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A multiple-scattering theory is applied to study the homogenization of clusters of elastic cylinders

distributed in a isotropic lattice and embedded in a viscous fluid. Asymptotic relations are derived

and employed to obtain analytical formulas for the effective parameters of homogenized clusters in

which the underlying lattice has a low filling fraction. It is concluded that such clusters behave, in

the low frequency limit, as an effective elastic medium. Particularly, it is found that the effective

dynamical mass density follows the static estimate; i.e., the homogenization procedure does not

recover the non-linear behavior obtained for the inviscid case. Moreover, the longitudinal and trans-

versal sound speeds do not show any dependence on fluid viscosity. Numerical simulations

performed for clusters made of brass cylinders embedded in glycerin support the reliability of the

effective parameters resulting from the homogenization procedure reported here.
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I. INTRODUCTION

The propagation of acoustic waves in inhomogeneous

media has attracted much attention over the years. Recently,

there has been a growing interest in a special type of inho-

mogeneous materials named phononic crystals, whose elas-

tic parameters vary periodically in space. The interest in

these materials arises from the possibility of having fre-

quency regions, known as absolute band gaps, where the

propagation of elastic waves is forbidden, whatever their

polarization and wave vector.1–5 In addition to their ability

to behave like perfect mirrors, these structures can prove

particularly useful for applications requiring a spatial con-

finement of acoustic waves and can hence be used as acous-

tic filters or very efficient waveguides.5 A class of phononic

crystals where the solid background is replaced by a fluid or

a gas are usually called sonic crystals.6–8

The theoretical description of sonic and phononic crys-

tals has employed two main strategies. One consists of band

structure calculations1–4,6–8 of the corresponding infinite sys-

tem in order to match the gaps in the dispersion relation with

the attenuations found in the transmission spectra. The other

one calculates the transmission spectra by different algo-

rithms such as the transfer matrix method,9 finite differen-

ces,10–12 or by multiple scattering.13–15 The latter is the most

suitable for describing finite-size structures. Experimental

observations have recently demonstrated that phononic crys-

tals can also be employed in the frequency region well below

the bandgap as acoustic lenses for sound focusing as well

as acoustic interferometers that work similarly to their opti-

cal counterparts.16,17 Inspired by these findings, several

approaches have been presented in order to give a descrip-

tion of phononic crystals in the low frequency limit or long

wavelengths.18–28 Kafesaki et al.18 analyzed the phenom-

enon of the sound speed of drops in mixtures by means of an

effective medium obtained by using the coherent potential

approximation. Krokhin et al.19 employed plane wave

expansions to derive analytical expressions for the speed of

sound valid for arbitrary filling fraction and different geome-

tries of the inclusions. More recently Mei et al.24 and Torrent

et al.25,26 applied the multiple scattering method to develop

a homogenization theory to simultaneously obtain the effec-

tive sound speed as well as the effective density of finite

cluster of cylinders embedded in air. Kutsenko et al.27 intro-

duced a new analytical approach based on the monodromy

matrix for the two dimensional case to derive the effective

shear speed in two dimensional phononic crystals. Finally,

the results of Wu and co-workers28 are also of interest to this

work though they report an effective medium theory applied

to the case of elastic inclusions embedded in a different elas-

tic medium.

Despite of the extensive studies in sonic/phononic crys-

tals the effect of losses at low frequencies has been scarcely

considered. Only a few works have been devoted to this topic.

A related problem was firstly tackled by Einstein in his classi-

cal 1905 paper, where he studied the effective viscosity of

rigid spheres in a viscous medium.29 Afterwards, Batchelor

and Green30 tried to determine the bulk stress in a suspension

of spherical particles up the second order in the filling frac-

tion and Sprik and Wegdam31 showed that shear viscosity in

the liquid constituent may lead to gap formation in solid-

liquid systems. For the case of periodic distributions, Psaro-

bas et al.32,33 developed an on-shell multiple scattering

method in order to incorporate the effect of viscoelastic losses

in the band structure calculation by means of a complex and

dispersive Lam�e’s constant. Hussein34,35 introduced a modi-

fied finite element method (reduced Bloch mode expansion)

to calculate the dispersion relation using finite-number set of

Bloch mode eigenvectors at each wave-vector point.
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It was found that in sonic crystals the existence of com-

plete band gap is more difficult due to suppression of trans-

versal sound in the liquid background. However, viscosity in

liquids may lead to gap formation in solid-liquid systems.

Shear viscosity in the liquid introduces a new length scale

associated with the penetration of shear stress into the viscous

liquid. When the viscous penetration depth d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2g=qbxÞ

p
becomes comparable to the structural length scale in the com-

posite, viscous effects cannot be ignored in describing the

acoustical properties.

In this work we analyze the scattering of acoustic waves

by clusters of elastic cylinders distributed in a periodic lat-

tice and immersed in a viscous medium. We are here inter-

ested in the homogenization of this type of systems and their

properties are obtained using an effective medium theory. In

other words, we are considering clusters interacting with

sound wavelengths much larger than the distance between

cylinders and larger also than the cylinder’s diameter size. In

terms of frequencies, we are dealing with very low frequen-

cies; i.e., in a frequency region very far from the frequency

at which the first acoustic band gap of the underlying lattice

appears. Asymptotic relations are derived and employed to

formulate a method of homogenization based on the scatter-

ing properties of the cluster. By using the multiple-scattering

method we have demonstrated that, in the long wavelength

limit, a distribution of elastic cylinders embedded in a vis-

cous fluid effectively behaves like a single elastic cylinder

with parameters that can be analytically obtained. Semi-

analytical formulas for the effective parameters (i.e., effec-

tive longitudinal sound speed, effective transversal sound

speed, and effective density) are obtained in the case of

dilute (low filling fraction) structures. We have obtained that

the effective mass density follows the linear static estimate,

that is, the homogenization procedure does not recover an

effective mass density with a non-linear dependence on the

filling fraction, as was the result for the inviscid case. More-

over, it is worth mentioning that there is no explicit depend-

ence on the fluid viscosity for the mass density or for the

longitudinal and transversal sound speeds. However, viscos-

ity effects are implicitly involved in the resulting effective

parameters through the boundary conditions employed in the

homogenization procedure.

This article is organized as follows. In Sec. II the mathe-

matical formulation for a single elastic cylinder in a viscous

background is introduced and the generalization to the case

of a cluster by using the multiple scattering method is also

briefly described. In Sec. III the concept of effective t matrix

is introduced and the effective parameters are obtained for a

general elastic-viscous fluid composite. Numerical results

for a single and a cluster of elastic cylinders embedded in a

viscous fluid are reported and discussed in Sec. IV, where

the limit of wavelength to reach homogenization behavior in

these systems is also studied as a function of the frequency.

Finally, the work is summarized in Sec. V.

II. MATHEMATICAL FORMULATION

There are a wide variety of models in the literature that

deal with viscous effects in acoustic wave propagation. The

model most commonly used, which is also followed here, is

based on the solution of the mechanical equations; i.e., all

the terms in the linearized Navier–Stokes equations are taken

into account. This particular treatment of viscosity compli-

cates the analysis because the fluid medium can uphold shear

and compressional modes; both must be accounted for satis-

fying the boundary conditions at the interfaces. First, we

theoretically examine the two-dimensional (2D) scattered

acoustic field produced by an impinging plane wave on a sin-

gle elastic solid cylinder in order to obtain the t matrix. We

assume, without loss of generality, that the cylinder has a

circular cross-section and that it is infinitely long along the

z-axis. We also consider that the incident wave propagates

normally to the cylinder axis. Then we generalize the result

to the case of multiple scatterers of arbitrary cross section.

A. t matrix of an elastic cylinder embedded
in a viscous medium

Let us consider the standard acoustic equations for lin-

ear flows in a homogeneous viscous fluid medium; i.e., the

equation of continuity

@q
@t
þ qbr � v ¼ 0; (1)

the momentum equation

rpþ qb

@v

@t
¼ gr2vþ nþ 1

3
g

� �
rðr � vÞ; (2)

and the equation of state

dp

dq
¼ c2

b; (3)

in which v is the complex fluid velocity vector, qb is the am-

bient fluid density, q is the density perturbation, p is the fluid

pressure, cb is the sound speed, and g and n are the shear and

bulk viscosities, respectively.

Equations (1)–(3) can be combined to obtain the equa-

tion for the velocity vector v:

qb

@2v

@t2
�qbc2

brðr�vÞ¼gr2@v

@t
þ nþ1

3
g

� �
r r�@v

@t

� �
:

(4)

The velocity field can be expressed as a superposition of lon-

gitudinal and transversal vector components by using the

Helmholtz decomposition theorem,

v ¼ �ruþr� w; (5)

where u and w are the scalar and vector potentials, respec-

tively. For 2D periodicity the vector potential has only

z-component, w ¼ ð0; 0; wÞ. Now, substituting this decom-

position into Eq. (4), we get the following two equations:

ðr2 þ k2
‘ Þu ¼ 0;

ðr2 þ k2
t Þw ¼ 0; (6)
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where k‘ and kt are the longitudinal and transversal wave

numbers, respectively, in the viscous fluid and are given by

k‘ ¼
x
cb

1þ i
x

2qbc2
b

4

3
gþ n

� �� �
;

kt ¼ ð1þ iÞ
ffiffiffiffiffiffiffiffiffi
xqb

2g

r
: (7)

The solutions of Eq. (6) are obtained by expanding the longi-

tudinal and transversal vector components in series of Bessel

(Hankel) functions as follows:

uext ¼
X1
q¼�1

A‘qJqðk‘rÞeiqh; (8)

and

uscatt ¼
X1
q¼�1

B‘qHqðk‘rÞeiqh;

wscatt ¼
X1
q¼�1

Bt
qHqðktrÞeiqh:

(9)

The field uext represents the incident (external) field over the

cylinder while uscatt and wscatt are the respective components

of the scattered fields. The expansion over Hankel functions

only guarantees that the scattered waves are outgoing. We

also assume that the external field is pure longitudinal; i.e.,

the background considered here is a viscous fluid that, in ab-

sence of scatterers, supports propagation of longitudinal

waves only.

On the other hand, sound wave in the elastic cylinder is

described by the equation for the displacement vector (Nav-

ier’s equation of elasticity):

qa

@2u

@t2
¼ ðka þ laÞrðr � uÞ þ lar2u; (10)

where qa, ka, and la are the density and the Lam�e’s con-

stants of the cylinder, respectively. The displacement vector

is related to the velocity vector by means of the temporal de-

rivative, v ¼ @u=@t ¼ �ixu. Introducing scalar and vector

potential for velocity v, we obtain

vr ¼ �ix � @/
@r
þ 1

r

@f
@h

� �
;

vh ¼ ix
1

r

@/
@h
þ @f
@r

� �
: (11)

Here the potentials / and n can be analogously expanded

over Bessel functions

/int ¼
X1
q¼�1

C‘
qJqðka

‘ rÞeiqh;

fint ¼
X1
q¼�1

Ct
qJqðka

t rÞeiqh; (12)

where ka
‘ ¼ x=c‘ and ka

‘ ¼ x=ct are the longitudinal and

transversal wave vectors, respectively, and c‘ and ct their

corresponding velocities, which are given in terms of mass

density and Lam�e’s constants.

The coefficients of expansions (9) and (12) are obtained

by imposing the continuity of the normal and tangential

components of the velocity and stresses, respectively, at the

cylinder surface. After some algebra, we get the t matrix that

relates the coefficients A‘q to B‘q and Bt
q is (see Appendix A)

tq ¼ �½Qq � RqO�1
q Nq��1½Pq � RqO�1

q Mq�: (13)

In general the t-matrix is a block diagonal matrix whose di-

agonal elements tq are 2� 2 matrices

tq ¼
t‘‘q t‘tq

tt‘
q ttt

q

0
@

1
A; (14)

where t‘‘q and tt‘q involved Bessel and Hankel functions, and

t‘tq and ttt
q are equal to zero (see Appendix A). Note that even

when determinant of the t-matrix is zero the flux conserva-

tion is satisfied. Elasticity involves the existence of two

polarization modes so that the conservation of flux implies

the conservation of the total flux; i.e., the addition of the lon-

gitudinal and transversal fluxes instead of conservation of

individual components.

Let us recall that the problem of a single elastic cylinder

in a viscous fluid has been already considered in Refs. 36 and

37 for circular and elliptic cross sections, respectively. In these

studies the coefficients B‘q and Bt
q are obtained from A‘q by

solving a system of linear equations. However, here we have

developed a t matrix formalism in order to tackle the problem

of multiple elastic cylinders in a cluster. For a comprehensive

description of this formalism and its application to problems

of multiple scattering the readers are addressed to the book by

Varadan and Varadan,38 and the references therein.

B. Sound scattering by a cluster of elastic cylinders
embedded in a viscous medium

Now, let us consider a cluster of N cylinders located at

positions Rb ðb ¼ 1; 2; :::;NÞ, Rb is a vector in the XY plane.

The cylinders will be assumed of arbitrary cross section. The

geometry of the problem and the definitions of the variable

employed are shown in Fig. 1.

If an external wave uext with temporal dependence e�ixt

impinges the cluster, the total field around a cylinder a is a

superposition of the external field and the radiation scattered

by the rest of the cylinders b:

uaðr; hÞ ¼ uextðr; hÞ þ
XN

b6¼a

uscatt
b ðr; hÞ;

waðr; hÞ ¼
XN

b6¼a

wscatt
b ðr; hÞ; (15)

where uscatt
b and wscatt

b are the fields scattered by the b cylin-

der. Without loss of generality, those fields can be expanded
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as a combination of Bessel and Hankel functions centered at

the cylinder position. If the expansion coefficients are ðCaÞ‘q,

ðAaÞ‘q, ðBbÞ‘q, ðCaÞtq, and ðBbÞtq, for ua, uext, uscatt
b , wa, and

wscatt
b , respectively, the expressions (15) can be cast into the

following relations between the coefficients:

ðCaÞ‘q ¼ ðAaÞ‘q þ
XN

b6¼a

X1
s¼�1

ðGabðk‘ÞÞqsðBbÞls;

ðCaÞtq ¼
XN

b¼1

X1
s¼�1

ðGabðktÞÞqsðBbÞts; (16)

ðGabðkiÞÞqs being the propagator from b to a whose compo-

nents are

ðGabðkiÞÞqs ¼ ð1� dabÞeiðs�qÞUabHq�sðkirabÞ; (17)

for ki ¼ k‘; kt.

Note that coefficients ðAaÞ‘q in Eq. (16) are known, but

ðCaÞ‘q, ðBbÞ‘q, ðCaÞtq, and ðBbÞtq are not. To reduce the com-

plexity of the following calculations it is convenient to

express Eq. (16) in a more compact way, i.e.,

ðcaÞq ¼ ðaaÞq þ
XN

b¼1

X1
s¼�1

ðGabÞqsðbbÞs; (18)

with

ðcaÞq ¼
ðCaÞ‘q
ðCaÞtq

 !
; ðbbÞs ¼

ðBbÞ‘s
ðBbÞts

 !
;

ðaaÞq ¼
ðAaÞ‘q

0

 !

and

ðGabÞqs ¼
ðGabðk‘ÞÞqs 0

0 ðGabðktÞÞqs

0
@

1
A: (19)

As in the case of a single cylinder, the boundary conditions

at the cylinder surface allow us to calculate the t matrix

whose components ðtaÞqs relate the coefficients ðcaÞq and

ðbbÞs:

ðbaÞs ¼
X

q

ðtaÞqsðcaÞs: (20)

Introducing the coefficients (20) in Eq. (18), after straight-

forward calculation we get

ðbaÞq �
XN

b¼1

X1
s¼�1

ðtaGbaÞqsðbbÞs ¼ ðtaaaÞq: (21)

By truncating the sum over s within jsj < qmax, this equation

is reduced to a linear equation where the dimension of the

relevant matrix is 2Nð2qmax þ 1Þ � 2Nð2qmax þ 1Þ. Thus, in

matrix form MB ¼ S, where B and S are column block

matrices with elements ðb1Þq, ðb2Þq,…, ðbNÞq, and ðt1a1Þq,

ðt2a2Þq,…, ðtNaNÞq, respectively.M is a N � N block matrix

where each element is a matrix of dimension 2ð2qmax þ 1Þ
� 2ð2qmax þ 1Þ. In short, the matrix elements can be

expressed by

ðMabÞqs ¼ dabdqsI� ðtaGabÞqs: (22)

Finally, the unknown coefficients B can be easily obtained

by a matrix inversion, B ¼M�1S:

ðbaÞq ¼
XN

b¼1

X1
s¼�1

ðM�1
ab ÞqsðtbabÞs: (23)

Thus the solution for a given cluster is obtained in terms of

the block matrix ðM�1
ab Þqs and the t matrix of the individual

cylinders. As explained before, the t matrix is diagonal as in

the inviscid case but now has a higher dimensionality since

involves two different modes of propagation. This result is

very general and valid for cylinders of any cross section, any

filling fraction and any frequency. However, it is worth to

mention that the above statement must be restricted, in the

case of complex cross sections, to the possibility of evaluat-

ing the t matrix correctly and efficiently. Despite that we can

assume that it is valid in general and it is particularly valid

for low frequencies, which is the regime studied in the next

section.

III. HOMOGENIZATION OF A CLUSTER OF ELASTIC
CYLINDERS EMBEDDED IN A VISCOUS MEDIUM

The purpose here is to introduce the effective t matrix of

a cluster. This t-matrix will relate the coefficients of the inci-

dent field to the coefficients of the field scattered by the clus-

ter. The total scattered field around the cluster will be a

FIG. 1. Coordinate systems and definition of variables employed in the

equations of the multiple-scattering.
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superposition of the fields scattered by all the cylinders, that

is,

Pscattðr; hÞ ¼ qbc2
b

ix
r � vscattðr; hÞ

¼ P0

XN

a¼1

X1
q¼�1

ðBaÞ‘qHqðk‘raÞeiqha ; (24)

where Hqð�Þ is the q-th order Hankel function of first kind

and ðra; haÞ are the polar coordinates with the origin trans-

lated to the center of the a-cylinder, i.e., ra ¼ r� Ra, as

shown in Fig. 1.

The last equation can be also expressed as a function of

coordinates centered at the cluster origin using the Graf’s

addition theorem39 as

Pscattðr; hÞ ¼ P0

X1
p¼�1

Bsc
p Hpðk‘rÞeiph; (25)

where

Bsc
p ¼
XN

a¼1

X1
q¼�1

Jp�qðk‘RaÞeiðq�pÞUaðBaÞ‘q: (26)

These coefficients are related to ðAbÞls, or more precisely to

ðabÞs, through the expression in Eq. (23) since ðBaÞ‘q is the

longitudinal projection of ðbaÞq, i.e., ðBaÞ‘q ¼ ‘̂ � ðbaÞq.

Therefore,

Bsc
p ¼ ‘̂ �

X
a; b

X
q; r

Jp�qðk‘RaÞeiðq�pÞUaðM�1
ab ÞqrðtbabÞr:

(27)

The relationship between coefficients ðabÞs and those of the

external field aq can be obtained as follows. First, we assume

a generic incident field that can be expanded as a sum of

Bessel functions

Pextðr; hÞ ¼ P0

X1
q¼�1

aqJqðk‘rÞeiqh; (28)

which can be expressed in terms of coordinates with origin

at the a cylinder as follows:

Pextðra; haÞ ¼ P0

X1
s¼�1

X1
q¼�1

Jq�sðk‘RaÞeiðq�sÞUaaq

0
@

1
A

� Jsðk‘raÞeisha ; (29)

and, therefore, the coefficients ðaaÞs are

ðaaÞs ¼
X1
q¼�1

Jq�sðk‘RaÞeiðq�sÞUaaq: (30)

Now, the elements of the effective t matrix can be obtained

in the following form:

teff
ps ¼ ‘̂ �

X
a; b

X
q; r; t

Jp�qðk‘RaÞeiðq�pÞUaðM�1
ab Þqr

� ðtbÞrtJs�tðk‘RbÞeiðs�tÞUb ; (31)

which can also be cast as

teff
ps ¼ ‘̂ �

X
a; b

X
q; r; t

ðJaÞpqðM�1
ab ÞqrðtbÞrtðJ0bÞst; (32)

where

ðJaÞpq ¼ Jp�qðk‘RaÞeiðq�pÞUa ;

ðJ0bÞst ¼ Js�tðk‘RbÞeiðs�tÞUb : (33)

When the underlying lattice of the cluster is isotropic (square

or hexagonal) the cluster behaves, in the long wavelength

limit, as a single homogeneous and isotropic cylinder.40–42

Moreover, it also has been shown that the homogenization

condition for a cluster of cylinders immersed in a inviscid

fluid is given by25,26

t̂
eff
pq ¼ t̂

cyl
pq ; 8p; q; (34)

where t̂pq are the k-independent coefficients of the lower

order terms in the k-expansion of the corresponding t-matrix

elements. It is straightforward to show that, due to the form

of the effective t matrix in Eq. (32), the homogenization pro-

cedure in our case of elastic cylinder in a viscous medium

also leads to Eq. (34). However, as will be seen below, the

effective parameters are quite different from those obtained

for inviscid case.

Following the procedure employed for the inviscid

case,26 the effective parameters for a cluster of elastic cylin-

ders embedded in a viscous fluid and distributed in a lattice

with a low filling fraction are (see Appendix B):

qeff ¼ fqa þ ð1� f Þqb; (35a)

1

Beff

¼ f
1

Ba
þ ð1� f Þ 1

Bb
; (35b)

leff ¼ fla; (35c)

where f is the fraction of volume occupied by the cylinders

in the clusters and Ba ¼ ka þ la is the 2D bulk modulus of

the elastic cylinder. Note that the effective parameters do not

show any explicit dependence on the viscosity for the case

here considered of clusters with low f . However, the expres-

sions have embedded the viscosity through the boundary

conditions employed in their derivation. It is remarkable that

the expression for qeff in Eq. (38) is similar to that obtained

from the homogenization of composites consisting of elastic

inclusions embedded in another elastic medium.28 This is an

interesting result indicating that, though the boundary condi-

tions in our system are slightly different to that of two elastic

media, we arrive to similar expressions for qeff .

Let us remark that our homogenization procedure cannot

recover the effective mass density obtained for the inviscid
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case, which for the case of dilute systems is qeff ¼ qb

ðqað1þ f Þþ qbð1� f ÞÞ=ðqað1� f Þ� qbð1þ f ÞÞ.26,43–45 This

can be explained as due to the fact that the inviscid case

(g! 0) is a singular limit in the sense of the asymptotic

expressions derived for the viscous medium. In order to

recover the results for the inviscid case we have to return to

the equation and apply the corresponding boundary conditions

at the cylinders’ surface. It can be concluded that the suppres-

sion of the non-linear behavior of the mass density in compo-

sites made of elastic inclusions in an elastic background and

elastic bodies in a viscous background is directly related with

the boundary conditions at the corresponding interfaces.

From Eq. (35) we conclude that the homogenized cylin-

der behaves as an effective elastic medium. Their effective

longitudinal and transversal phase velocities are derived by

using 2D elasticity; i.e., c‘; eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBeff þ leffÞ=qeff

p
and

ct; eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
leff=qeff

p
. Their expressions are

�c2
‘;eff ¼

�Ba

ð1� f Þ �Baþ f
þ f

la

Bb

� �
1

�qaf þð1� f Þ

� �
; (36a)

�c2
t; eff ¼

fla=Bb

�qaf þ ð1� f Þ

� �
; (36b)

where the bar symbols indicate that the magnitudes are nor-

malized to the corresponding values of the background. In

other words, the velocities are divided by cb, and the bulk

modulus and density by Bb and qb, respectively. As it is

shown later, these simple expressions are valid for values f
as large as 0.6. A similar conclusion was reported by Parnell

et al.45 who analyzed the validity of dilute estimates in a va-

riety of homogenization schemes applied to elastic compo-

sites. Note that an explicit dependence on the viscosity will

appear for the case (not studied here) of larger f values,

through the terms containing the cylinders’ interaction. The

case of highly compact clusters will be the object of a future

work that will be published elsewhere.

Figures 2–4 depict the effective parameters (normal-

ized to the background) as a function of filling fraction.

They are obtained by analyzing clusters of N cylinders

made of brass, iron (Fe), and aluminum (Al), respectively,

in three different fluid backgrounds: water in Fig. 2, olive

oil in Fig. 3, and glycerin in Fig. 4. We have taken N ¼ 151

cylinders as representative volume element necessary to

guarantee that the homogenization method produces reli-

able effective parameters, as it was demonstrated in the

inviscid case.25,26,39 The acoustic parameters of the three

backgrounds employed in the calculations are given in

Table I. The material parameters of elastic cylinders are taken

to be qa ¼ 8500 Kg/m3, c‘ ¼ 4305 m/s, ct ¼ 2152 m/s for

brass; qa ¼ 7870 Kg/m3, c‘ ¼ 5778 m/s, ct ¼ 3137 m/s

for iron; qa ¼ 2699 kg/m3, c‘ ¼ 6507 m/s, ct ¼ 3044 m/s for

aluminum.47 Numerical calculations are made by using these

parameters normalized to that of the background, and they

are summarized in Table II. The cylinders in the cluster were

distributed in a hexagonal lattice whose filling fraction

fhex ¼ ð2p=
ffiffiffi
3
p
ÞðRa=aÞ2, where a is the lattice constant. The

hexagonal lattice was selected because is an isotropic lattice

(like the square lattice) and for comparison purposes with the

inviscid case, where results were obtained using this lat-

tice.25,26,48 For the calculations we have taken a ¼ 794 lm

while the cylinders’ radius have been changed from Ra ¼ 0

to Ra ¼ 0:5a, which corresponds to 0 � fhex � 0:907 (close

packing condition). The radius Reff of the homogenized cylin-

der is calculated by imposing the condition

fcls ¼
NðpR2

aÞ
pR2

eff

¼ fhex; (37)

where fcls is the fraction of volume occupied by the N
cylinders in the cluster. For the structure under study Reff

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN

ffiffiffi
3
p

=2pÞ
q

a ¼ 6:452a.

Figures 2–4 show that c‘; eff is always larger than ct; eff

and that for f ! 0 the background properties are recovered;

i.e., cl; eff ! cb and ct; eff ! 0.

Figure 5 shows an alternative representation of the

phase velocities given in Figs. 2–4. Each point in the dia-

gram corresponds to a filling fraction of the underlaying hex-

agonal lattice fhex. It is observed that the effective media

have ratios between longitudinal and transversal phase

velocities c‘=ct that are not approximately equal or greater

than 2 as in ordinary solids.49 In fact, the ratios c‘=ct are

lower than 2 and can be tailored by adjusting fhex. With these

new materials it is possible to get Poisson’s ratios higher

than 1=2 for filling fractions small enough. Recall that

FIG. 2. (Color online) Effective parameters of composites made of cylinders

of brass (continuous lines), iron (dashed lines) and aluminum (dotted lines),

respectively, embedded in water as function of the filling fraction. The pa-

rameters are normalized to those of water (see Table I). The shadowed

regions defined the filling fraction where the values obtained from Eqs. (35)

and (36) are not reliable.
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Poisson’s ratio is r ¼ 1� 2ðct=c‘Þ2 for 2D systems and that

values r larger than 0.5 corresponds to a modulus of rigidity

that is small compared with the compression modulus. Val-

ues to the right of the arrows correspond to f � 0:6, where

Eq. (36) is not reliable. The velocities of the material cylin-

ders are represented by symbols. Note that, despite of the

dilute medium approach, the effective velocities shown in

Fig. 5 tend to that of their material constituents as f ! 0:9,

the close packing condition of the hexagonal lattice. Note

that effective elastic media with ratios c‘=ct not found in

ordinary solids is direct a consequence of the background

viscosity here considered.

Although effective parameters in Eq. (35) do not show

any explicit dependence on viscosity g, the next section will

show that viscosity produces observable effects in the result-

ing effective medium.

IV. VISCOSITY EFFECTS: RESULTS
AND DISCUSSION

Here, we study two selected structures: a single elastic

cylinder with circular cross-section and a cluster made of cir-

cular elastic cylinders having an external circular shape. Both

structures are considered to be immersed in a viscous fluid.

First, in Sec. IV A, we analyze the angular distribution of the

scattered pressure at the far field for the case in which the vis-

cous fluid is glycerin. Afterwards, in Sec. IV B, we analyze

the relative difference of the forward fields by the effective

medium and the circular cluster, respectively, in order to

establish the homogenization limit. We conclude that viscos-

ity produces observable effects at the far field as well as in

the frequency cutoff determining the homogenization limit.

A. Viscosity effects at the far field

The scattered field by a cluster of cylinders is

Pscattðr; hÞ ¼ P0

XN

a¼1

X1
q¼�1

ðBaÞ‘qHqðk‘raÞeiqha : (38)

FIG. 3. (Color online) Effective parameters, as in Fig. 2, with olive oil as a

background. The effective parameters are normalized to the properties of

the fluid background.

FIG. 4. (Color online) Effective parameters, as in Fig. 2, with glycerin as a

fluid background. The effective parameters are normalized to the properties

of the fluid background.

TABLE I. Parameters of the fluids used in the calculations. They are taken

from Ref. 46.

Water Olive oil Glycerine

qb (Kg/m3) 998 920 1259

cb (m/s) 1486 1430 1909

g (Pa � s) 0.001 0.084 0.95

TABLE II. Material properties of the elastic cylinders used in the numerical

examples. The elastic parameters are normalized to the corresponding fluid

background properties.

Water Olive oil Glycerine

Brass Fe Al Brass Fe Al Brass Fe Al

�qa 8.52 7.89 2.70 9.24 8.55 2.93 6.75 6.25 2.14

�c‘ 2.90 3.89 4.38 2.25 4.04 4.55 2.26 3.03 3.41

�ct 1.45 2.11 2.05 1.51 2.19 2.13 1.13 1.64 1.59
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By using the asymptotic form of the Hankel functions for

large arguments,39 the acoustic pressure at the far field is

rðk; hÞ � lim
r!1
j
ffiffi
r
p

Pscattðr; hÞj

¼ P0

XN

a¼1

X1
q¼�1

ð�iÞqðBaÞ‘qe�ik‘Racosðh�haÞeiqh

������
������:

(39)

For the case of a single cylinder this expression is simplified

to36

rðk; hÞ ¼
X1
q¼�1

ð�iÞqB‘qeiqh

������
������: (40)

Numerical simulations are performed by considering the

case of (i) a brass cylinder with circular cross section and ra-

dius Ra ¼ 794 lm immersed in glycerin and (ii) a circular

cluster of 151 brass cylinders distributed in a hexagonal lat-

tice with parameter a ¼ 794 lm and with radii Ra ¼ 0:3a
The cluster radius is Rcls ¼ 6:452a, which is obtained by

using Eq. (37).

Figure 6 represents the pressure at the far field of both

cases for several frequencies. For the single cylinder case it

is observed that viscosity only modifies the forward and

backward pressure patterns of the pressure when the fre-

quency of the incident wave is increased. A similar result

was previously reported by Lin and Raptis.36 However, note

that our result at frequency kRa ¼ 5 slightly differs from that

FIG. 5. (Color online) Phase diagram of the effective phase velocities. The

velocities are calculated using expressions obtained for the case of diluted

structures (low filling fractions). Values to the right of the downward arrows

correspond to filling fractions higher that 0.6, where the calculated values

are not reliable. The symbols represent the values of the materials employed

in the different structures.

FIG. 6. (Color online) The scattered far field for a brass cylinder immerse in a glycerin background for different frequencies: (a) kRa ¼ 0:1, (b) kRa ¼ 1, and

(c) kRa ¼ 5, and the scattered far field for a cluster of 151 cylinders of brass in glycerin (d) kRcls ¼ 0:1, (e) kRcls ¼ 1, and (f) kRcls ¼ 5; red line (viscous result)

and black line (inviscid result).
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in Fig. 2(c) of Ref. 36. We attribute this difference to better

convergence of data obtained here. In our calculations, we

have determined that convergence is achieved by including

angular momenta up to a certain qmax, which is obtained

from the following relationship:

qmax ¼ q0 þ
k

N

XN

i¼1

Ri; (41)

with N and Ri being the number of cylinders and their radii,

respectively. For the frequencies employed in this study it

has been found that q0 ¼ 3 ensures good convergence. Then,

for the case of a single cylinder N ¼ 1 and kRa ¼ 5 the

resulting qmax ¼ 9.

Regarding the pressure behavior at the far field for the

cluster [see Figs. 6(d)–6(f)], the strongest effect of the vis-

cosity is due to additive contributions of losses produced at

the surfaces of cylinders.49 For the frequencies used in the

calculation we get a significant viscous penetration depth d.

We can conclude that viscosity plays non-negligible role in

the modification of the pressure at the far field, especially

along the backward and forward directions. This result is

expected since the main amount of energy is essentially con-

centrated in both directions and, therefore, they are more

sensitive to quantify the losses due to viscosity. We have

employed this result to consider the forward direction as a

reference in order to establish the condition determining the

long wavelength limit (homogenization limit) of a circular

cluster of elastic cylinders.

B. Homogenization limit for a cluster of elastic
cylinders in viscous medium

A wavelength of around four times the lattice parameter

has been found as a minimum wavelength in order to reach

the homogenization of a cluster of rigid cylinders in an invis-

cid background.25,26 However, due to the presence of viscos-

ity in the background as well as the elastic properties of the

cylinders it is expected that this cutoff could be slightly dif-

ferent. In fact, it has been shown above how the background

viscosity modifies the pressure at the far field at different

frequencies.

In order to establish the new limit of homogenization

for the viscous-elastic structures under study here we ana-

lyze the pressure field distributions produced by a cluster of

brass cylinders and its corresponding homogenized cylinder.

Particularly, we calculate the forward scattering cross sec-

tions as a function of the frequency by using the expressions

in Eqs. (39) and (40). Figure 7 reports the relative difference

between the forward scattering cross section calculated for

the cluster and the corresponding homogenized cylinder reff

for three different filling fractions; f ¼ 0:2, 0:4, and 0:6. The

FIG. 7. (Color online) The relative difference between the forward scatter-

ing cross section calculated for a cluster of 151 brass cylinders �rcls and its

corresponding homogenized cylinder reff for three filling fraction: f ¼ 0:2
(dotted line), f ¼ 0:4 (continuous line), and f ¼ 0:6 (dashed line).

TABLE III. Effective parameters of hexagonal distributions of brass

cylinders embedded in glycerin for several values of filling fraction. They

are normalized to the corresponding values of glycerin (see also Fig. 4).

f �qeff �c‘; eff �ct; eff

0.2 2.15 1.172 0.8934

0.4 3.30 1.239 1.0198

0.6 4.45 1.301 1.0755

FIG. 8. (Color online) Pressure map (amplitude) representing the scattering

of a sound plane wave of wavelength k ¼ 4a interacting with (a) a cluster

made of 151 brass cylinders arranged in a hexagonal lattice with filling frac-

tion f ¼ 0:2 and embedded in glycerin and (b) the corresponding homoge-

nized cylinder also embedded in glycerin.
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values of effective parameters employed to calculate reff are

given in Table III. Results in this figure establish that the

new homogenization cutoff is around k ¼ 6a, where a rela-

tive error less than 6% is obtained within the homogeniza-

tion region for the lower filling fractions.

To support our previous finding, Figs. 8 and 9 depict

pressure maps of the scattering of a plane sound wave by a

circular cluster of brass cylinders distributed in a hexagonal

lattice with fhex ¼ 0:2 and the corresponding homogenized

cylinder for k ¼ 4a and k ¼ 6a, respectively. From Fig. 7 it

is observed that the wavelength k ¼ 4a (the homogenization

limit in an inviscid background) is not enough to get a good

agreement between both pressure patterns. Unlike this, maps

in Fig. 8, which correspond to k ¼ 6a, show a fairly good

agreement.

Based on these results we conclude that viscosity

increases the wavelength cutoff above which the homogeni-

zation is achieved.

V. SUMMARY

We have employed the multiple scattering method to

analyze the scattering of acoustic waves by a cluster of elas-

tic inclusions embedded in a viscous fluid host. Particularly,

we have obtained asymptotic relations of the corresponding

t matrix elements in the long wavelengths limit. They are

used to derive analytical formulas for the parameters of the

effective homogeneous solid representing the cluster in such

a limit. We demonstrated that the effective mass density as

well as the effective longitudinal and transversal sound

speed depend on the structural distribution of the cylinders,

their physical parameters, and the embedded medium. The

resulting effective homogenized solid is a kind of elastic

metamaterial whose elastic properties can be tailored by

changing the cylinders’ filling fraction in the cluster. We

reported numerical simulations for several elastic-viscous

fluid composites that support the validity of the formulas

obtained for the effective parameters. It is also found that

viscosity produces an increase of minimum wavelength for

which the homogenization is achieved in comparison with

the case of an inviscid host. We concluded that artificial elas-

tic materials with parameters not found in nature can be

obtained by homogenization of clusters made of solid cylin-

ders in a viscous host.
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APPENDIX A: t-MATRIX

From Eq. (5), the components of the velocity in the vis-

cous fluid can be expresses in terms of their associated

potentials as

vr ¼ �
@u
@r
þ 1

r

@w
@h

; (A1a)

vh ¼ �
1

r

@u
@h
� @w
@r
; (A1b)

and those corresponding to the elastic scatterers are

vr ¼ �ix � @/
@r
þ 1

r

@f
@h

� �
;

vh ¼ ix
1

r

@/
@h
þ @f
@r

� �
: (A2)

These components satisfy the following boundary

conditions:

vþr ðRaÞ ¼ v�r ðRaÞ;

vþh ðRaÞ ¼ v�h ðRaÞ;

rþrrðRaÞ ¼ r�rrðRaÞ;

rþrhðRaÞ ¼ r�rhðRaÞ; (A3)

where Ra is the radius of the elastic cylinder.

By introducing the expansions of uext, uscatt, wscatt, /int,

and fint in the velocity and after applying the boundary con-

ditions to the resulting expressions, we obtain from the first

two conditions in Eq. (A3) that

FIG. 9. (Color online) Similar to Fig. 7 but for an impinging wavelength

k ¼ 6a. Note the good agreement between both pressure maps.
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� k‘

�
A‘qJ0qðk‘RaÞ þ B‘qH0qðk‘RaÞ

	
þ iq

Ra

�
Bt

qHqðktRaÞ
	

¼ �ix �ka
‘C

‘
qJ0qðka

‘RaÞ þ
iq

Ra
Ct

qJqðka
t RaÞ

� �
;

� iq

Ra

�
A‘qJqðk‘RaÞ þ B‘qHqðk‘RaÞ

	
� kt

�
Bt

qH0qðktRaÞ
	

¼ �ix � iq

Ra
C‘

qJqðka
‘RaÞ � ka

t Ct
qJ0qðka

t RaÞ
� �

; (A4)

which can be cast in matrix form as

Mqaq þ Nqbq ¼ Oqcq; (A5)

where

Mq ¼
1

Ra

ðk‘RaÞJ0qðk‘RaÞ 0

iqJqðk‘RaÞ 0

� �
; (A6)

Nq ¼
1

Ra

ðk‘RaÞH0qðk‘RaÞ �iqHqðktRaÞ
iqHqðk‘RaÞ ðktRaÞH0qðktRaÞ

 !
; (A7)

Oq ¼
�ix
Ra

ðka
‘RaÞJ0qðka

‘RaÞ �iqJqðka
t RaÞ

iqJqðka
‘RaÞ ðka

t RaÞJ0qðka
t RaÞ

 !
; (A8)

and

aq ¼
A‘q

0

0
B@

1
CA; bq ¼

B‘q

Bt
q

0
B@

1
CA; cq ¼

C‘
q

Ct
q

0
B@

1
CA : (A9)

Similarly, from the last two boundary conditions in Eq. (A3)

we obtain

D �k2
‘

�
A‘qJ00q ðk‘RaÞ þ B‘qH00qðk‘RaÞ

	
þ iqkt

Ra

�
Bt

qH0qðktRaÞ
	
� iq

R2
a

�
Bt

qHqðktRaÞ
	
 �

þ !
Ra

q2

Ra

�
A‘qJqðk‘RaÞ þ B‘qHqðk‘RaÞ

	
� iqkt

�
Bt

qH0qðktRaÞ
	
� k‘

�
A‘qJ0qðk‘RaÞ þ B‘qH0qðk‘RaÞ

	
þ iq

Ra

�
Bt

qHqðktRaÞ
	
 �

¼ Da �ðka
‘ Þ

2C‘
qJ00q ðka

‘RaÞ þ
iqka

t

Ra
J0qðka

t RaÞ �
iq

R2
a

Jqðka
t RaÞ

� �
Ct

q


 �

þ ka

Ra

q2

Ra
C‘

qJqðka
‘RaÞ � iqka

t Ct
qJ0qðka

t RaÞ � ka
‘C

‘
qJ0qðka

‘RaÞ þ
iq

Ra
Ct

qJqðka
t RaÞ


 �
(A10)

and

g



� k2

t

�
Bt

qH0qðktRaÞ
	
� iqk‘

Ra

�
A‘qJ0qðk‘RaÞ þ B‘qH0qðk‘RaÞ

	
þ iq

R2
a

�
A‘qJqðk‘RaÞ þ B‘qHqðk‘RaÞ

	

� 1

Ra

q2

Ra

�
Bt

qHqðktRaÞ
	
þ iqk‘

�
A‘qJ0qðk‘RaÞ þ B‘qH0qðk‘RaÞ

	
� kt

�
Bt

qH0qðktRaÞ
	
� iq

Ra

�
A‘qJqðk‘RaÞ þ B‘qHqðk‘RaÞ

	
 ��

¼ la �ðka
t Þ

2Ct
qJ00q ðka

t RaÞ �
iqka

‘

Ra
J0qðka

‘RaÞ �
iq

R2
a

Jqðka
‘RaÞ

� �
C‘

q




� 1

Ra

q2

Ra
Ct

qJqðka
t rÞ þ iqka

‘C
‘
qJ0qðka

‘RaÞ � ka
t Ct

qJ0qðka
t RaÞ �

iq

Ra
C‘

qJqðka
‘RaÞ


 �
; (A11)

where

D ¼ nþ 4

3
gþ iB

x
; ! ¼ D� 2g; Da ¼ ka þ 2la;

(A12)

with g, n, ka, la, and B, being the viscosity constants, the

Lam�e’s coefficients, and the bulk modulus, respectively.

Equations (A10) and (A11) can also be cast in matrix

form as

Pqaq þQqbq ¼ Rqcq; (A13)

where

Pq ¼
1

R2
a

Dðk‘RaÞ2J00qðk‘RaÞ þ !½ðk‘RaÞJ0qðk‘RaÞ � q2Jqðk‘RaÞ� 0

2igq½ðk‘RaÞJ0qðk‘RaÞ � Jqðk‘RaÞ� 0

 !
; (A14)
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Qq ¼
1

R2
a

Dðk‘RaÞ2H00qðk‘RaÞ þ!½ðk‘RaÞH0qðk‘RaÞ � q2Hqðk‘RaÞ� �2igq½ðktRaÞH0qðktRaÞ �HqðktRaÞ�
2igq½ðk‘RaÞH0qðk‘RaÞ �Hqðk‘RaÞ� g½ðktRaÞ2H00qðktRaÞ � ðktRaÞH0qðktRaÞ þ q2HqðktRaÞ�

 !
;

(A15)

Rq ¼
1

R2
a

Daðka
‘RaÞ2J00q ðka

‘RaÞþ ka½ðka
‘RaÞJ0qðka

‘RaÞ� q2Jqðka
‘RaÞ� �2ilaq½ka

t RaJ0qðka
t RaÞ� Jqðka

t RaÞ�
2ilaq½ðka

‘RaÞJ0qðka
‘RaÞ� Jqðka

‘RaÞ� la½ðka
t RaÞ2J00q ðka

t RaÞ� ðka
t RaÞJ0qðka

t RaÞþ q2Jqðka
t RaÞ�

 !
:

(A16)

It is straightforward to obtain the t-matrix, which relates the

coefficients bq to aq, as

tq ¼ �½Qq � RqO�1
q Nq��1½Pq � RqO�1

q Mq�; (A17)

where ½� � ���1
means matrix inversion. Note that tq is a 2� 2

matrix that has the following form:

tq ¼
t‘‘q 0

tt‘q 0

0
@

1
A: (A18)

Let us point out that the inverse matrix ½� � ���1
in Eq. (A17)

presents singularities associated to its functional dependence

on the Hankel functions, which can take values close to zero

for certain parameters and frequency regions, where the

t�matrix cannot be obtained.

APPENDIX B: LOWER ORDER ELEMENTS OF THE
k-EXPANSION OF THE t-SCATTERING MATRIX

The previous appendix has shown that the elements of

the t-matrix can be calculated by using the matrix expression

(A17), where tsq ¼ tqqdsq. Now, by using the power series

expansions of Hankel and Bessel functions for small argu-

ments, is tedious but straightforward to show that the lower

order terms of this matrix are

lim
k!0

t‘‘00 ¼
ipR2

a

4

Bb � Ba

Ba
1þ ick

ðB2
bg� B2

aaÞ
B2

bBa � B2
aBb

� �
k2

þ #ðk4Þ; (B1)

lim
k!0

t‘‘11 ¼
ipR2

a

4

qb � qa

qb

½Bb � icka� k2 þ #ðk4Þ; (B2)

lim
k!0

t‘‘22 ¼
ipR2

a

4
la

Bb þ 2icka

2B2
b

� �
k2 þ #ðk4Þ; (B3)

where Ba ¼ ka þ la and a ¼ 4
3
gþ n.

In the expressions above we have only considered the

longitudinal projection of the tsq matrix (i.e., ‘̂ � tsq), which

will be compared with the effective matrix of a cluster of

cylinders.

The k-independent factors of lower terms in the power

expansion are defined by

t̂
‘‘
qq � lim

k!0

t‘‘qq

k2
; q ¼ 0; 1; 2: (B4)

If we consider clusters of low filling fractions of the inclu-

sions (i.e., the volume occupied by the cylinders is small)

the diagonal terms of the effective t�matrix representing

the homogenized cluster accomplish that

teff
qq 	 N‘̂ � t̂qq; q ¼ 0; 1; 2; (B5)

where N is the number of cylinder and ‘̂ � t̂qq are the lower

terms in the power expansion mentioned above. This result

is independent of the external shape of the cluster. It is well

known that for a cylinder of arbitrary shape, the isotropic

element t̂
cyl
00 is given by

t̂
cyl
00 ¼

iAcyl

4

Bb

Bcyl

� 1

� �
: (B6)

This expression is employed here to describe the isotropic

term of an arbitrarily shaped cylinder representing the ho-

mogenized cluster with area Aeff , and bulk modulus Beff . In

other words, it is possible to write Eq. (B5) as

iAeff

4

Bb

Beff

� 1

� �
¼ N

ipR2
a

4

Bb

Ba
� 1

� �
; (B7)

by introducing the filling fraction f as

f � NðpR2
aÞ

Aeff

; (B8)

and after some simplifications, the effective bulk modulus of

the homogenized cluster is finally obtained as

1

Beff

¼ f

Ba
þ 1� f

Bb
: (B9)

In what follows we determine qeff by using the next diagonal

term in the power expansion, which is easily obtained from

Eqs. (34) and (B2):

t̂
eff
11 ¼

ipR2
eff

4

qb � qeff

qb

	 N‘̂ � t̂11: (B10)

Now, inserting the definition of f [see Eq. (B8)] allows one

to merge the last equation in
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qb � qeff

qb

¼ f
qb � qa

qb

� �
: (B11)

Solving for qeff we get

qeff ¼ f qa þ ð1� f Þqb: (B12)

Finally, for the third diagonal term, the low filling fraction

limit implies

t̂
eff
22 	 N‘̂ � t̂22; (B13)

and from Eq. (B3) it is clear that

leff ¼ f la: (B14)
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25D. Torrent, A. Håkasson, F. Cervera, and J. S�anchez-Dehesa,

“Homogenization of two-dimensional clusters of rigid rods in air,” Phys.

Rev. Lett. 96, 204302 (2006).
26D. Torrent and J. S�anchez-Dehesa, “Effective parameters of clusters of

cylinders embedded in a nonviscous fluid or gas,” Phys. Rev. B 74,

224305 (2006).
27A. A. Kutsenko, A. L. Shuvalov, A. N. Norris, and O. Poncelet, “Effective

shear speed in two-dimensional phononic crystals,” Phys. Rev. B 84,

064305 (2011).
28Y. Wu, Y. Lai, and Z-Q. Zhang, “Effective medium theory for elastic

metamaterials in two dimensions,” Phys. Rev. B 76, 205313 (2007).
29A. Einstein, Investigations on the Theory of the Brownian Movement,

edited by R. Furth (Dover, New York, 1956), pp. 1–139.
30G. K. Batchelor and J. T. Green, “The determination of the bulk stress in a

suspension of spherical particles to order c2,” J. Fluid Mech. 56, 401–427

(1972).
31Rudolf Sprik and Gerard H. Wegdam, “Acoustic band gaps in composites

of solids and viscous liquids,” Solid State Commun. 106, 77–81 (1998).
32I. E. Psarobas, N Stefanou, and A. Modinos, “Scattering of elastic waves

by periodic arrays of spherical bodies,” Phys. Rev. B. 62, 278–291 (2000).
33I. E. Psarobas, “Viscoelastic response of sonic band-gap materials,” Phys.

Rev. B. 64, 012303 (2001).
34M. I. Hussein, “Reduced Bloch mode expansion for periodic media band

structure calculations,” Proc. R. Soc. London, Ser. A. 465, 2825–2848 (2009).
35M. I. Hussein, “Theory of damped Bloch waves in elastic media,” Phys.

Rev. B 80, 212301 (2009).
36Wen, H. Lin, and A. C. Raptis, “Acoustic scattering by elastic solid cylinders

and spheres in viscous fluids,” J. Acoust. Soc. Am. 73, 736–748 (1983).
37S. M. Hasheminjad and R. Sanaei, “Ultrasonic scattering by a fluid cylin-

der of elliptic cross section, including viscous effects,” IEEE Trans. Ultra-

son. Ferroelectr. Freq. Control 55, 391–404 (2008).
38Acoustic, Electromagnetic and Elastic Wave Scattering: Focus on the

t-matrix Approach—International Symposium held at The Ohio State Uni-
versity, Columbus, Ohio, USA, June 25–27, 1979, edited by V.K. Varadan

and V.V. Varadan (Pergamon Press, New York, 1980), p. 363.
39Handbook of Mathematical Functions, edited by M. Abramowitz and

I. Stegun (Dover, New York, 1972), p. 363.
40D. Torrent and J. S�anchez-Dehesa, “Acoustic metamaterials for new

two-dimensional sonic devices,” New J. Phys. 9, 323 (2007).
41D. Torrent and J. S�anchez-Dehesa, “Anisotropic mass density by two-

dimensional acoustic metamaterials,” New J. Phys. 10, 023004 (2008).
42D. Torrent and J. S�anchez-Dehesa, “Acoustic cloaking in two dimensions:

A feasible approach,” New J. Phys. 10, 063015 (2008).
43J. G. Berryman, “Long-wavelength propagation in composite elastic

media I. Spherical inclusions,” J. Acoust. Soc. Am. 68, 1809–1819 (1980).
44P. A. Martin, A. Maurel, and W. J. Parnell, “Estimating the dynamic effec-

tive mass density of random composites,” J. Acoust. Soc. Am. 128, 571–

577 (2010).
45L. N. Gumen, J. Arriaga, and A. A. Krokhin, “Metafluids with anisotropic

dynamic mass,” Fiz. Niz. Temp. 37, 1221–1224 (2011).
46American Institute for Physics Handbook, 3rd ed. (MacGraw-Hill, New

York, 1972), Chaps. 1–3, pp. 93, 105–115, 131–191.
47W. J. Parnell, I. D. Abrahams, and P. R. Brazier-Smith, “Effective proper-

ties of a composite half-space: Exploring the relationship between homog-

enization and multiple-scattering theories,” Q. J. Mech. Appl. Math. 63,

145–175 (2010).
48D. Torrent and J. S�anchez-Dehesa, “Evidence of two-dimensional magic

clusters in the scattering of sound,” Phys. Rev. B 75, 241404(R) (2007).
49L. D. Landau, L.P. Pitaevskii, E. M. Lifshitz, and A.M. Kosevich, Theory

of Elasticity (Pergamon Press, New York, 1997), pp. 11–14.

2908 J. Acoust. Soc. Am., Vol. 132, No. 4, Pt. 2, October 2012 Reyes-Ayona et al.: Homogenization of rods in a viscous fluid

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y


	s1
	n1
	s2
	s2A
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	s2B
	d15
	d16
	d17
	d18
	s2B
	d19
	d20
	d21
	d22
	d23
	s3
	f1
	d24
	d25
	d26
	d27
	d28
	d29
	d30
	d31
	d32
	d33
	d34
	d35a
	d35b
	d35c
	d36a
	d36b
	d37
	f2a
	f2b
	f2c
	f2
	s4
	s4A
	d38
	f3
	f4
	t1
	t2
	d39
	d40
	f5
	f6d
	f6e
	f6f
	f6
	d41
	s4B
	f7
	t3
	f8
	s5
	xA
	dA1a
	dA1b
	dA2
	dA3
	dA4
	f9
	dA5
	dA6
	dA7
	dA8
	dA9
	dA10
	dA11
	dA12
	dA13
	dA14
	dA15
	dA16
	dA17
	dA18
	xB
	dB1
	dB2
	dB3
	dB4
	dB5
	dB6
	dB7
	dB8
	dB9
	dB10
	dB11
	dB12
	dB13
	dB14
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49

