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Homogenization of Two-Dimensional Clusters of Rigid Rods in Air
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The scattering of sound waves by circular-shaped clusters consisting of two-dimensional distributions
of rigid cylinders in air is studied in the low-frequency limit (homogenization) both theoretically and
experimentally. Analytical formulas for the effective density and sound speed are obtained in the frame-
work of multiple scattering. Here, an experimental demonstration is reported in which a cluster of wooden
rods acoustically behaves as a cylinder of argon gas. Moreover, evidence is presented indicating the va-
lidity of the homogenization in this cluster at frequencies lower than 3 kHz, which corresponds to a wave-
length that is only 4 times the parameter of the embedded lattice and is a quarter of the cluster’s diameter.
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Recently, there has been a great interest in studying the
properties of sonic crystals, a name that specifically defines
periodic distributions of sound scatterers in air. Their prop-
erties in the low-frequency limit have been studied by
several groups [1-6] for its possible use as refractive
devices. A key problem of these systems has become the
calculation of the homogenized parameters controlling
their refractive properties; i.e., their effective sound veloc-
ity (cqr) and density (p.g). Another issue of great interest
is to determine the cluster’s minimum size in which the
refractive effects dominate over the diffractive. In this
regard, a controversy has recently been raised about
whether the sound focusing produced by lenticular-shaped
clusters is mainly due to refraction instead of diffraction
[1,3,7,8]. Meanwhile, the work by Kuo and Ye [9] pre-
dicted that focusing effects by large enough clusters of
two-dimensional (2D) scatterers can be well described by
lensmaker’s formula, and recently the refraction of water
waves by periodic cylinders arrays has been studied in the
long wavelength limit [10].

In this Letter an analytical theory based on the multiple
scattering method is developed and applied to study the
homogenization of circular-shaped clusters made of 2D
periodic distribution of rigid scatterers in air. We have
obtained compact formulas for p.¢ and c.g that take into
account the inner structure of the periodic medium. In
comparison with previous work [5], our approach gives
not only c.; but also p.s and is able to determine the
critical ratio between the cluster’s size and the wavelength
allowing the homogenization. Measurements made on a
sample consisting of wooden cylinders in air support the
validity of our formulas. Particularly, experimental results
indicate that sound scattering by the studied cluster is well
described by a single gas cylinder for wavelengths larger
than one-forth of the cluster’s diameter.

Let us consider a cluster made of a 2D arrangement of
rigid cylinders (made of material A) embedded in a fluid or
gas background made of material B. Without losing gen-
erality we assume hereafter air for material B. Here, in
order to find the appropriate effective acoustic parameters
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we focus on the behavior of this structure in the long
wavelength limit. Hereafter, we will use an overline over
a variable to denote the corresponding quantity in the
effective medium normalized to the corresponding magni-
tudes of material B; i.e., p = p/p, and ¢ = c/cp,. As it
turns out, when the wavelength increases, the scattering
properties of the cluster asymptotically approach those of
an uniform cylinder of diameter D and with a single
defined density p.; and sound velocity C.;. We first give
an heuristic derivation to establish this connection.

If an external sound wave P**' with temporal depen-
dence e*"“’j impinges a cluster of N cylinders located at
positions R, (o« =1,2,...,N), the scattered field at a
given position of polar coordinates (r, ) is [4,11]

N s=+o0
P5a(r, 0, v) = Z Z (AQ)SHS(kVa)e"SHQ’ (D)
a=] s=—o00

where H; is the sth order Hankel function of the first kind,
and (r,, 8,) are the polar coordinates of the & cylinder in a
reference frame centered at the cylinder. Here, k = w/c;,
v=w/2m, and (A,), are the coefficients to be determined.
By using Graff’s theorem, the expression above can be
cast into an expression that is equivalent to the scattered
pressure by a single cylinder (SC) located at the origin:

g=+o
P(r, 0, v) = > ACH,(kr)es’, 2)
g=—o0
where
N s=+o
A= N (A)iUa)gs 3)

a=]s=—»

being (J,)gs = J4— (kR )™

By truncating the angular momentum within [s| = s,
and |g| = g the last equation reduces to a linear equa-
tion. In matrix form, AS¢ = 7 A, where ASC and A are
column matrices and 7 is a N-element vector where each
element is a rectangular matrix of dimension (2¢u. +
1) X (280 + 1). Also, it is known that A = M!S
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[4], where M is a square matrix and S is a matrix of
coefficients that define the external wave through the rela-
tionship S = T 7. A", where T is the T matrix of a single
cylinder, 7 has matrix elements (]a)qs = J,—4(kR,) X
el6=0% and A° is the matrix defining the coefficient
of the external wave impinging the cluster. Finally, we
arrive to the following matrix expression:

ASC = TM T TA =T 4(v)A°, 4)

which defines the effective T matrix of the cluster treated
as a single cylinder.

For the case of large wavelengths and for a wide range of
filling fractions (f), it is possible to demonstrate that [12]
lim_ oM '=T1 and lim_yJ, =lim_oT, = I,,
where I and I, are identity matrices. Therefore, the non-
diagonal terms of 7 .(¥) go to zero in the limit k — 0
because of the circular symmetry of the cluster, and the
diagonal terms, (Tgs),, have a dependence k%, if ¢ # 0.
For case g = 0, (T.)y * k*. Therefore, the following re-
lationships are found for the lower order terms:

. (Tese)o . Ty
e T Ve ©)
. (Tere)y . T
iy = M ®

where Ty = Ty and T, = T, are the first elements of the
diagonal T matrix for an uniform cylinder with radius d/2,
density p, and sound velocity ¢ matrix [13]:

poJb(kd/2) — J,(kd/2)

T = =5 Brkd]2) — Hy(kd]2)'
(k20 )
where pq(V) —pCW

The behavior of the T, and T terms are easily obtained
in the large wavelength limit, and Egs. (5) and (6) can be
cast in the following relationships:

T, imD*[ 1
fim Leho _ 17 [ - —1} ®)
=0k 16 [ pesrCiy
T, D% P — 1
lim( i)l _ D" Pett 9)

k—0 kZ 16 ﬁeff + 1 )

These equations define a numerical procedure to get the
homogenization parameters of a N-cylinders’ cluster with
diameter D. But more important, since P*?(r, 6, v) is
measurable, Eq. (4) allows the empirical determination of
the effective 7" matrix, which used in conjunction with
Eqgs. (8) and (9) define an experimental approach to deter-
mine the homogenized parameters in the long wavelength
limit provided that D is known. Here, since we have been
working with hexagonal arrangements of cylinders, D =

(2N/3/m)2a [so that 1\7’:(71()‘1/22))22 equals the filling frac-

tion of hexagonal lattice f = ﬁg (d/a)?, where a is the lat-

tice parameter].

Figure 1 plots the values obtained as a function of f by
multiple scattering simulation using the approach of rigid
cylinders. It is noteworthy that, regarding the effective
sound speed, our modeling fairly agrees (in the full range
of f) with the exact theory of Ref. [5], where homogeni-
zation of an infinite periodic system was studied by using a
plane waves expansion. However, now our approach is also
able to obtain the density of effective medium.

The homogenized parameters at low enough f can be
analytically obtained, and they are

Eeff = 1/\/1 + f (10)

On one hand, these expressions recover the formula de-
rived by Barryman [14] for the effective mass density, and
on the other hand, the effective sound velocity coincides
with the heuristic model reported in Ref. [1]. Both results
have been recently corroborated by a multiple scattering
approach applied to an infinite system [15]. Expressions
similar to that in Eq. (10) were also obtained for the case of
cylinders of finite density p.y and sound velocity v, [16].
However, here results are presented under the simplified
approach of rigid cylinders (infinite density) because the
majority of solids have densities much larger than that of
air, and, therefore, the huge mismatch impedance forbids
the penetration of sound waves into the cylinder. For
lighter materials new expressions have to be found taking
into account their exact density and the velocities of the
different waves propagating inside the cylinder. Also note
that relationships in Eq. (10) have appeared in studying
water waves, where homogenization was performed in the
framework of the coherent-potential-approximation [10].
Experimentally, the model of homogenization has been
verified by analyzing a circular-shaped cluster made of 151

per = L+ f)/(1—f)
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FIG. 1. Homogenized parameters for a circular-shaped cluster
made of 151 cylinders put in a hexagonal lattice. Black dots
represent the multiple scattering simulations. The dashed lines
define values obtained by analytical formulas in Eq. (10). The
open circles with error bars represent the experimental results.
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wooden cylinders 1 m long and radius 1 cm arranged in an
hexagonal distribution with a=3cm (f = 0.40).
Measurements have been performed in an echo-free cham-
ber as follows. A white sound generated by an acoustic
column speaker within a wide range of frequencies was
employed as incident sound. Pressure maps were obtained
by a set of two microphones. The first microphone was
located at a distance ry = 170 cm from the center of the
cluster, hanging from a robotic arm that allows its move-
ment on the polar angle 6, and it is computer controlled
using a stepper motor within a maximum resolution of 1°
per step. The second microphone was fixed at approxi-
mately 2.2 m from the loudspeaker, and it was used as a
reference to get the phase of the pressure. Pressure mea-
surements are automatically taken by means of a two
channel fast-Fourier transform dynamic signal analyzer
board, type NI-4551B. Both the cross spectrum and the
auto spectra were simultaneously obtained at each 6;.

A total of 256 spectra have been taken to generate the
averaged spectrum finally assigned to 6;. Thus, for a given
frequency, the root-mean-square (rms) pressure P (ro, 60;)
is obtained. Pressure maps are obtained with a resolution of
10 Hz in v and 2° in 6. The total time elapsed to get a
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FIG. 2 (color). (a) Sound amplification map SA(v, §;) mea-
sured at 170 cm around the center of the cluster for the case in
which the external sound wave impinging the hexagonal lattice
is oriented along the I'X direction. The horizontal lines define the
bottom (4.6 kHz) and top (7.1 kHz) edges of the pseudogap
associated with the acoustic crystal embedded in the cluster.
(b) The corresponding map taken when the cluster is oriented
along the I'J direction. (c) Difference (in dB) of sound pressures
measured along the two high symmetry directions at forward
scattering, @ = 0°. The SAs along I'X and I'J are represented by
the red and blue lines, respectively.

pressure map is about 3 h. Two separated measurements
were performed. The one without sample allows one to
obtain the sound pressure of the external beam,
P (r,, 6, v). Here, the sound amplification (SA) along
the circle surrounding the sample will be presented:

P , 0,
| erts(r() V)|> (11)
|Prms(r01 0’ V)l

Figures 2(a) and 2(b) plot the SA maps corresponding to
the two high symmetry directions of the hexagonal lattice
I'X and T'J, respectively, with respect to the impinging
wave. Only angles 0° = 6 = 180° are represented because
of the mirror symmetry of the problem. Three main phe-
nomena are noticeable in these maps. First, both maps
show a wavy background that is produced by the interfer-
ence between incident and scattered waves. Second, at
large enough frequencies, SAs are shown along certain
directions that are related to diffraction effects produced
by lattice planes. For example, sound amplification at
backscattering (§ = 180°) is observed in Fig. 2(a) in the
region enclosed by the horizontal lines. This feature de-
fines the pseudogap produced at these frequencies by the
planes (10) of the crystal lattice. Third, for large enough
wavelengths the sound cannot distinguish the inner struc-
ture of the cluster, and consequently, the map obtained for
the cluster oriented along the I'X direction is the same as
that obtained along the I'J orientation. This is the effect
concerning this work. To determine the cutoff frequency
(v.) under the one where this phenomenon appears, we
have analyzed the difference between those maps.
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FIG. 3 (color). The corresponding sound amplification maps
obtained by multiple scattering theory applied to the cluster
experimentally studied in Fig. 2.
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FIG. 4. Relative difference between the forward scattering
cross section calculated for a cluster of cylinders [7,] and its
corresponding homogenized cylinder [o(0)], with diameter D.
Three filling fractions are reported: f = 0.145 (dotted lines),
f = 0.40 (continuous line), and f = 0.58 (dashed lines). The
shadowed region defines those wavelengths below the homoge-
nization limit for the cluster experimentally studied in Fig. 2
(i.e., A=A, =4a). (a) Results for an hexagonal cluster.
(b) Results obtained by averaging ten different weak-disordered
arrangements of cylinders within the circle D.

Particularly, Fig. 2(c) shows that below v, = 3 kHz both
maps are practically equal.

A multiple scattering simulation [4] of the cluster ex-
perimentally studied has been performed by considering an
impinging wave generated by a punctual sound source
placed at the position of the loudspeaker. The calculated
maps are shown in Figs. 3(a) and 3(b). Figure 3(c) plots the
SAs along the two high symmetry directions and their
absolute difference at @ = 0°. These last results show
that the cutoff frequency of homogenization [v,(theo)] is
also 3 kHz, as is the one experimentally determined. The
agreement between theoretical simulations and experimen-
tal measurements is remarkable at any angle for frequen-
cies below 3 kHz. This agreement let us to conclude that
homogenization of clusters is valid at wavelength A, as low
as a fourth of the cluster’s diameter, which supports the
claim made in Ref. [1].

To more deeply analyze the homogenization approach,
we calculated the differential scattering cross section,
o (0). After averaging the forward scattering for different
orientations, ¢, of the cluster, 5 = 5= [37 0,(0)de, we
have compared it with the uniform cylinder case, o(0).
Their relative difference (in percentage) is plotted in
Fig. 4(a) as a function of wavelength for three different
filling fractions. The one corresponding to the case experi-
mentally studied (continuous line) indicates that a maxi-
mum error of 4% is achieved for wavelengths above
A. = 4a. Also, we have analyzed the robustness of the
homogenization against ‘““weak disorder” [17] in the clus-

ter, and results are represented in Fig. 4(b). For each f the
results are averaged over ten different configurations, the
standard deviation being negligible. It can be concluded
that under a small amount of disorder, the effective pa-
rameters of the disordered system differ only slightly from
those of the perfect ordered system.

The parameters of the homogenized cluster experimen-
tally determined from Egs. (8) and (9) are represented in
Fig. 1. They have been obtained by considering D =
39 cm, which has been established from the condition
of f conservation. In absolute units, p. s = 1.92 =
0.40 kgm ™3 and c.r = 316 = 17 ms~ !, which roughly
corresponds to those of argon gas (ps, = 1.6 kgm™3;
car = 319 ms~! at 25 °C). The measured parameters are
slightly different to those predicted by simulations because
(i) the cylinders are not long enough for the large wave-
lengths in which we are dealing with, and (ii) the experi-
mental setup contains some unavoidable scattering centers
that are sources of error in the data analysis.
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