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Abstract. This work presents a finite-difference scheme
to study the scattering of sound in the time-domain. It can
be applied to heterogeneous fluids in any dimensionality.
The scheme is based on the split-operator technique intro-
duced in quantum mechanics to solve the time-dependent
Schrödinger equation. This scheme presents advantages in
comparison with the usual finite-difference time-domain
algorithms. Its main characteristics are: a) its precision is
of the order ðDtÞ3; b) it can work with non-homogeneous
space-discretizations; and c) it satisfies the energy conser-
vation law. Here, the scheme is also applied to solve four
simple tests cases in one-dimensional space.

Introduction

We address the problem of finding a numerical integration
scheme for solving the second order differential equation
that defines the sound propagation in inhomogeneous sys-
tems. The goal is to develop an efficient algorithm to
study sound attenuation in a gas or fluid having periodic
inclusions with different density and/or sound velocity.
This problem is of current interest since is has been
shown that, for example, structures consisting of rigid cy-
linders in air exhibit interesting properties regarding sound
propagation [1–3]. Those structures were modeled by con-
sidering infinite periodic systems and by comparing the
acoustic band structure with attenuation spectra measured
in zero-order transmission experiments. Nevertheless, this
method fails to describe features associated with actual
finite structures. Thus, for example, attenuation bands
(destructive interference) appear due to the existence of
uncoupled bands at the air/periodic-structure interface. On
the other hand, sound reinforcements (constructive inter-
ference) also appear in the spectra, which can be due to
focusing effects produced by the borders of the structure
[1, 3]. To overcome this difficulty the Transfer Matrix
Method [4] has been recently introduced to solve the

acoustic systems [5]. In this method the structures are in-
finite in the direction perpendicular to the sound propaga-
tion, and the main drawback is the huge numerical de-
mand to get enough precision at high frequencies.
Methods based on multiple scattering theory are a very
good alternative when the sound scatterers have symmetric
shape like cylinders or spheres [6–9]. The finite-difference
time domain (FDTD) method introduced by Yee [10] has
been extensively used to simulate the wave-propagation of
electromagnetic waves in time-domain. In the same spirit
the FDTD method has been employed to solve underwater
acoustic problems [11]. Also, finite difference methods
based on discretization of the second order wave equation
have been developed in dealing with seismic wave propa-
gation [12], and elastic wave propagation through periodic
scatterers [13]. No limitations with respect to the shape of
the scatterers exist in this method.

In this paper we introduce a new discretization scheme
that deals with the differential equation for the sound pro-
pagation in non-homogeneous media. We have used a non-
conventional set of canonical variables to define a phase-
space where the Liouville theorem applies. Afterward, the
corresponding first order differential equation associated
with the spectral density is solved by the split-operator
technique [14]. Finally, the operator of time evolution is
employed to obtain the differential equation in space-do-
main which can be discretized in a non-uniform mesh. A
preliminary version of this work has been published in a
Conference Proceedings [15]. The paper is organized as
follows. In Sect. II, the problem is formulated and solved
by this new method. The solution found is valid for any
arbitrary system in any dimensional space; i.e., one-dimen-
sional (1D), two-dimensional (2D), and three-dimensional
(3D). In Section III, we investigate some properties of the
time step evolution matrix, obtained in the previous sec-
tion. In Section IV, present numerical results when the
method is applied to some 1D problems whose solutions
are known. Finally, Sect. V summarize the work.

Theory and approach

Consider a linear inhomogeneous medium with space-de-
pendent density rðrÞ, and compressibility kðrÞ. The pres-
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sure field Fðr; tÞ and particle velocity vðr; tÞ satisfy the
following equations:

@Fðr; tÞ
@t

¼ �k�1ðrÞ r! � vðr; tÞ ; ð1Þ

which is the equation of continuity, and

rðrÞ @vðr; tÞ
@t

¼ �r!Fðr; tÞ ; ð2Þ

which is the Newton’s law of motion. The compressibility
is related to the sound velocity cðrÞ through:

kðrÞ ¼ 1

rðrÞ c2ðrÞ : ð3Þ

These equations can be combined to obtain the well
known second order partial differential equation for the
scalar field:

@2Fðr; tÞ
@t2

¼ c2ðrÞ rðrÞ r! � 1

r rð Þ r
!

F r; tð Þ
� �

: ð4Þ

At the same time, the system is considered non-dissipa-
tive, the energy is conserved, since its Hamiltonian is:

H ¼ 1
2

Ð
rðrÞ v2ðr; tÞ drþ 1

2

Ð
kðrÞFðr; tÞ dr : ð5Þ

We assume that rðrÞ and c2ðrÞ are time independent,
and, in composite media, their values change when going
from one medium to the other. Also, they are correlated
quantities since they are medium dependent.

Evaluating the divergence on the right side of Eq. (4),
we can write:

@2F r; tð Þ
@t2

¼ c2ðrÞ fr2 � r! ln rðrÞ½ �ð Þ � r!gF r; tð Þ : ð6Þ

It is convenient to cast this second order differential
equation in a pair of first order partial differential equations
in time. For this, we define Lðr; tÞ to rewrite Eq. (6) as:

@F r; tð Þ
@t

¼ L r; tð Þ ; ð7Þ

@Lðr; tÞ
@t

¼ GðrÞFðr; tÞ ð8Þ

where

GðrÞ ¼ c2 rð Þ fr2 � r! ln ½rðrÞ� � r!g : ð9Þ
The variables Fðr; tÞ and Lðr; tÞ are canonical and de-

fine a multidimensional phase-space, where the phase den-
sity sðF;L; tÞ [18], which verifies the Liouville theorem;
i.e., dsðF;L; tÞ=dt ¼ 0. This density has an explicit time
dependence plus an implicit time dependence in F and L.
So, the total time derivative ds F;L; tð Þ=dt is a sum of
three different terms

dsðF;L; tÞ
dt

¼ @s

@L

@Lðr; tÞ
@t

þ @s

@F

@Fðr; tÞ
@t

þ @s

@t
: ð10Þ

Making use of Eqs. (7)–(8) the Liouville equation is
obtained:

@sðF;L; tÞ
@t

¼ � L r; tð Þ @

@F
þ GðrÞF r; tð Þð Þ @

@L

� �
� sðF;L; tÞ : ð11Þ

To study the time evolution of the spectral density be-
tween some initial time ti until a final time tf it is conve-
nient to define the corresponding time propagator operator
U tf ; ti
� �

. For this, we put Eq. (11) in an exponential form,
by integrating from ti to tf :

s F;L; tf
� �

¼ U tf ; ti
� �

s F;L; tið Þ ; ð12Þ

where

Uðtf ; tiÞ

¼ exp �
ðtf
ti

GðrÞF r; tð Þ @

@L
þL r; tð Þ @

@F

� �
dt

8<
:

9=
; : ð13Þ

Here a remark needs to be made. If the coefficients
GðrÞF r; tð Þ and L r; tð Þ are time-independent, the time in-
terval ti; tf

� �
can be arbitrarily chosen. In any other case,

the total interval can be divided in a number of M sub-
intervals Dtn, such that:

exp
Ðtf
ti

�ðr; tÞ dt

( )

¼ exp
Ðt2
ti

�ðr; t1Þ dt þ
Ðt3
t2

�ðr; t2Þ dt

(

þ . . .þ
Ðtf

tM� 1

�ðr; tMÞ dt

)
ð14Þ

where

tn � ti þ
Pn� 1

k¼ 1
Dtk ; t1 ¼ ti ; tM ¼ tf � DtM ;

� r; tnð Þ � � L r; tnð Þ @

@F
þ GðrÞFðr; tnÞð Þ @

@L

� �
:

ð15Þ

The time subintervals, Dtn ¼ tnþ 1 � tn, must be small en-
ough so that the time dependence on the parameters
GðrÞF r; tð Þ and L r; tð Þ can be neglected, i.e., F r; tn þ Dtnð Þ
� F r; tnð Þ and L r; tn þ Dtnð Þ � L r; tnð Þ: In this limit, the
total time operator is:

Uðtf ; tiÞ ¼ U tf ; ti þ
PM� 1

n¼ 1
Dtn

� �

� U ti þ
PM� 1

n¼ 1
Dtn; ti þ

PM� 2

n¼ 1
Dtn

 !

� . . .� Uðti þ Dt1; tiÞ : ð16Þ

It consists of successive applications of the M opera-
tors UðDtn; tnÞ,

Uðtf ; tiÞ ¼
QM

n¼ 1
UðDtn; tnÞ½ � ð17Þ

where

UðDtn; tnÞ ¼ exp �Dtn � r; tnð Þf g : ð18Þ

Sound propagation in the time-domain by the Split-Operator technique 885
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Therefore, the exponential form of the Liouville equation,
Eq. (12), is

sðF;L; tf Þ ¼
QM

n¼ 1
U Dt ; tnÞð Þ sðF;L; tiÞ ; ð19Þ

with

tf � ti ¼
PM

n¼ 1
Dtn :

Time evolution of F, L: the Split-Operator
technique

The M subintervals can be chosen equals with no lost of
generality; i.e., Dtn ¼ Dt, 8n. Let us study the time evolu-
tion of variables F and L between some initial time
tn ¼ ti þ ðn� 1Þ Dt up to a final time tnþ 1 separated by a
step interval Dt; tnþ 1 ¼ tn þ Dt; n being an integer in the
interval ½1; M�. As discussed before, Eq. (19) can be ap-
plied to this case:

s F;L; tnþ 1ð Þ

¼ exp �Dt L
@

@F
þ ðGðrÞFðr; tnÞÞ

@

@L

� �	 

� sðF;L; tnÞ : ð20Þ

The differential operators AF � Lðr; tnÞ
@

@F
and BL �

ðGðrÞFðr; tnÞÞ
@

@L
in the expression above do not commute

and therefore, we cannot put the exponential as a product of
two exponential; i.e.:

exp ½�DtðAF þ BLÞ� 6¼ exp ð�Dt AFÞ � exp ð�Dt BLÞ :
ð21Þ

The relationship between the differential operators on
both sides of inequality (21) is given by the Glauber’s for-
mula [16]. In Appendix A this formula is extended to the
case of three different operators A; B and C to show that
the special condition A ¼ C; reduces the error of the ap-
proximation consisting of applying the single exponential
operator in Eq. (20) as a sequential application of expo-
nential operators containing only one single operator in
the exponent. In other words, we can use the following
approach:

exp �Dt
AF

2
þ BL þ

AF

2

� �� �

� exp �Dt
AF

2

� �
exp �Dt BLð Þ exp �Dt

AF

2

� �
þ O½ðDt3Þ� : ð22Þ

This approach represents the so called symmetrical
split-operator (SSO) technique, which has been success-
fully applied in quantum mechanics to solve numerically
the time dependent Schrödinger Eq. (14). Also, it has been
proposed to solve physical problems in classical me-
chanics [17]. Thus, the splitting of an operator substan-
tially reduces the error associated with applying it conse-
cutively.

In our case, two different splitting schemes can be de-
veloped. The first one is:

sðF;L; tnþ 1Þ ’ exp �Dt

2
GF

@

@L

� �

� exp �Dt L
@

@F

� �

� exp �Dt

2
GF

@

@L

� �
� sðF;L; tnÞ :

ð23Þ

The second possibility is:

sðF;L; tnþ 1Þ ’ exp �Dt

2
L

@

@F

� �

� exp �Dt GF
@

@L

� �

� exp �Dt

2
L

@

@F

� �
� sðF;L; tnÞ :

ð24Þ

Both schemes are identical us to terms in ðDtÞ3. First, let
us analyze the splitting scheme defined by Eq. (23). It is
known that the action of an exponential operator

exp J
@

@x

� �
, where J is a parameter, produces a shift of

the variable by J, namely

exp J
@

@x

� �
f ðxÞ ¼ f x þ Jð Þ : ð25Þ

Therefore, we have to apply sequentially this property the
three exponential operators in Eq. (23). The application of
the first operator gives:

sðF;L; tnþ 1Þ ¼ exp �Dt

2
GF

@

@L

� �

� exp �Dt L
@

@F

� �

� s F;L� Dt

2
GF; tn

� �
: ð26Þ

The result of the second operator is:

sðF;L; tnþ 1Þ ¼ exp �Dt

2
F

@

@L

� �

� s F� Dt L; L� Dt

2

�

� GðF� Dt LÞ; tn

�
: ð27Þ

Finally, after the application of the third operator we ob-
tain:

sðF;L; tnþ 1Þ

¼ s F� Dt L� Dt

2
GF

� �
; 1þ Dt2

2
G

� ��

� L� Dt

2
GF

� �
� Dt

2
GF; tn

�
: ð28Þ

886 D. Bosquetti and J. Sánchez-Dehesa
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From this expression the relationship between the quan-
tities at the nþ 1 temporal step, Fnþ 1ðrÞ and Lnþ 1ðrÞ;
with the corresponding ones at tn; LnðrÞ and FnðrÞ; can
be obtained. It is given by the following 2� 2 matrix
equation:

Fnþ 1 rð Þ
Lnþ 1 rð Þ

" #
¼ Y r;Dtð Þ �

Fn rð Þ
Ln rð Þ

" #
ð29Þ

where

Y r;Dtð Þ ¼
a11 r;Dtð Þ a12 r;Dtð Þ
a21 r;Dtð Þ a22 r;Dtð Þ

" #
; ð30Þ

and the coefficients a11; a12; a21; a22 are:

a11 r;Dtð Þ ¼ 1þ Dt2

2
GðrÞ ;

a12 r;Dtð Þ ¼ �Dt ;

a21 r;Dtð Þ ¼ �Dt GðrÞ 1þ Dt2

4
GðrÞ

� �
;

a22ðr;DtÞ ¼ 1þ Dt2

2
GðrÞ :

ð31Þ

In similar form, the second temporal propagation
scheme can be expressed by the very same Eq. (29), but
with the following coefficients:

a11ðr;DtÞ ¼ 1þ Dt2

2
GðrÞ ;

a12 r;Dtð Þ ¼ �Dt 1þ Dt2

4
GðrÞ

� �
;

a21 r;Dtð Þ ¼ �Dt GðrÞ ;

a22 r;Dtð Þ ¼ 1þ Dt2

2
GðrÞ :

ð32Þ

Therefore, if we know the variables at some initial time
ti, their values at the final time tf which is separated by M
equal time steps Dt; are obtained by:

F r; tf
� �

L r; tf
� �

" #
¼

a11 r;Dtð Þ a12 r;Dtð Þ
a21 r;Dtð Þ a22 r;Dtð Þ

" #M
F r; tið Þ
L r; tið Þ

" #
:

ð33Þ

The differential problem in the equations above is trans-
formed into an algebraic problem by calculating the corre-
sponding derivatives using finite-difference algorithms. In
order to make such a calculation a discretization of the
space has to be performed. Let us remark that the formula-
tion introduced above is applicable to problems defined in
any dimensions; 1D, 2D, and 3D. In the next section, we
demonstrate the advantages of this new time-step evolution
matrix (TSEM) algorithm in comparison with the standard
Yee Algorithm. Afterward, in subsequent sections, the
method will be applied to solve several 1D test cases.

Properties of the time step evolution matrix

In what follows we present some properties of the TSEM.
With these properties in mind, the advantages of the SSO

method in comparison with the standard FDTD become
more evident. These properties are valid for the two dis-
tinct SSO algorithms. To treat both cases simultaneously,
we add a new index, k, to distinguish the same quantity in
the two algorithms (k ¼ 1, 2).

We already know that the SSO algorithm produce two
distinct TSEM. However, its Jacobian JðkÞ have the same
value:

JðkÞ ¼
a
ðkÞ
11 r;Dtð Þ a

ðkÞ
12 r;Dtð Þ

a
ðkÞ
21 r;Dtð Þ a

ðkÞ
22 r;Dtð Þ

�����
����� ¼ 1 : ð34Þ

This result reveals that the SSO preserves the initial sys-
tem information, in each time step. Since JðkÞ�1 ¼ 1; we
obtain the relationships:

a
ðkÞ
11 r;Dtð Þ ¼ @Fjþ 1

@Fj ¼
@Lj

@Ljþ 1 ;

a
ðkÞ
12 r;Dtð Þ ¼ @Fjþ 1

@Lj ¼ �
@Fj

@Ljþ 1 ;

a
ðkÞ
21 r;Dtð Þ ¼ @Ljþ 1

@Fj ¼ �
@Lj

@Fjþ 1 ;

a
ðkÞ
22 r;Dtð Þ ¼ @Ljþ 1

@Lj ¼
@Fj

@Fjþ 1 :

ð35Þ

Another interesting property emerges, when we define
the 2� 2 matrices I and RðkÞ respectively by

I ¼
0 1

�1 0

" #
; ð36Þ

and

RðkÞ ¼ YtðkÞ � I� YðkÞ ; ð37Þ
where YtðkÞ is the TSEM transposed. Evaluating the matrix
product YtðkÞ � I� YðkÞ; we attain the elements r

ðkÞ
ij ;

which are Poisson brackets between Fjþ 1ðkÞ, Ljþ 1ðkÞ and
FjðkÞ, LjðkÞ:

r
ðkÞ
11 ¼ FjðkÞ; FjðkÞ

h i
ðFjþ 1ðkÞ;Fjþ 1ðkÞÞ

;

rðkÞ12 ¼ FjðkÞ; LjðkÞ
h i

ðFjþ 1ðkÞ;Ljþ 1ðkÞÞ
;

rðkÞ21 ¼ LjðkÞ; FjðkÞ
h i

ðFjþ 1ðkÞ;Ljþ 1ðkÞÞ
;

rðkÞ22 ¼ LjðkÞ; LjðkÞ
h i

ðLjþ 1ðkÞ;Ljþ 1ðkÞÞ

ð38Þ

where

FjðkÞ; LjðkÞ
h i

ðFjþ 1ðkÞ;Ljþ 1ðkÞÞ

¼ @Fjþ 1ðkÞ

@FjðkÞ
@Ljþ 1ðkÞ

@LjðkÞ �
@Ljþ 1ðkÞ

@FjðkÞ
@Fjþ 1ðkÞ

@LjðkÞ : ð39Þ

Since that

RðkÞ ¼
r
ðkÞ
11 r

ðkÞ
12

r
ðkÞ
21 r

ðkÞ
22

" #
¼ I ; ð40Þ

the RðkÞ matrix is symplectic, and the SSO algorithm
obeys the condition for canonical transformation of coordi-
nates.

Sound propagation in the time-domain by the Split-Operator technique 887
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Other interesting TSEM property is the conservation of
the area element jdAðkÞ r; tjþ 1

� �
j; defined by the vectorial

product between Fjþ 1 and Ljþ 1:

jdAðkÞðr; tjþ 1Þj

¼
FjðkÞ LjðkÞ ðFjðkÞ ^LjðkÞÞ

a
ðkÞ
11 r;Dtð Þ a

ðkÞ
12 r;Dtð Þ 0

a
ðkÞ
21 r;Dtð Þ a

ðkÞ
22 r;Dtð Þ 0

��������

��������
: ð41Þ

Evaluating this determinant, we have dAðkÞ r; tjþ 1

� ��� ��
¼ dAðkÞ r; tj

� ��� ��: It follows that the total area is conserved
in each time step. As we see in example A in the next
section, all of these properties are not verified by the stan-
dard FDTD method.

Application: sound propagation
in one dimension

The sonic band structure of a 1D fluids with periodic
modulations of their density was studied by Dowling [19].
This section is focused to develop the numerical algorithm
that allows to study the propagation of sound in 1D fluids
having a general space-dependent density rðxÞ.

Let us consider a pressure wave-packet with gaussian
shape that at t ¼ 0 is centered at xc. The pressure F and
its time derivative L have the following initial conditions:

F0 xð Þ ¼ 1þW exp ½�z x � xcð Þ2� ; ð42Þ

L0 xð Þ ¼ 0 ; ð43Þ

where W is the wave-packet amplitude and z defines its
width.

The relationship in Eq. (29) will be used to study the pro-
pagation of this wave-packet. Any of the coefficients in
Eqs. (31) or Eqs. (32) can be employed. Here, the ones in
Eqs. (32) are chosen because they are numerically simpler.
The 1D recursion formulas up to first degree in Dt for
Eq. (29) are:

Fnþ 1ðxÞ ¼ 1þ Dt2

2
GðxÞ

� �
Fn xð Þ � Dt Ln xð Þ ; ð44Þ

Lnþ 1 xð Þ ¼ Ln xð Þ � Dt

2
GðxÞ Fn xð Þ þFnþ 1 xð Þ

� �
:

ð45Þ

Also, we want to quantify the usual kinematic magni-
tudes of the particles in the sound wave-packet: the displa-
cement xnðxÞ, velocity vnðxÞ and the acceleration anðxÞ.
The continuity equation and Newton’s third law, Eqs. (1)
and (2) respectively, relate those magnitudes with the pres-
sure and its time derivative:

dFnðxÞ
dx

þ rðxÞ anðxÞ ¼ 0 ; ð46Þ

LnðxÞ þ k�1ðxÞ dvnðxÞ
dx

¼ 0 : ð47Þ

While aðxÞ is obtained directly from Eq. (46), vðxÞ must
be obtained at each xi point by integration of eq. (47):

vnðxiÞ ¼ vnðx i� 1Þ �
Ðxi

xi� 1

kðxÞLnðxÞ dx : ð48Þ

Finally, since vðx; tÞ ¼ @x=@t; the displacement xnðxiÞ is

xnðxiÞ ¼ xn�1ðxiÞ þ
Ðti

ti� 1

vðxi; tÞ dt : ð49Þ

Equations (46)–(49) have to be consistent with the initial
conditions. Therefore, at t ¼ 0;

v0ðxÞ ¼ x0ðxÞ ¼ 0 : ð50Þ
Now, lets turn our attention to the G operator [Eq. (9],

which has the following form in 1D:

GðxÞ ¼ c2ðxÞ @2

@x2
� @

@x
ln rðxÞ½ �

� �
@

@x

	 

: ð51Þ

A finite difference expression of this operator can be
obtained by using a non-uniform spatial discretization in
order to treat cases in which abrupt discontinuities of den-
sity and velocity exist. In what follows we develop the
finite difference formulas to calculate both @=@x and
@2=@x2.

The positive distances ai; bi; ci and di, in the neighbor-
hood of an arbitrary xi point are

ai ¼ xiþ 2 � xi ; bi ¼ xiþ 1 � xi ;

ci ¼ xi � x i� 1 ; di ¼ xi � x i� 2 :
ð52Þ

To obtain the partial derivatives of any general function

X xð Þ with an error proportional to O½ Dxð Þ5� (Dx being the
distance between two neighboring points), we expand
X xð Þ in Taylor’s series around some xi point,

X xi þ aið Þ ¼ XðxiÞ þ
@X

@x
ðxiÞ ai þ

1

2!

@2X

@x2
ðxiÞ a2

i

þ 1

3!

@3X

@x3
xið Þ a3

i þ
1

4!

@4X

@x4
xið Þ a4

i þ . . . ;

X xi þ bið Þ ¼ X xið Þ þ
@X

@x
xið Þ bi þ

1

2!

@2X

@x2
xið Þ b2

i

þ 1

3!

@3X

@x3
xið Þ b3

i þ
1

4!

@4X

@x4
xið Þ b4

i þ . . . ;

X xi � cið Þ ¼ X xið Þ �
@X

@x
xið Þ ci þ

1

2!

@2X

@x2
xið Þ c2

i

� 1

3!

@3X

@x3
xið Þ c3

i þ
1

4!

@4X

@x4
xið Þ c4

i � . . . ;

X xi � dið Þ ¼ X xið Þ �
@X

@x
xið Þ di þ

1

2!

@2X

@x2
xið Þ d2

i

� 1

3!

@3X

@x3
xið Þ d3

i þ
1

4!

@4X

@x4
xið Þ d4

i � . . . :

ð53Þ

The expressions above can be cast in the following for-
mula for @X xið Þ=@x:

@XðxiÞ
@x

¼ AiX xiþ 2ð Þ þ BiX xiþ 1ð Þ þ CiX x i� 1ð Þ

þ DiX x i� 2ð Þ þ EiX xið Þ ; ð54Þ

888 D. Bosquetti and J. Sánchez-Dehesa
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where

Ai ¼ �
bicidi

aiðai � biÞ ðai þ ci Þðai þ diÞ
;

Bi ¼ �
aicidi

biðbi � aiÞ ðbi þ ci Þðbi þ diÞ
;

Ci ¼
aibidi

ciðci þ aiÞ ðci þ bi Þðci � diÞ
;

Di ¼
aibici

diðdi þ aiÞ ðdi þ bi Þðdi � ciÞ
;

Ei ¼ �ðAi þ Bi þ Ci þ DiÞ : ð55Þ

A similar procedure gives:

@2XðxiÞ
@x2

¼ AAiXðxiþ 2Þ þ BBiXðxiþ 1Þ þ CCiXðx i� 1Þ

þ DDiXðx i� 2Þ þ EEiXðxiÞ ; ð56Þ

where

AAi ¼ �
2½bici þ diðbi � ciÞ�

aiðai � biÞ ðai þ ciÞ ðai þ diÞ
;

BBi ¼ �
2½diai þ ciðai � diÞ�

biðbi � aiÞ ðbi þ ciÞ ðbi þ diÞ
;

CCi ¼ �
2½diai � biðai � diÞ�

ciðci þ aiÞ ðci þ bi Þðci � diÞ
;

DDi ¼ �
2½bici � aiðbi � ciÞ�

diðdi þ aiÞ ðdi þ biÞ ðdi � ciÞ
;

EEi ¼ �ðAAi þ BBi þ CCi þ DDiÞ : ð57Þ

Notice that coefficients AAi; BBi; CCi; DDi and EEi are
proportional, respectively, to Ai; Bi; Ci; Di and Ei: So, the
coefficients of the second order derivative can be put in
terms of the corresponding first derivatives.

The application of G gives:

G xið Þ X xið Þ ¼ GAiX xiþ 2ð Þ þ GBiX xiþ 1ð Þ þ GCiX x i� 1ð Þ
þ GDiX x i� 2ð Þ þ GEiX xið Þ þ O½ Dxð Þ5� ;

ð58Þ

where

GAi ¼ c2ðxiÞ
2

ci
� 2

bi
þ 2

di
� @

@x
ln r xið Þ½ �ð Þ

	 

Ai ;

GBi ¼ c2ðxiÞ
2

ci
� 2

ai
þ 2

di
� @

@x
ln r xið Þ½ �ð Þ

	 

Bi ;

GCi ¼ c2ðxiÞ
2

di
� 2

bi
� 2

ai
� @

@x
ln r xið Þ½ �ð Þ

	 

Ci ;

GDi ¼ c2ðxiÞ
2

ci
� 2

bi
� 2

ai
� @

@x
ln r xið Þ½ �ð Þ

	 

Di ;

GEi ¼ c2ðxiÞ
2

di
þ 2

ci
� 2

ai
� 2

bi
� @

@x
ln r xið Þ½ �ð Þ

	 

Ei ;

� 2c2 xið Þ
DDi

di
þ CCi

ci
� AAi

ai
� BBi

bi

	 

: ð59Þ

Equations (59) define the finite difference scheme for
GðxÞ. It will be applied in the following subsections to
analyse the sound propagation in several 1D problems.

The good performance of the method were demonstrated
previously in 1D systems consisting of media with impe-
dance mistmach [15]; the numerical results were in fairly
good agreement with the analytical solutions. In what fol-
lows uniform and non-uniform systems having impedance
matching will be analysed for the sake of completitude.

Test case 1: Sound propagation in a uniform
medium: comparison with the standard FDTD
method

The FDTD method introduced by Yee [10] to study the
propagation of electromagnetic waves in isotropic media is
conceptually simple and straightforward. In acoustics it
requires the time discretization of Eqs. (1) and (2) by
using a constant time step Dt:

@Fðx; tÞ
@t

¼ Fnþ 1ðxÞ �FnðxÞ
Dt

þ OðDt2Þ ; ð60Þ

@vðx; tÞ
@t

¼ v
nþ 1ðxÞ � vnðxÞ

Dt
þ OðDt2Þ : ð61Þ

Then, Eqs. (1)–(2) can be reduced to the following matrix
form:

Fnþ 1 xð Þ
vnþ 1 xð Þ

 !
¼

b11 x; tð Þ b12 x; tð Þ
b21 x; tð Þ b22 x; tð Þ

 !
Fn xð Þ
vn xð Þ

 !
;

ð62Þ
where

b11 x; tð Þ ¼ b22 x; tð Þ ¼ 1 ;

b12 x; tð Þ ¼ �Dt k�1ðxÞ @=@x ;

b21 x; tð Þ ¼ �Dt r�1ðxÞ @=@x : ð63Þ

Equation (62) defines the time step evolution matrix in
the so called standard FDTD method, which is simpler
than the equivalents based on the SSO technique
[Eqs. (29)–(33)]. However, its simplicity pays a price: the
Jacobian of the 2� 2 matrix in Eq. (62) is not unitary; it
contains non-zero terms in Dt2 order. This non-unicity re-
sults in a progressive error in each time step, and conse-
quently loss of initial system information. Also, since the
method is restricted to very small Dt=Dx ratios, it is extre-
mely difficult to apply it in long time evolutions. The
pressure time derivative Lðx; tÞ is obtained in this scheme
by using the continuity condition, Eq. (2):

LnðxÞ ¼ �k�1ðxÞ @v
nðxÞ
@x

: ð64Þ

Figures 1 and 2 show the comparison between the stan-
dard FDTD and the one based on the SSO technique, in
the case of sound propagation in a uniform medium
(rðxÞ ¼ 1; cðxÞ ¼ 1) with no external perturbations. The
units of mass, length and time along the rest of the article
are gramme (g), centimeter (cm) and second (s), respec-
tively. At t ¼ 0 the gaussian wave-packet

F0 xð Þ ¼ 1þ 0:0013 exp �0:001x2
� �

;

L0 xð Þ ¼ 0 ;

is created and travels freely along the x-axis. These are the
initial conditions in time-evolution, which is calculated in

Sound propagation in the time-domain by the Split-Operator technique 889
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these two different algorithms. A non-uniform spatial dis-
cretization is employed, the parameters are described in
Table 1. A constant time-step Dt ¼ 5� 10�4 is consid-
ered. The same space steps and time steps were employed
in both algorithms.

Once the initial wave-packet is free at t ¼ 0, it splits in
two equally wave-packets, each moving in opposite direc-
tions. While the wave-packet travels, numerical errors ap-
pear and grow in every time-step. At t ¼ 150, Figs. 1–2
show that the errors are negligible in both algorithms. At
t ¼ 450, however, Fig. 1 shows some noise appearing in
between the two packets for the FDTD algorithm. A simi-
lar conclusion can be drawn from results in Fig. 2, which
shows the evolution of LnðxÞ. Now the noise observed in
the FDTD method start at earlier times. The order of the
noise being comparable to the wave-packet height at
t ¼ 450. Let us remark that the result obtained with the
FDTD method can be substantially improved by using
“properly chosen” space and time steps.

Test case 2: Sound propagation in a layered system

Let us consider a layered system composed by three dif-
ferent homogeneous media, with distinct mass densities
riði ¼ 1; 3Þ, and sound velocities ci. The values of these
magnitudes and their corresponding acoustic impedances,
Zi ¼ rici, are listed in Table 1. Also, we consider that
medium 2 is finite, with length L ¼ 400, and is placed in
between media 1 and 3, both considered semi-infinite (see
Fig. 1). The transmission (T) and reflection (R) coeffi-
cients at one interface only depend of the impedance ratio
of the media involved, Zincident=Ztransmitted, and they are
well known [20]:

T2! 1 ¼
2

Z2=Z1 þ 1
¼ 2

3
; T2! 3 ¼

2

Z2=Z3 þ 1
¼ 4

3
;

R2! 1 ¼
Z2=Z1 � 1

Z2=Z1 þ 1
¼ 1

3
; R2! 3 ¼

Z2=Z3 � 1

Z2=Z3 þ 1
¼ � 1

3
:

In both cases, the condition T þ R ¼ 1 is verified, but the
negative sign of R indicates that T > 1.

In the system described we have studied the propaga-
tion in time domain of a gaussian wave-packet which is
put at the middle of medium 2 in t ¼ 0 and it is subjected
to the initial condition L0ðxÞ ¼ 0. The corresponding
Eq. (33) has been solved by using a non-uniform mesh in
the x-axis; more points were defined in the regions close
to the interfaces. The pressure pattern as a function of
time is shown in Fig. 3. At t ¼ 100, it can be observed
how the initial wave-packet is now divided in two equal
packets traveling in opposites directions. After some time
interval, t ¼ 250, both wave-packets have crossed on
the two interfaces and have been partially reflected.
However, since the acoustics impedances are such that
Z1 < Z2 < Z3; two different phenomena occurs. At the
2! 1 interface (Z2=Z1 ¼ 2), the left wave-packet pass to
a medium with a lower acoustic impedance. In this case, a
phase inversion takes place on the reflected part, while the
transmitted part has a peak lower than the incident. On the
other hand, at the 2! 3 interface (Z2=Z3 ¼ 1=2), the right
wave-packet pass to a higher acoustic impedance media.
Now, we have the opposite case; no phase inversion oc-
curs on the reflected part, and the transmitted part has a
peak greater than the incident. The theoretical predictions
agree with the qualitative behavior observed in Fig. 3.
Moreover, regarding quantitative results, in Table 2 we

890 D. Bosquetti and J. Sánchez-Dehesa

Fig. 1. Propagation of a sound wave packet with gaussian shape in a
homogeneous medium. Time evolution of the sound pressure Fðx; tÞ.
Comparison at t ¼ 450 of the wave packets obtained with the stan-
dard FDTD method and the Split-Operator method.

Fig. 2. Propagation of a sound wave packet with gaussian shape in a
homogeneous medium. Time evolution of the sound pressure Lðx; tÞ.
Comparison at t ¼ 450 of the wave packets obtained with the stan-
dard FDTD method and the Split-Operator method.

Table 1. Discretization parameters employed in the simulations pre-
sented in Fig. 1. The parameters in the negative axis are the same.

D Dx n0 of points Dt=Dx

0–500 0.5 1000 10� 10�4

500–550 1.0 50 5� 10�4

550–625 1.5 50 3:33� 10�4

625–725 2.0 50 2:5� 10�4

725–800 2.5 30 2� 10�4

800–890 3.0 30 1:67� 10�4

890–995 3.5 30 1:43� 10�4
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show the comparison between different coefficients result-
ing from the SSOP technique and the ones analytically
obtained.

Since the media are homogeneous, their group and
phase velocities are equal inside a given medium. This

fact also can be check out in our algorithm. Let us define
the average position of the reflected wave packet by
xRðtÞh i and its analogue for the transmitted one by xTðtÞh i.

Table 3 shows their values at several times. From Table 3
the group velocity of reflected and transmitted wave pack-
ets at the 2! 1 interface can be obtained:

vgRð2! 1Þ ¼ hxRðt2Þi2! 1 � hxRðt1Þi2! 1

t2 � t1
¼ 1:0 ¼ c2 ;

vgTð2! 1Þ ¼ hxTðt2Þi2! 1 � hxTðt1Þi2! 1

t2 � t1
¼ 0:5 ¼ c1 :

Using an analogous procedure for the 2! 3 interface, we
also find that vgR 2! 3ð Þ ¼ 1:0 ¼ c2, and vgT 2! 3ð Þ
¼ 0:5 ¼ c3.

With regards to acoustic energy conservation, the meth-
od also verify such property with maximum accuracy.

Test case 3: Sound propagation across
an acoustic medium with smooth variations
of mass density and sound velocity

Let us consider an inhomogeneous medium of length
L ¼ 500 sandwiched between two semi-infinite uniform
media with mass density, r0 ¼ 1, and sound velocity,
c0 ¼ 1. Also, it will be assumed that the medium has a den-
sity and velocity that change in such a way that its acousti-
cal impedance matches the one of the surrounding media. In
other words, rðxÞ ¼ c�1ðxÞ and ZðxÞ ¼ rðxÞ cðxÞ ¼ 1: The
position dependence of cðxÞ is modeled by a Lorentzian
shape:

cðxÞ ¼ cmax

1þ Vðx � xmÞ2
; xm � L=2 � x � xm þ L=2

ð65Þ
where the parameters are: cmax ¼ 8; V ¼ 5� 10�5; and
xm ¼ 375:

If a sound wave packet impinges the medium on one side,
it is expected that the packet shape will be distorted inside the
inhomogeneous medium. Nevertheless, its initial shape will
be recovered after crossing it. This result is a consequence of
the impedance matching along the traveling distance. In
other words, the total transmitted and the total reflected
waves are one and zero, respectively, at every time step.

Figures 5 and 6 show, respectively, the time evolution
of F and L for the case of a gaussian wave packet propa-
gating through a barrier of length L ¼ 500. In this simula-
tion, a uniform spatial discretization has been used be-
tween two consecutive points, Dx ¼ 0.5. A constant time-
step Dt ¼ 5� 10�4 is employed. After t ¼ 0; the initial
wave packet (not shown) splits and one part travels along

Sound propagation in the time-domain by the Split-Operator technique 891
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Fig. 3. Propagation of a sound wave packet in a layered acoustic
structure. At t ¼ 0, a gaussian wave packet is left at position x ¼ 0.
Afterward, it splits and move freely along the two possible paths in
the one-directional space. At t ¼ 100, the total wave packet will in-
cides in the interfaces of this system. However, when this incidence
occurs, different phenomenas will occur because the acoustics impe-
dance Z1 < Z2 < Z3: Since that Z2=Z1 ¼ Z3=Z2 ¼ 2; we have no
phase inversion of reflected part of wave packet in 2! 1 interface
and the transmitted part the wave packet has a peak greater than the
incident one. At the same time, for 2! 3 interface, we have an
phase inversion of transmitted wave packet, and the transmitted part
is lower than the incident. In t ¼ 250, we can see the transmission
and reflected parts in the system. At t ¼ 400, a total destructive inter-
ference occurs in medium 2. It happens because the reflection part of
these two media is exactly the same. Finally, at t ¼ 450, the second
transmitted and reflected wave packets appears on the system.

Table 2. Densities, sound velocities and acoustic impedances of the
three homogeneous media in the layered structure under study.

r (g/cm) c (cm/s) Z (g/s)

medium 1 0.25 2.0 0.5

medium 2 1.0 1.0 1.0

medium 3 4.0 0.5 2.0

Table 3. Transmission and reflection coefficients.

Coeff. SSO Exact

T2! 1 0.646 0.667

T2! 3 1.354 1.333

R2! 1 0.354 0.333

R2! 3 0.354 0.333

Table 4. Values of densities, particle velocity and acoustic impedance
in the media.

tðsÞ xRðtÞh i2! 1 xT ðtÞh i2! 1 xRðtÞh i2! 3 xT ðtÞh i2! 3

250 1260 1100 1560 1610

350 1360 900 1460 1660

400 1410 800 1410 1685

500 1510 600 1310 1735
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the positive x-direction, while the other one goes in the
opposite direction. At t ¼ 50; the front of the right packet
impinges the barrier’s left side. At subsequent times (see
the plots at t ¼ 150 and t ¼ 250), a distortion in the pack-
et is produced inside the barrier. The distortion gradually
disappears and, finally, at t ¼ 350; when the packet has
completely passed the barrier, its shape equals the initial
packet, coinciding with the one moving in the negative x-
direction. Numerically, the peak heights of the packets are
equal up to six digits.

Test case 4: Sound propagation across an acoustic
superlattice with a perfect matching of impedances

Consider a homogeneous medium with constant density
r0 ¼ 1 and sound velocity c0 ¼ 1: In this system, a super-
lattice with ten periods is created in which the barriers have
different values of density (r1 ¼ 2Þ and velocity (c1 ¼ 0:5),
but the same specific acoustic impedance Z1 ¼ Z0 ¼ 1: All
barriers have length L and the separation between consecu-
tive barriers is d. Therefore, the interface points are

x2n ¼ x0 þ n Lþ dð Þ
x2nþ1 ¼ x0 þ n Lþ dð Þ þ L

(
; ð66Þ

where x0 is the superlattice initial point and n are integers
n ¼ 0; 1; 2; . . . N:

The perfect matching of specific acoustical impedances
in the superlattice makes it transparent to sound propaga-
tion. Then it is expected that every wave-packet impinging
on one side of the superlattice will be completely trans-
mitted on the opposite side without reflections.

Figures 6 and 7 show the numerical simulation ob-
tained by using an uniform space step (Dx ¼ 0.5) and a
constant time step (Dt ¼ 5� 10�4) for a superlattice with
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Fig. 4. Propagation of a sound wave packet with gaussian shape
placed in front of an inhomogeneous medium (shadowed region of
length L) having a constant specific acoustic impedance, but with a
smooth variation of density and sound velocity [see Eq. (65)]. The
initial wave packet is put at xc ¼ 0 and starts moving at t ¼ 0 (not
shown here). Behavior of the pressure Fðx; tÞ at different time steps.
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Fig. 5. Propagation of a sound wave packet with gaussian shape
placed in front of an inhomogeneous medium (shadowed region of
length L) having a constant specific acoustic impedance, but with a
smooth variation of density and sound velocity [see Eq. (65)]. The
initial wave packet is put at xc ¼ 0 and starts moving at t ¼ 0 (not
shown here). Behavior of the pressure derivative Lðx; tÞ at different
time steps.

Fig. 6. Time evolution of a gaussian wavepacket put in front of an
acoustic superlattice with ten periods. The sound pressure Fðx; tÞ is
shown at different time steps. All the layers have the same acoustic
impedance as the surrounding media. The initial wavepacket (not
shown here) is put at xc ¼ 0 and starts moving at t ¼ 0.
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parameters x0 ¼ 235, L ¼ 10, d ¼ 45, and N ¼ 9. The in-
itial gaussian wavepacket, which is identical to the one
used in the previous calculations, splits. Its components
are shown at t ¼ 100 in the upper panel in Fig. 5. The
right component impinges on the superlattice, its shape
changes slightly inside the superlattice, the peak maximum
being practically constant. This property is a consequence
of a constant acoustic ratio equal to 1; i.e. the system is
transparent. At t ¼ 1200; the packet moves freely out the
far side of the superlattice. No appreciable numerical dif-
ferences exist between the wave that has crossed the
superlattice and the one that has moved freely in the oppo-
site direction. Nevertheless, notice that some ripples ap-
pear in the plot. They represent the numerical inaccuracy
of the method, but they can be suppressed by reducing the
space step near the interfaces. In Fig. 6 the results for the
other canonical variable, L ¼ @F=@t, are shown. The
same analysis is valid for this entity.

Summary

We have presented a method that allows the simulations of
sound propagation in the time domain for heterogeneous
fluids in any dimension. The method is based on the split-
operator technique, which is widely used in quantum me-
chanics. In comparison with standard finite-difference
schemes, it has the following advantages: (i) it has a better
accuracy in the time-domain, (ii) it works easier for large
non-homogeneous space discretization, and (iii) it satisfies
the energy conservation law. Here, we also have demon-
strated its performance by solving several one-dimensional
test problems.

Appendix: Glauber’s formula for three
non-commutative operators

It is known that if two operators A; B do not commute,
the product of their corresponding single exponential op-
erators is related with the exponential operator containing
their sum in the exponent through the so called Glauber’s
formula:

e�tA e�tB ¼ e�tðAþBÞ e
1
2 t2½A;B� :

In what follows we extend this formula to the case of
three distinct operators. Afterwards it will be applied to
the case for which two of them are equal. It will be shown
that the operator decomposition employed in Eq. (22) is of
the order ðDtÞ3; lower than the one obtained without the
symmetric splitting of operator A (or B).

Let us consider the operator Fðr; tÞ described by:

Fðr; tÞ ¼ e�tA e�tB e�tC :

Its partial time derivative is:

@Fðr; tÞ
@t

¼ �fAþ e�A B etA þ e�tA e�tB C etB etAg

� Fðr; tÞ : ð67Þ

Operator properties allow one to write the operators B and
C in the form:

B ¼ etA B e�tA � ½etA; B� e�tA ;

C ¼ etA etB C e�tB e�tA � ½etA etB; C� e�tB e�tA :

Then, Eq. (67) becomes,

@Fðr; tÞ
@t

¼ � Aþ Bþ C þ Gðr; tÞf g Fðr; tÞ ; ð68Þ

where

Gðr; tÞ ¼ ½etA; B� e�tA þ etA etB; C
� �

e�tB e�tA :

We integrate Eq. (68) in the time interval 0;Dt½ �; where
Dt is small compared with the temporal dependence of
Aðr; tÞ; Bðr; tÞ and Cðr; tÞ; which are considered constant
in the interval. Besides, if we assume that Fðr; t ¼ 0Þ ¼ 1;
we obtain:

Fðr; tÞ ¼ exp �DtðAþ Bþ CÞ þ
ÐDt

0

Gðr; tÞ dt

	 

:

Since

e�Dt A ¼
P1

n¼ 0

�1ð Þn

n!
Dtn An ;

we can cast the integral
ÐDt

0

Gðr; tÞ dt as an infinite sum of
terms:

ðDt

0

Gðr; tÞ dt ¼
P1

n;m¼ 0

Dtnþmþ 1

n!m!ðnþ mþ 1Þ ½A
n;B� Am

þ
P1

n;m; p; q¼ 0

Dtnþmþ pþ qþ 1

n!m!p!q!ðnþ mþ pþ qþ 1Þ
� ½AnBm; C� BpAq :
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Fig. 7. Time evolution of a gaussian wavepacket put in front of an
acoustic superlattice with ten periods. The pressure first derivative
Lðx; tÞ is shown at different time steps. All the layers have the same
acoustic impedance as the surrounding media. The initial wavepacket
(not shown here) is put at xc ¼ 0 and starts moving at t ¼ 0.
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Because Dt is small, we only need to consider a few
terms of the infinite series,

ðDt

0

Gðr; tÞ dt ¼ Dt2

2
f½A;Bþ C� þ ½B;C�g

þ Dt3

6
f½A2;Bþ C� þ ½B2;C�g

þ Dt3

3
f½AB;C� � ½A;B� A� ½ðAþBÞ;C�

� ðAþ BÞg þ O½ðDtÞ4�:

If A ¼ C; the terms of Dt2 are cancelled and the last ex-
pression becomes

ðDt

0

Gðr; tÞ dt ¼ Dt3

6
f½A2;B� þ ½B2;A�

þ 2½A;B� ðAþ BÞg þ O½ðDtÞ4� :

Then, the function Fðr; tÞ; can be replaced by the identity

e�Dt A e�Dt B e�Dt A ¼ e�DtðAþBþAÞ

� e�
1
6 Dt3f½A2;B� þ ½B2;A� þ 2½A;B�ðAþBÞgþO½ðDtÞ4� :

Notice that the combination of three operators in which
two of them are equal produces the minimum error.

When A ¼ C ¼ A=2, we have the case of Eq. (22) and
the error associated to the approximation involved in that
equation can easily be calculate by taking the difference

Err ¼ e�Dt A
2 e�Dt B e�Dt A

2

� eDt A
2þBþ A

2ð Þ� 1
24 Dt3 Aþ 2Bð Þ; A;B½ �½ � :

In conclusion,

Err ¼ Dt3

24
Aþ 2Bð Þ; A;B½ �½ � :
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