0.1 1.5 1967 541 2508 61 62
0.1 5 2427 541 2968 58 58
0.1 10 2901 541 3442 58 58
0.1 100 4013 541 4554 47 47
0.01 1 2926 560 3486 59 59
0.01 1.5 3132 560 3692 51 51
0.001 1 4197 631 4828 31 31
0.001 1.5 4355 631 4986 30 30
0.0001 1 6365 725 7090 13 13
0.0001 1.5 6657 725 7382 13 12
0.00001 1 7932 756 8688 6 6
0.00001 1.5 8167 756 8923 5 5

tested problems. The results for the column oriented algorithm are listed in Tables
4.3 and 4.5. Different values of the drop tolerance tol and the parameter s relative
to the ∞-norm of A were employed. The number of nonzero elements of the incom-
plete factors is denoted by nnz(V̄) and nnz(Ū), and nnz = nnz(Ū) + nnz(V̄) is the
total number of nonzero elements of the preconditioner. The number of iterations of
preconditioning performed with Mi is denoted by iter. Mi.

None of the tested matrices is an M -matrix, and therefore breakdowns may occur.
However, in the reported experiments the preconditioners were computed without
breakdowns except for the matrix SAYLR3 (Table 4.4) with values of s/‖A‖∞ ≥ 10.
Note that from (3.8) a large value of s produces small pivots which can degenerate
in breakdown problems, as occurs in this case. In our code if the absolute value of

712 R. BRU, J. CERDÁN, J. MARÍN, AND J. MAS

Table 4.4
Experimental results for the matrix SAYLR3 with the row oriented version.

tol s/‖A‖∞ nnz(Ū) nnz(V̄) nnz iter. M1 iter. M2

0.1 1 1314 4750 6064 43 44
0.1 1.5 1314 5606 6920 41 41
0.1 5 1314 8840 10154 35 35
0.1 10 1314 11041 12355 34 34
0.1 100 1314 21408 22722 33 33

Table 4.5
Experimental results for the matrix SAYLR3 with the column oriented version.

tol s/‖A‖∞ nnz(Ū) nnz(V̄) nnz iter. M1 iter. M2

0.1 1 1314 4750 6064 40 40
0.1 1.5 1314 5606 6920 37 37
0.1 5 1314 8840 10154 34 34
0.1 10 1314 11041 12355 33 33
0.1 100 1314 21408 22722 31 31

a pivot is less than the machine precision, εM , it is replaced by
√
εM . Further study

on this breakdown cure deserves to be investigated but it is out of the scope of this
paper.

The number of nonzeros of the factor Ū for the row oriented version remains
constant for a fixed drop tolerance when s changes. In contrast, the number of
nonzero elements of V̄ increases with s and, in general, the convergence is attained in
fewer iterations. This can be explained from Theorem 3.1. It can be shown that (3.6)
and (3.7) also hold for the incomplete factors. In fact, the matrix Ū does not depend
on the value of s, and the elements on the upper triangular part of V̄ are modified by
a linear combination of vectors depending on s. In particular, for M -matrices it can
be seen that the absolute value of these elements increases, augmenting the fill-in on
V̄ . Therefore, recomputing the preconditioner for a different value of s can be done
with some savings because only the upper triangular part of V̄ must be updated.
Regarding Table 4.3 the situation is reversed as it is expected from Remark 3.5.

It is also observed that the preconditioner M2 converges in a number of iterations
similar to M1. However, since M1 requires n multiplications per iteration more than
M2, the last one may perform slightly better in time. Thus, M2 is recommended to
be used as the default. Moreover, both row and column versions performed similarly.

Finally, concerning the choice of the parameter s, it was observed in all the
cases that the balance between the number of iterations and fill-in of the factors
was satisfactory taking s/‖A‖∞ = 1.5. Moreover, with this choice of s the risk of
appearing small pivots decrease, as was argued above. Therefore, only this value will
be considered in the next subsection.

4.2. Comparative study with AINV. In this subsection we compare the row
and column versions of the preconditioner M2, which will be called AISM, with the
AINV preconditioner and without preconditioner. The iterative solver employed was
BiCGSTAB. For AINV, as recommended by the authors in [9], a drop tolerance of
0.1 was always used. For AISM, a fixed drop tolerance of 0.1 was used as well, except
for the matrices ORSIRR* and ADD20. For these matrices the value 0.1 produced
very sparse factors with poor convergence results, and therefore the value 0.01 was

PRECONDITIONING WITH THE SHERMAN–MORRISON FORMULA 713

Table 4.6
Comparison between the AISM with s/‖A‖∞ = 1.5 and AINV preconditioners.

Matrix No Prec. AISM (row/column) AINV(0.1)
Iter. Time tol nnz Iter. Time nnz Iter. Time

ADD20 297 0.64 0.01 14880/14863 7/8 0.06/0.06 9990 7 0.05
FS5414 783 0.34 0.1 1298/2508 53/62 0.03/0.04 4104 87 0.06
HOR131 † 0.1 4593/8642 40/38 0.03/0.03 8129 27 0.025
ORSIRR1 903 0.64 0.01 11637/11579 24/27 0.05/0.05 6300 26 0.04
ORSIRR2 749 0.46 0.01 10121/10140 26/27 0.05/0.06 5488 26 0.04
ORSREG1 273 0.56 0.1 17099/16583 33/32 0.16/0.13 13728 34 0.16
SAYLR3 366 0.23 0.1 6920/6920 41/37 0.06/0.05 6690 32 0.05
SAYLR4 † 0.1 71106/71106 38/48 0.55/0.6 51926 38 0.49

SHERMAN1 364 0.22 0.1 6848/6848 39/39 0.045/0.05 6690 32 0.04
WATT1 14 0.04 0.1 8829/8894 3/3 0.02/0.02 14807 2 0.03
WATT2 26 0.06 0.1 12075/14460 5/50 0.03/0.19 15488 10 0.05

found to be quite better. The results are reported in Table 4.6 and correspond to
s/‖A‖∞ = 1.5. The symbol † indicates no convergence of the iterative method.

The time, measured with the function dtime() and given in seconds, corresponds
to the iterative solution phase only and does not include the time for computing the
preconditioner. For AINV, the time for computing the preconditioner is usually very
small (smaller than the time for the iterative phase), and the same is expected to be
true for AISM since both algorithms have similar recurrence formulas.

It can be observed that the performance of the row oriented version of AISM is
similar and comparable to AINV for most of the tested problems. There are two cases
(matrices FS5414 and WATT2) where AISM is better than AINV, and others (like
HOR131, SAYLR3, and SHERMAN1) where the situation is reversed. Concerning
the column oriented version the performance observed was similar for most of the
problems with slight differences, except for the matrix WATT2 for which the results
where rather poor.

It is worth mentioning that AINV appears to be easier to tune since for a fixed
value of the drop tolerance equal to 0.1 we always observed good performance. We
conclude that AISM was as robust as AINV for the tested problems since it solved
problems that BiCGSTAB without preconditioning was unable to solve.

5. Conclusions and future work. In this paper we have presented a new
technique for computing factorized sparse approximate inverse preconditioners for
nonsymmetric linear systems. It is based on the Sherman–Morrison formula to update
the inverse of a matrix. Using this formula we compute incompletely two sets of vectors
which are the columns of the sparse factors Ū and V̄ of the preconditioner, such that
A−1
0 − A−1

0 Ū Ω̄V̄ A−1
0 ≈ A−1, where A−1

0 is either known or easy to compute. For
the particular choice A0 = sIn, where s is a positive scalar, it has been shown that
the preconditioner is guaranteed to exist if A is an M -matrix. The spectrum of the
preconditioned matrix tends to be shifted to the left-half complex plane, which is a
good situation for Krylov-type solvers.

Although for the computation of the preconditioner, referred to as AISM, we need
to assess two parameters (s and the drop tolerance) from the numerical experiments,
we recommend the choice s = 1.5‖A‖∞ as well as a value of 0.1 or 0.01 for the drop
tolerance.

We have tested row and column oriented versions of AISM, and no significant
differences between them were observed for most of the problems, except for matrix
WATT2 for which the column version peformed worst. Therefore, the row oriented
version of AISM could be recommended.

714 R. BRU, J. CERDÁN, J. MARÍN, AND J. MAS

In addition, AISM has been compared with the well-known preconditioner AINV
showing that both preconditioners are comparable for the tested problems. Like
AINV, AISM works well even for matrices that are not M -matrices, and breakdowns
are rare in practice. In the general case, nonsymmetric permutations like those used
in [4] can be used to further improve robustness. Moreover, since the expressions
used to compute AISM resemble those used by AINV, their computation complexity
is similar. The relation between the two preconditioners is still under study.

Concerning future work, a full parallel version of the preconditioner is to be
developed. We think that the use of graph partitioning strategies can help, as done in
[6] for the AINV preconditioner, in addition to different choices of the matrix A0 and
the initial sets of vectors, which can lead to strategies with higher inherent parallelism.
Moreover, the study of the symmetric case remains open. Concerning the last two
questions, some interesting ideas found in [19, 25] may be exploited.

Another situation to be studied corresponds to the case of performing rank-k
updates in the computation of the preconditioner, which can be of interested for
matrices with a natural block structure, such as those arising in solid and structural
mechanics problems.

Finally, it is worth noting that the proposed technique can be the basis for exam-
ining new strategies to update or improve an existing preconditioner, which may be of
interest when the system matrix is modified as found in some networks or structures
applications.

Acknowledgments. The authors wish to express their thanks to Michele Benzi
for providing us his code for computing the AINV preconditioner and the referees for
their helpful suggestions which greatly improved the paper.

REFERENCES

[1] M. S. Barlett, An inverse matrix adjustment arising in discriminant analysis, Ann. Math.
Statist., 22 (1951), pp. 107–111.

[2] S. T. Barnard, L. M. Bernardo, and H. D. Simon, An MPI implementation of the SPAI
preconditioner on the T 3E, Internat. J. High Perform. Comput. Appl., 13 (1999), pp. 107–
123.

[3] M. Benzi, J. K. Cullum, and M. Tůma, Robust approximate inverse preconditioning for the
conjugate gradient method, SIAM J. Sci. Comput., 22 (2000), pp. 1318–1332.

[4] M. Benzi, J. C. Haws, and M. Tůma, Preconditioning highly indefinite and nonsymmetric
matrices, SIAM J. Sci. Comput., 22 (2000), pp. 1333–1353.

[5] M. Benzi, R. Kouhia, and M. Tůma, Stabilized and block approximate inverse preconditioners
for problems in solid and structural mechanics, Comput. Methods Appl. Mech. Engrg., 190
(2001), pp. 6533–6554.

[6] M. Benzi, J. Maŕin, and M. Tůma, A two-level parallel preconditioner based on sparse approx-
imate inverses, in Iterative Methods in Scientific Computation IV, IMACS Ser. Comput.
Appl. Math., D. R. Kincaid and A. C. Elster, eds., IMACS, New Brunswick, NJ, 1999,
pp. 167–178.

[7] M. Benzi, C. D. Meyer, and M. Tůma, A sparse approximate inverse preconditioner for the
conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135–1149.

[8] M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsymmetric linear
systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994.

[9] M. Benzi and M. Tůma, A comparative study of sparse approximate inverse preconditioners,
Appl. Numer. Math., 30 (1999), pp. 305–340.

[10] M. Benzi and M. Tůma, Orderings for factorized sparse approximate inverse preconditioners,
SIAM J. Sci. Comput., 21 (2000), pp. 1851–1868.

[11] R. Bru, J. Mas, and A. Urbano, Analysis of the reinforcement method for inverting a matrix,
in Proceedings of the International Conference on Numerical Algorithms, 2001, p. 58.

[12] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations,
SIAM J. Sci. Comput., 19 (1998), pp. 995–1023.

PRECONDITIONING WITH THE SHERMAN–MORRISON FORMULA 715

[13] M. T. Chu, R. E. Funderlic, and G. H. Golub, A rank-one reduction formula and its
applications to matrix factorizations, SIAM Rev., 37 (1995), pp. 512–530.

[14] T. Davis, University of Florida sparse matrix collection, NA Digest, 92 (1994), http://www.
cise.ufl.edu/research/sparse/matrices (April 2002).

[15] I. S. Duff, R. G. Grimes, and J. G. Lewis, User’s Guide for the Harwell-Boeing Sparse
Matrix Collection, Tech. report RAL-92-886, Rutherford Appleton Laboratory, Chilton,
England, 1992.

[16] D. K. Fadeev and V. N. Faddeeva, Computational Methods of Linear Algebra, W. H. Free-
man, San Francisco, CA, 1963.

[17] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838–853.

[18] W. W. Hager, Updating the inverse of a matrix, SIAM Rev., 31 (1989), pp. 221–239.
[19] A. S. Householder, Theory of Matrices in Numerical Analysis, Blaisdell Publishing, Johnson,

CO, 1964.
[20] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of

which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148–
162.

[21] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 1996.
[22] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[23] J. Sherman and W. Morrison, Adjustment of an inverse matrix, corresponding to a change

in one element of a given matrix, Ann. Math. Statist., 21 (1950), pp. 124–127.
[24] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the

solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631–
644.

[25] H. S. Wilf, Matrix inversion by the annihilation of rank, J. Soc. Indust. Appl. Math., 7 (1959),
pp. 149–151.

