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Inverse Design of Photonic Crystal Devices
Andreas Håkansson, José Sánchez-Dehesa, and Lorenzo Sanchis

Abstract—This paper deals with the inverse design in the field of
photonic crystal (PC)-based devices. Here, an inverse method con-
taining a fast and accurate simulation method integrated with a
competent optimization method is presented. Two designs yielded
from this conjunction of multiple scattering theory with a genetic
algorithm are analyzed. The potential of this approach is illus-
trated by designing a lens that has a very low F-number (F =
0 47) and a conversion ratio of 11:1. We have also designed a cou-
pler device that introduces the light from an optical fiber into a
PC-based waveguide with a predicted coupling efficiency that ex-
ceeds 87%.

Index Terms—Genetic algorithm (GA), inverse design (ID), mul-
tiple scattering theory, optical fiber, photonic crystals (PCs), pho-
tonic devices, PC waveguide, spot-size converter.

I. INTRODUCTION

PHOTONIC CRYSTALS (PCs) [1] are promising materials
in order to produce new optical components. Different

compact optical devices and circuits can be designed by in-
troducing point and/or line defects in these crystal structures.
Although the predicted performance of these photonic devices
is very promising, many practical problems still need to be
solved before they will be competitive in the marketplace. To
solve these problems a normal approach is to use trial and
error guided by knowledge and intuition. Even if this direct
design technique is useful and relatively effective it is strongly
restricted to the degree of insight into the problem. This is one
great limitation using direct design. Through direct design it is
impossible to invent a device without being able to give a com-
plete description of the underlying physics of its functionality.
To find unexpected nontrivial solution that might be overseen
in direct design, the trial and error should be controlled, not
by intuition, but by a stochastic or deterministic optimization
algorithm. The physical intuition is then used to limit the search
space and lower the diversity of possible solutions by setting
up proper constrains.

To apply an optimization algorithm it is convenient to be able
to simulate the functionality of the device we are designing;
solving the direct problem. The inverse design (ID) problem
is solved by optimizing the design parameters within the set
constrains. Solving problems using inversion methods has been
demonstrated to be very effective for various PC devices such as
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(other than the two analyzed here); PCs for cavity QED experi-
ments [2], PCs with large absolute band gaps [3], aperiodic scat-
terers for tailored transmission or reflection [4], and low-loss PC
waveguide Z-bend [5].

II. INVERSE DESIGN METHOD

When setting up a problem for ID resolution, the most impor-
tant thing is to enclose the search space in an adequate manner.
On the one hand, when setting up the boundaries, it is necessary
to exclude solutions that we are not interested in, e.g., solutions
that we later lack the possibilities to fabricate. On the other hand,
it is equally important not to exclude solutions that might lead to
an optimal result. Light constrains is preferable since this will
not exclude possible nonintuitive optimal solutions. The light
constrains will lead to a large number of possible designs. This
then implies a large number of numerical simulations during the
optimization process, which requires fast calculation methods.
Another important matter is the estimation and evaluation of the
asked-for functionality of the device. When solving the direct
problem, it is necessary to be able to evaluate the design’s pre-
requisite comportment. This evaluation is set equal to the target
function, which needs to be optimized. If this function is badly
chosen, a lot of efforts will be lost in the search as a result of bad
performance of the optimization. The method presented here has
been introduced by some of us [6], and can be applied to any
two-dimensional (2-D) PC ID problem containing clusters of di-
electric or metallic cylinders and works for both TE and TM po-
larized light. The method is more effective for solving problems
with a finite number of solutions, using bounded discrete param-
eters. Within this wide field of applications, this work concen-
trates on PCs of silicon cylinders ( at m) in
a background of silica ( ) and TM polarized incident
light (in-plane magnetic field). Both the simulation and the opti-
mization method are well known in the literature. A description
and motivation of choice, as well as limitations is given in the
two following sections.

A. Direct Solver

Here, we look at 2-D systems containing arrays of dielec-
tric cylinders with circular cross section. For solving Maxwell’s
equation in these types of crystals, the multiple scattering theory
(MST) is both a fast and accurate method. The method has been
successfully applied in the analysis of metallic and dielectric
clusters based on 2-D PCs [7], [8]. The simulation time de-
pends on the number of cylinders in the simulation. If consid-
ering systems that do not include a too great number of scatterers

, the MST can be considered very fast (a system of
100 scatterers takes only a few seconds to simulate on a Pentium
IV computer).
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In brief, the method uses the T-matrix [9] separately
defined for each scatterer to calculate the total scattered
wave from the system. To further illustrate, let us con-
sider a cluster of scatterers located at the positions

. If an external wave
with temporal dependence impinges the cluster, the

total field around cylinder is a superposition of the external
field, and the field scattered by the rest of the cylinders in the
cluster

(1)

where is the wave scattered by cylinder . These three
fields can be expanded into series of orthogonal Bessel func-
tions. Using the solutions to the scalar wave equation in polar
coordinates as base functions, the total incident wave to the
cylinder and the external incident plane wave can be expressed
in terms of the Bessel function of the first kind. The scattered
wave from cylinder is expressed in a series of outgoing Hankel
functions rather than regular wave functions. Using the mul-
tipole coefficients and for , and

, respectively, the expression above can be cast into the
following relation between coefficients:

(2)

being the propagator from cylinder to and whose com-
ponents are

(3)

where

and is the Kronecker delta, is the dielectric constant of
the medium of propagation ( for air), 10
and is the Hankel function of the first kind.

Noti ce that the coefficients are known, but and
are not. Using the boundary condition at the interface of each
scatterer, we can relate with . This relation, expressed in
matrix notation as , is the T-matrix and takes the
following values for circular scatterers:

(4)

where is the radius of cylinder and are the
wavenumbers inside and outside the cylinders,
respectively, and the prime indicates the derivate Bessel func-
tion defined as , where is either (Bessel)
or (Hankel).

Now, we can print out the system of equations by introducing
the coefficients from (4) in (2)

(5)

By truncating the angular momentum within , (5)
reduces to a linear set of equations, where the dimension of the
relevant matrix is . It is important
to stress that the size of this matrix increases with the number
of scatterers, which will result in a notably increase in the sim-
ulation time.

The theory gives an exact solution to the system and the result
is expressed in infinite series expansions of Hankel functions
( point sources). Because of the circular properties of these
functions the terms in the series expansion converge relatively
fast for cylindrical scatterers. For example, for frequencies in the
first photonic band, the highest significant index is of the order
3. This fast convergence contributes to a very fast simulation
time and low CPU costs. The MST applies very well for systems
with freely placed cylindrical scatterers, including systems with
cylinders with different radius. Another convenience is that if
the system and the incident wave is symmetric with respect to
one axis the relevant matrix for the total system can be cut to a
fourth [10] resulting in a considerable simulation speedup.

It has to be mentioned that this simulation method might not
be the proper choice for arbitrary shaped scatterers. If one lifts
this constrain and gives more freedom to the shape of the scatter,
the T-matrix used in MST must be recalculated for every dif-
ferent formed cylinder. In this regard the finite-element method
has been proved useful [5].

B. Optimization Method

The No-Free Lunch theorem by Wolpert and Macready [11]
states that for any algorithm, any elevated performance over one
class of problems is exactly paid for in bad performance over an-
other class. In other words, it does not exist no better nor worse
optimization algorithm with respect to its average performance
on all possible classes of problems. Fortunately, optimization
problems connected to real applications almost always belong to
a class of functions with elevated performance. The verity in op-
timization algorithms is large and can generally be divided into
two groups, deterministic or stochastic algorithms. Determin-
istic optimization is characterized by the fact that there always
exists at least one instruction associated with a given present
state of the search, while a stochastic search algorithm uses a
pool of solutions and guides its way using comparison. Deter-
ministic optimization normally needs initial input, and is there-
fore often used when dealing with nice and smooth optimization
problems of less complex nature, while stochastic searches are
more frequently used to solve harder combinatorial problems.
Furthermore, stochastic searches show great flexibility and ro-
bustness and can easily be integrated in mixed or hybrid search
strategies. Finally, if stochastic searches are more effective for
finding global maximums they generally use a large number of
function evaluations to do so. This inconvenience favors fast
simulation methods such as the MST presented in the previous
section.
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One popular family of stochastic search algorithms, fre-
quently applied to solve engineering problems, is evolutionary
computation. This assemblage of algorithms are related with
the optimization process used by nature itself, the evolution.
The evolution is very powerful in adapting individuals to a
given environment, and is able to tackle enormous complex
problems with fairly simple means. Throughout generations,
the individuals’ chromosomes (the genotypes) are mixed and
new individuals with different characteristics are born. Those
individuals that adapt better to the environment have the best
chance of survival and, hence, give birth to more offspring
creating a new generation more fit for survival than the pre-
vious one. To judge how well these individuals adapt, they are
associated with a fitness value. This fitness reflects the quality
in the wanted functionality of the optimized device.

We here use one of the most popular algorithms from this
family, a simple-genetic algorithm (GA), introduced by Hol-
land [12]. The GAs are population-based stochastic search al-
gorithms normally used to solve discrete problems [13]. Their
functionality is based on their ability to find small parts of the
individual (the device) that reflects a good quality in the result,
these fractions are called building blocks (BBs). In other words,
the GA builds, mixes and finally uses these BBs to find a global
optimal solution. Unfortunately, this goal is not always met. If
the global optimum consists of large sized BBs, the GA will
have problems of constructing them because high-order BBs are
very difficult to build and maintain throughout the search. These
problems are referred to as GA-hard problems [14] and can be
bypassed by representing the problem differently or by trim-
ming the GA parameters. However, when such problems need to
be tackled, a more dynamic algorithm should be at hand, e.g.,
compact GA (cGA), fast messy GA (fmGA), Baayesian opti-
mization algorithm (BOA) [14] that are capable of dynamically
recoding the genotype and in this way finding larger sized BBs.

The simple GA works with three operators; selection,
crossover and mutation that are iteratively applied to a popula-
tion of individuals. The selection operator culls the population
selecting solutions with a high fitness for mating. The mating
act, which is directed by the crossover operator, mixes and
constructs the BBs from two or more individuals creating new
offspring. The mutation operator makes it possible for the
offspring to possess new BBs that none of the parents have and
is applied before passing into the next generation (i.e., the next
iteration). The individual is represented by a chromosome (a
digital string) that is put together by a number of binary genes
coding the genotype. Each gene corresponds to one specific
part of the phenotype; i.e., one gene codes one parameter of the
ID problem. One genotype corresponds to one and only one
phenotype, that here is a cluster of dielectric cylinders. Fig. 1
illustrates a typical GA optimization of a 100 bit-parameters
problem. Notice that the convergence is methodically reached
after simulations.

The binary implementation leads to the inconvenience of ex-
cluding float parameters in the optimization. One normal ap-
proach to handle real numbers is to implement a smallest step
approximation. This on the other hand can lead to complications
since, e.g., 7 (as a binary representation: 0111) and 8 (1000) are
the following integers and probably very similar phenotypes,

Fig. 1. Typical GA run optimizing a problem coded with 100 binary
parameters. Line (1) and (2) defines the best and average fitness, respectively,
of the population at a given generation. The gray colored bars indicate the
average number of bits a solution differs from the best fitted individual in the
population at a given stage. The black bars indicate how many parameters are
changed at each best fitness increase.

but differ from all four digits on the chromosome (genotype). A
useful phenotype-genotype representation in this case are Gray
codes [13]. A second approach is to leave the binary represen-
tation and use a real-coded GA.

III. RESULTS

The applicability of the method described above is illustrated
by solving the inverse problem of a photonic lens with flat sur-
faces and a PC waveguide coupler. Both structures show new
interesting features. The lens device focuses the light into a re-
gion that is one order of magnitude smaller than the incident
beam. The insertion loss predicted for the coupler is about 13%,
which is one of the lowest reported by numerical simulations.

A. Photonic Lens With Flat Surfaces

Let us deal with the design of a photonic lens with flat sur-
faces. We are looking here for a device with a large -compo-
nent of the Poynting vector in the chosen focal point, hence, the
fitness value of a design of the optimization is set directly pro-
portional to this value. Now, we need to encapsulate the problem
by setting up proper constrains and so limiting the search space.
First, the simulation method favors the use of cylindrical scat-
terers. Second, the binary representation used in GA optimiza-
tions induces fixed position and constant radius for the cylin-
ders. Hence, the only tunable binary parameter in the problem
is set to the presence or absence of each cylinder.

The lattice points corresponding to the cylinders’ positions
have to be chosen carefully. The number of solution increases
as , if is the number of lattice points. An increase in
implies an increase in the optimization time needed to solve the
problem. Consequently, has to be chosen as small as pos-
sible but at the same time in such a way that no optima are
excluded. A Gaussian shaped beam is chosen as an incident
beam, representing the light from a dielectric waveguide. The
beam, with a width of , is centered at the origin of the coor-
dinate system and propagating along the positive axis. Con-
sequently, the size of the crystal lattice along the -direction
has to be chosen slightly larger than the incident beam’s width
to ensure that all the light passes through the device. The lat-
tice was set to have a total width of along the axis. Re-
garding its thickness along the axis various optimizations were
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(a) (b)

Fig. 2. The modulus of the electric field distribution, produced by two different
inverse designed lenses based on photonic crystal clusters (white dots). The
length scales are given in terms of the lattice parameters employed in the design
of the lenses, a , as well as in terms of the working wavelength � . Light
(dark) areas correspond to high (low) intensity. The white rectangles enclose
the spacial boundaries for the inverse design set up. (a) The inverse designed
nine layers lens structure and (b) the corresponding 13 layers lens structure.

done. Here, we present the result for 9 and 13 layers, based on
a hexagonal symmetry lattice. For 13 layers, the total number
of lattice points is 318, which is conditioned by our calcula-
tion resources. The polarization is chosen as in-plane magnetic
field (TM). This choice of polarization is arbitrary since TE po-
larization can be implemented in this same way. The chosen
hexagonal lattice constitutes the lens-material (LM) with the lat-
tice constant and the radius is set to . A
band structure calculation of the corresponding infinite crystal
by means of a plane wave expansion method predicts a for-
bidden gap for the TM-like modes and the direction, in
the range of frequencies 0.222–0.292 (in units of ),
see Fig. 4(a). In order to minimize the reflectance we choose
a working frequency of 0.197; i.e., below the first gap, where
propagation is allowed in all directions for the corresponding
infinite crystal. The CPU time needed to get the fitness of one
13 layers individual is of the order of 6 s in a 2.8 GHz Pentium
IV workstation. The coordinates of the focal point are
freely determined. Particularly, we impose the focal point to be
located on the symmetry axis of the system , and with
a -coordinate , where is fixed by the working
frequency .

The global maximum must correspond to a symmetric struc-
ture, which is obvious from the symmetry of the problem. By
removing all nonsymmetric crystal solutions the space search
size is reduced from to possible configurations,
where is the number of lattice points, and the number of
lattice points centered on the symmetry axis. This means for the
13 layers lens problem, where and , a reduction
from 10 possible configurations to 10 and for the
9 layers problem from 10 to 10 . Fig. 2(a) shows
the resulting lens device for 13 layers (9 layers) and the pattern
of the corresponding electric field modulus. Two different scales
are used to measure distances, lattice parameter units (bottom
and left) and wavelength units (top and right).

The focusing effect can clearly be observed as represented in
Fig. 3. Here, is plotted along the direction parallel to the
axis for three different cases; at the -coordinate of the focal
point for the two lenses, and for the incident beam at .

Fig. 3. The x-component of the Poynting vector represented at the focal point
(x = 4:60� ) for the two structure presented in Fig. 2. The dotted, dashed,
and solid line correspond to the width of the incident beam (w ), the nine layers
lens and the 13 layers (w ) lens, respectively. (Inset) A zoom over the x axis
showing the response from the two lens structures.

The estimated amplification in the focus equals 9.4 dB for the
13 layers device and 9.1 dB for the 9 layers; i.e., the four extra
layers add an amplification of 0.3 dB. A fit of to a
Gaussian curve along the -direction for the 13 layers lens gives
a beam waist radius of . This means that the lens
has a spot-size conversion of . No-
table is that this conversion and amplification is achieved in a
distance of . This low F-number is difficult to achieve
by conventional lens design. According to classical optics the
F-number is defined by the focal distance divided by the width
of the Gaussian beam, which here takes a value of only 0.47.
This is achieved with a very low-power loss, which is defined
as the ratio of the transmitted power calculated inside the focus
waist to that of the incident beam

dB (6)

The calculated value equals 1.0 dB, in other terms, 79% of the
incident power is squeezed and passes through the focus.

B. PC Waveguide Coupler

The lens demonstrates the possibility to stretch an incident
Gaussian beam to a tenth of its width, sufficient for classical
waveguide to PC waveguide mode coupling requirements. In
other words, if placing a single line-defect PC waveguide at a
distance of from the first file of cylinders in the device, we
should be able to couple that light to the waveguide mode. This
second inverse problem was setup under very similar constrains
as for the lens device. The lattice parameter of the PC, which we
name guide material (GM), is set so we have a guided mode for
the along the -direction; i.e., . Fig. 4(a)
shows how the working wavelength of the lens correspond
to a guided mode in the projected band structure for the infinite
crystal.

If the waveguide is placed at the focal point of the lens, one
obtains a total insertion loss as high as 7.03 dB. This efficiency
is calculated as the ratio of the total power that is transmitted
through the waveguide to the incident power (for coordinates
references see Fig. 5)

dB

(7)
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(a) (b)

Fig. 4. (a) Photonic band structure of the photonic crystal employed as lens
material (LM) along the �K direction (see inset). (b) Projected band structure
of TM modes in the guide material (GM). The gray regions represent the
continuum of extended states in the photonic crystal. The white regions are
the photonic bandgaps. The waveguide is formed by removing one row of Si
rods, as shown in the inset. The black line defines the guided modes inside
the waveguide. The frequencies in both panels are given in reduced units of
the respective lattice parameters, a and a . The horizontal dashed line
defines the working frequency of optical devices under design.

In order to reduce the insertion loss, we have solved the
problem using two different ID setups. As a first approach,
the inverse problem is constrained to a set of 52 lattice points,
which are placed in front of the entrance. The idea of this
mouth structure is to facilitate the coupling to the waveguide
mode in a taper-like manner. The lattice parameters are chosen
as for the waveguide. The fitness of the optimization was set
equal to the sum of calculated at 30 points located along
a transversal segment defined at the end of the waveguide;
i.e., on the segment . Each individual has
only 32 binary parameters, and just 2 10 possible
combinations are available. A resulting power loss of 1.07 dB is
obtained, which represents a substantial advance in comparison
with the total loss when no mouth structure was considered.
This value equals 99% coupling efficiency with respect to the
total energy that passes through the focus of the lens device.
The resulting electric field amplitude and crystal structure is
shown in Fig. 5(a).

In the second approach, the optimization was carried out
using the two crystal lattices simultaneously, the lattice used
in the lens design plus the lattice used in the mouth design.
This results in a total of binary parameters and,
consequently, the space search size has been increased to
2 10 possible solutions. To increase the
probabilities of finding a global maximum in the optimization
process, we used an exaggerated population of 400 individuals.
This big population results in a slow convergence but, at the
same time, an increase in the probabilities of fining the global
optimum. For this design, we needed 500 000 simulations to
finish the run. This correspond to an effective calculation time
of 30 days using a Pentium IV processor. The insertion loss pre-
dicted for this structure seen in Fig. 5(b), is as low as 0.61 dB.
This means that 87% of the impinging light passes through the
waveguide and is detected at the output. In fact, this value is
underestimated since it does not include the light reflected at the

(a) (b)

Fig. 5. The modulus of the electric field distribution from the two optimized
waveguide coupler devices (white dots). The white rectangles enclose the spatial
boundaries for the inverse design set up. (a) The 13 layers lens from Fig. 2 is
used to narrow the incident beam. The marked cluster is optimized to facilitate
the coupling to the waveguide mode. A coupling loss of 1.07 dB is achieved.
(b) The crystal is a result of an optimization of the lens structure and the mouth
cluster simultaneously to maximize the coupling efficiency. A coupling loss of
0.61 dB is achieved. Light (dark) areas correspond to high (low) intensity.

Fig. 6. Fitness of the optimized crystal waveguide coupler is plotted for the
frequencies in the gap of the PC waveguide. The dotted line marks the frequency
used in the optimization.

end of the waveguide by finite-size effect. Therefore, the cou-
pling efficiency predicted by this new structure is comparable
with the better ones reported in the literature; Spuhler et al. [15]
proposed an inverse designed waveguide to fiber coupler with
an efficiency improvement of 2 dB per converter. References
[16]–[18] report different tapered waveguide couplers that
exceed a predicted coupling efficiency of 90%. Finally, the
J-coupler proposed by Prater et al. [19] predicted a coupling
efficiency of 91%.

IV. ROBUSTNESS OF THE DESIGN

An important issue is how this waveguide coupler device will
respond for a change in the frequency. Fig. 6 plots the fitness for
the frequencies of the guiding mode for the PC waveguide. We
see a sharp peak at the optimized frequency. This behavior is
expected since the PC waveguide coupler works due to multiple
scattering between cylinders. Each cylinder in the cluster has an
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Fig. 7. Robustness of the design PC waveguide coupler. The fitness for 20
structures for each level of error is plotted in the graph. The dotted line marks
the fitness of the perfect structure. (Top) Five different levels of relative error
(1%–5%) in the position of the cylinder off their fixed lattice positions are
shown. (Bottom) Five levels of error in the radius of the cylinders are shown.

optimized position and contributes to the efficiency of the de-
vice. Therefore, a large sensitivity to the working frequency of
the device is expected. This functionality is much more sensi-
tive than a tapered waveguide [17]. Nevertheless, a specific PC
waveguide coupler working over a given range of frequencies
can be designed by using this very same method.

A second issue of critical interest, due to the possible errors
in fabrication, is to know the robustness of the device against
fluctuations in the cylinders’ radius or small displacements of
their position in the lattice. Here, we analyzed the robustness
of the design photonic crystal-based waveguide coupler. Fig. 7
shows the corresponding fitness value for 20 different calculated
defected structures and for five different levels of relative error
of their position (upper) and of the radius (lower). The struc-
ture is clearly more sensitive to defects due to displacement of
the cylinders than to changes of their radiuses. This more rapid
decrease in quality for errors associated with the position can
be explained by a bigger absolute error, since the lattice con-
stant is much larger than the radius of the cylinders. Notice that
the fitness only is an estimation of the quality. The efficiency of
each structure has to be calculated in more detail as explained
earlier, integrating the pointing vector over a segment at the
end of the waveguide [see (7)]. Calculating this value for the
best crystal structure of the 20 simulated and for a relative error
of 5%, we predict an efficiency of 84% and 65% for an error
in the radius and lattice constant, respectively. This sensibility,
especially for displacements, is rather expected. As mentioned
earlier, we are looking at a very complex and delicate system,
where each cylinder is given an optimized position and play an
important role for the coupling effect. Now, this can of course be

altered knowing the limitation of the manufacture procedure and
introduce these flaws in the optimization procedure. Instead of
optimizing a perfect system where the cylinders’ positions and
their radius’ are fixed, we can easily solve the inverse problem
and look for solutions which are more robust against the imper-
fection in the crystal, optimizing the expected structure from a
fixed fabrication method. This will most likely lead to a decrease
in the theoretical result but an increase in the experimental one.

Although our simulations involved the simplifying assump-
tion of 2-D PCs, it should be noticed that such 2D-periodic
crystals can be studied in actual 3-D crystals. For example, a
recent simulation of 2-D prism [8] reproduce fairly well the
behavior of the actual structures in the microwave regime. We
conjecture that similar results might also be obtainable in the
optical regime by using a PC-slab sandwiched between multi-
layer films with a large gap. Also, the preceding discussion fo-
cused on the TM modes of a structure based on “dielectric-scat-
terers-on-background.” However, based on the general method
presented here, similar devices based on “holes-in-dielectric”
structures can also be designed.

V. SUMMARY

In this paper, we have examined how inverse design of pho-
tonic crystals is a very useful tool to optimize the performance of
different PC devices and to find new unexpected properties. As a
demonstration of the strength of the model, different lenses and
a waveguide couplers were designed and characterized. Both
structures show great new features and good quality in their per-
formance. The robustness of the coupler device was also ana-
lyzed and discussed with respect to the inverse design setup. To
conclude, this integration of MST with GA optimization can be
used to solve a wide diversity of inverse design problems in the
field of PCs.
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