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Objetive: Modelling with "finite elements" the dynamics of a tubular heater with a resistor along 

it heating an incompressible fluid, and end up with a Partial Differential Equation (PDE) when the 

elements become infinitesimal.
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First-Principle Model of a 1st-order (one-element) heater

First-principle model
We'll consider a resistor (heating power Q, known, input signal to the system) which heats a liquid 

flowing into (and out) of a tank of a given volume. A perfect stirrer will very quickly (supposedly) make 

temperature to be "uniform" in all volume so a 1st-order setup will be enough for the moment being.

• Inputs:

syms F real %Input and output flow (incompressible fluid)
syms Tin real %Input temperature
syms Q real %Resistor's heating power
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• Constant parameters:

syms V real%Tank volume
syms rho real %density
syms kappa real %thermal losses through tank's walls

We'll assume outside temperature equal to zero, constant, to avoid needing it in the model (there is no 

loss of generality as long as it is constant); We'll assume that kappa does not change with F

syms c real %Specific heat (mass, in say W/Kg/K)

• State variable:

syms T  real % temperature of the liquid inside the tank (equal to the output temperature, due to the stirring assumption)
syms dTdt real % time derivative of the temperature (state variable)

Power (rate of change of energy) balance is

" rate of change of energy inside control volume    , mass is constant inside the control 

volume so dM/dt is not considered inside the volume.

= net heat power exchange with the outside environment   

+ total energy entering the control volume per unit time due to incoming fluid   

- total energy per unit time leaving the control volume due to outgoing fluid "

which is written as:

Nota: , mass flow ; the term  has dimensions of power (enthalpy flow rate), we 

have incoming power  and outgoing power .

For simplicity, heat transfer around the tank's boundary is modelled as a constant times temperature 

(actually temperature increment with respect to outside one), but maybe there are convection 

coefficients wich might depend on flow F, say, a first approximation such as   . In our 

case  is neglected.
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At the end, we have a model with a single equation. If we enter it in the Symbolic toolbox:

Model=  V*rho*c*dTdt == F*rho*c*Tin - F*rho*c*T - kappa*T+ Q;

Normalised Internal state-space representation amounts to solving for the time derivative of the state:

dTdt_sym=simplify(solve(Model,dTdt),50)

dTdt_sym = 

We may write it as 

, 

with  .

 is the so-called "turnover or flushing time", equal in a perfectly stirred tank or reactor to the so 

called "mean residence time" of the outgoing flow 

Multi-Element model
We will understand a tubular heater:

as the "series" interconnection of many single-element heaters (a total ofN, later on letting )... 

with , this would be:
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We'll split the total heater volume and the total heating power equally for each of the elements:

Flow at element i is  (common to all elements), volume , heating power by 

resistor , heat transfer coefficient to outside environment .

Input temperature to i-th element  will be the output temperature of the previous element: 

 ;  except for , of course, where  will be an arbitrary input signal.

The overall dynamic model will compute  in its state equation; the outlet temperature will be .

Infinitesimal elements: partial differential equations model

If each element's equation  is rewritten thinking on , so 

that at each element its "left" end is at position x , and its "right" end is at position , we get:

, , , , , 

being  the heating power per unit length generated by the resistor,  the heat transfer coefficient per 

unit length,  and S the cross-section area of the tubular heater.

Writhing the first-order dynamical model of the element between x and  results in:

simplifying , where possible, we end up with:

so, now, making  tend to zero when the number of elements N tends to infinity, we reach the final 

PDE written as:

Interpretation: PDE that relates the temporal derivatives   and spatial derivatives  of 

the temperature with inputs  F and . 

4



*Input  has apparently disappeared from the equation, but it's still there: it has transformed onto a 

"boundary condition", indicating that  must be enforced.

Particular cases:

Transport delay

Under no heating  and perfect insulation  we get the PDE of a "transport delay", 

convective transport  , being  the linear transport velocity.

Washout time is Volume / Volumetric_flow = Length / linear_fluid_speed; this will be the actual value of 

the "delay" between  and the output temperature  at the right-hand side of the pipe.

Steady-state (thermal equilibrium) 

Another well-studied equation is the stationary (equilibrium) case with no heating . Indeed, 

assuming equilibrium amounts to assuming no variation in time . That equilibrium solution 

will be named as , resulting in the 1st-order expression , which is an ordinary 

differntial equation (ODE) in the "spatial" variable x, giving the popular exponential formula for steady-

state heat exchangers:
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