Modelling of a tubular heating as Partial Differential Equations (PDE)

© 2022, Antonio Sala Piqueras. Universitat Politècnica de València. All rights reserved.

Presentation in video: http://personales.upv.es/asala/YT/V/termedpEN.html

Objetive: Modelling with "finite elements" the dynamics of a tubular heater with a resistor along it heating an incompressible fluid, and end up with a Partial Differential Equation (PDE) when the elements become infinitesimal.

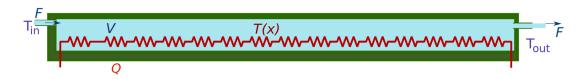


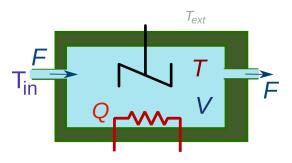
Table of Contents

First-Principle Model of a 1st-order (one-element) heater	1
First-principle model	
Multi-Element model	3
Infinitesimal elements: partial differential equations model	4
Particular cases:	5
Transport delay	
Steady-state (thermal equilibrium)	

First-Principle Model of a 1st-order (one-element) heater

First-principle model

We'll consider a resistor (heating power Q, known, input signal to the system) which heats a liquid flowing into (and out) of a tank of a given volume. A perfect stirrer will very quickly (supposedly) make temperature to be "uniform" in all volume so a 1st-order setup will be enough for the moment being.



• Inputs:

```
syms F real %Input and output flow (incompressible fluid)
syms Tin real %Input temperature
syms Q real %Resistor's heating power
```

• Constant parameters:

```
syms V real%Tank volume
syms rho real %density
syms kappa real %thermal losses through tank's walls
```

We'll assume outside temperature equal to zero, constant, to avoid needing it in the model (there is no loss of generality as long as it is constant); We'll assume that kappa does not change with F

syms c real %Specific heat (mass, in say W/Kg/K)

• State variable:

```
syms T real % temperature of the liquid inside the tank (equal to the output temperature syms dTdt real % time derivative of the temperature (state variable)
```

Power (rate of change of energy) balance is

" rate of change of energy inside control volume $\left(\frac{dE}{dt} = Mc\frac{dT}{dt}\right)$, mass is constant inside the control volume so dM/dt is not considered inside the volume.

= net heat power exchange with the outside environment $(Q - \kappa T)$

+ total energy entering the control volume per unit time due to incoming fluid

$$+\frac{dM_{in}}{dt}cT_{in} = (+F\rho cT_{in})$$

- total energy per unit time leaving the control volume due to outgoing fluid $-\frac{dM_{out}}{dt}cT_{out} = (-F\rho cT)$ "

which is written as:

$$\underbrace{V\rho}_{t} c \frac{dT}{dt} = \underline{F\rho}_{t} c T_{in} - \underline{F\rho}_{t} c T - \kappa T + Q$$

Nota: $V\rho = Mass$, $F\rho = mass$ flow \dot{m} ; the term $\dot{m}cT$ has dimensions of power (enthalpy flow rate), we have incoming power $\dot{m}cT_{in}$ and outgoing power $\dot{m}cT$.

For simplicity, heat transfer around the tank's boundary is modelled as a constant times temperature (actually temperature increment with respect to outside one), but maybe there are convection coefficients wich might depend on flow *F*, say, a first approximation such as $\kappa = \kappa_0 + \kappa_1 F$. In our case κ_1 is neglected.

At the end, we have a model with a single equation. If we enter it in the Symbolic toolbox:

Model= V*rho*c*dTdt == F*rho*c*Tin - F*rho*c*T - kappa*T+ Q;

Normalised Internal state-space representation amounts to solving for the time derivative of the state:

```
dTdt sym=simplify(solve(Model,dTdt),50)
```

$$\frac{Q-T\kappa}{Vc\rho} - \frac{F(T-\mathrm{Tin})}{V}$$

We may write it as

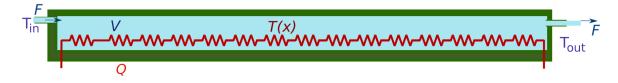
$$\frac{dT}{dt} = -\frac{F}{V} \cdot (T - T_{in}) - aT + bQ,$$

with
$$a = \frac{\kappa}{V\rho c}$$
, $b = \frac{1}{V\rho c}$.

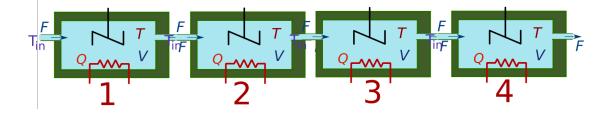
V/F is the so-called "turnover or flushing time", equal in a perfectly stirred tank or reactor to the so called "mean residence time" of the outgoing flow

Multi-Element model

We will understand a tubular heater:



as the "series" interconnection of many single-element heaters (a total of *N*, later on letting $N \to \infty$)... with N = 4, this would be:



We'll split the total heater volume and the total heating power equally for each of the elements:

Flow at element *i* is $F_i = F_{i-1} = F$ (common to all elements), volume $V_i = V/N$, heating power by resistor $Q_i = Q/N$, heat transfer coefficient to outside environment $\kappa_i = \kappa/N$.

Input temperature to *i*-th element $T_{in,i}$ will be the output temperature of the previous element:

 $T_{in,i} = T_{i-1}$; except for i = 1, of course, where $T_{in,1} \equiv T_{in}$ will be an arbitrary input signal.

The overall dynamic model will compute $\frac{dT_i}{dt}$ in its state equation; the outlet temperature will be T_N .

Infinitesimal elements: partial differential equations model

If each element's equation $\frac{dT}{dt} = -\frac{1}{V}F(T - T_{in}) - \frac{\kappa}{V\rho c}T + \frac{Q}{V\rho c}$ is rewritten thinking on T(x, t), so that at each element its "left" end is at position *x*, and its "right" end is at position x + dx, we get:

$$T_{in} = T(x,t), T = T(x+dx,t), Q = \overline{Q}dx, V = Sdx, \kappa = \overline{\kappa}dx,$$

being \overline{Q} the heating power per unit length generated by the resistor, $\overline{\kappa}$ the heat transfer coefficient per unit length, and *S* the cross-section area of the tubular heater.

Writhing the first-order dynamical model of the element between x and x + dx results in:

$$\frac{\partial T(x+dx,t)}{\partial t} = -\frac{1}{Sdx}F \cdot (T(x+dx,t) - T(x,t)) - \frac{\overline{\kappa}dx}{Sdx\rho c}T(x+dx,t) + \frac{\overline{Q}dx}{Sdx\rho c}$$

simplifying dx, where possible, we end up with:

$$\frac{\partial T(x+dx,t)}{\partial t} = -\frac{1}{S}F \cdot \frac{T(x+dx,t) - T(x,t)}{dx} - \frac{\overline{\kappa}}{S\rho c}T(x+dx,t) + \frac{\overline{Q}}{S\rho c}$$

so, now, making dx tend to zero when the number of elements N tends to infinity, we reach the final PDE written as:

$$\frac{\partial T}{\partial t} = -\frac{F}{S} \cdot \frac{\partial T}{\partial x} - \frac{\overline{\kappa}}{S\rho c} T + \frac{Q}{S\rho c}$$

Interpretation: PDE that relates the temporal derivatives $\frac{\partial T(x,t)}{\partial t}$ and spatial derivatives $\frac{\partial T(x,t)}{\partial x}$ of the temperature with inputs *F* and \overline{Q} .

*Input T_{in} has apparently disappeared from the equation, but it's still there: it has transformed onto a "boundary condition", indicating that $T(0, t) = T_{in}(t)$ must be enforced.

Particular cases:

Transport delay

Under no heating $\overline{Q} = 0$ and perfect insulation $\overline{\kappa} = 0$ we get the PDE of a "transport delay",

convective transport $\frac{\partial T}{\partial t} = -v \frac{\partial T}{\partial x}$, being $v = \frac{F}{S}$ the linear transport velocity.

Washout time is *Volume / Volumetric_flow* = *Length / linear_fluid_speed*; this will be the actual value of the "*delay*" between T_{in} and the output temperature T_{out} at the right-hand side of the pipe.

Steady-state (thermal equilibrium)

Another well-studied equation is the stationary (equilibrium) case with no heating $\overline{Q} = 0$. Indeed, assuming equilibrium amounts to assuming no variation in time $\frac{\partial T}{\partial t} = 0$. That equilibrium solution will be named as $T_{eq}(x)$, resulting in the 1st-order expression $\frac{\partial T_{eq}}{\partial x} = -\frac{\overline{\kappa}}{F\rho C_e}T_{eq}$, which is an ordinary differntial equation (ODE) in the "spatial" variable *x*, giving the popular exponential formula for steadystate heat exchangers:

$$T_{eq}(x) = T_{eq}(0) \cdot e^{\frac{-\bar{\kappa}}{F_{\rho}C_{e}} \cdot x} = T_{in} \cdot e^{\frac{-\bar{\kappa}}{F_{\rho}C_{e}} \cdot x}$$