Variables aleatorias reales y mixtas

Antonio Sala Piqueras

Dept. Ing. Sistemas y Automatica (DISA)

Universitat Politècnica de València (UPV)

Video-presentación disponible en:

http://personales.upv.es/asala/YT/V/vard.html

Presentación

Motivación:

En gran cantidad de aplicaciones hay experimentos de resultado incierto.

Objetivos:

Comprender los conceptos de variable aleatoria real, probabilidad, funciones de densidad y distribución.

Contenidos:

Variables aleatorias. Variables reales: densidad y distribución. Variables mixtas.

Conclusiones

Variables aleatorias

Variable aleatoria: Posible salida de un experimento, valor incierto de algo.

- Toma valores en un conjunto Ω (finito –cara/cruz–, infinito –dist. normal–)
- Existe un conjunto de "eventos" (los subconjuntos de Ω).
 - dado: "que salga 1", "que salga 2", "que salga 1 o 4", "que no salga 3", "que salga más de 4",
- Existe una **función de probabilidad** que asocia a cada **evento** un número entre cero y 1 (probabilidad, p) que verifica ciertos axiomas.
 - $p(\Omega) = 1$, $p(\emptyset) = 0$, $p(A \cup B) = p(A) + p(B) p(A \cap B)$

UNIVERSITAT POLITECNICA DE VALENCIA

Variables aleatorias reales

En control, usaremos variables aleatorias tomando valores en $\Omega \equiv \mathbb{R}$.

Ejemplo, x = "temperatura en Valencia el 15 de Septiembre a mediodía".

• No tiene sentido hablar de la probabilidad de un elemento concreto (la probabilidad de que x sea igual a 23.342396°C es CERO).

Función de densidad: La probabilidad de un evento, esto es, subconjunto (medible) de $S \subseteq \mathbb{R}$, es la integral en él de la función de densidad f(x):

$$p(S) := \int_{S} f(x) dx$$
 $p(\mathbb{R}) = \int_{-\infty}^{+\infty} f(x) dx = 1$

Esta definición de probabilidad de un evento verifica los axiomas que definen el espacio probabilístico asociado.

Función de distribución

El subconjunto S más "útil" en aplicaciones suele ser determinar la probabilidad de que x esté por debajo de un valor x_L ,

$$S_{low} := \{x : x \le x_L\}$$

$$F_{low}(x_L) := \int_{S_{torn}} f(x) dx = \int_{-\infty}^{x_L} f(x) dx$$

A $F_{low}(x_L)$ se le denomina **función de distribución** (función de distribución *acumulativa* o **cumulative distribution function** en inglés).

*Si queremos calcular la probabilidad de que x esté por encima de un valor límite x_L , $F_{up}(x_L)$, considerando $S_{up} := \{x : x > x_L\}$, tendríamos

$$F_{\mu\nu}(x_L) = 1 - F_{low}(x_L)$$

^{*}La probabilidad de que $x \in [a, b]$ sería $p([a, b]) = F_{low}(b) - F_{low}(a)$.

Ejemplos

- La función de distribución de un "dado no trucado" es $F(x_L) = x_L/6$.
- Distribución **uniforme** en un intervalo [a, b]: $x \sim U(a, b)$

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{en caso contrario} \end{cases} \qquad F(x_L) = \begin{cases} 0 & x < a \\ \frac{x_L - a}{b-a} & x \in [a,b] \\ 1 & x > b \end{cases}$$

• Distribución **normal** unidimensional: $x \sim N(m, \Sigma)$

$$f(x) = \frac{1}{\sqrt{2\pi\Sigma}} e^{-\frac{(x-m)^2}{2\Sigma}} \qquad F(x_L) = \int_{-\infty}^{x_L} f(x) \, dx = \underbrace{\operatorname{normcdf}(x_L, m, \Sigma)}_{\text{Matlab}}$$

Nota: Variables mixtas

Hay variables "mixtas" con probabilidad no cero de tener algunos valores determinados aislados \hat{x}_i , y "densidad" de probabilidad para otros.

Ejemplo: un sensor que satura en -5 y +5, ante una medida que toma valores reales, podría tener una probabilidad de 0.05 de valer -5, de 0.12 de valer +5 y probabilidad de estar en un intervalo $[a,b] \in (-5,5)$ calculada como integral de densidad.

► Son un "caso límite" donde se considera que la función de densidad tiende a " δ de Dirac" en \hat{x}_i . $\int_{-\epsilon}^{+\epsilon} \delta(x) dx = 1$, $\int_{-\infty}^{-\epsilon} \delta(x) dx = 0$, $\int_{+\epsilon}^{\infty} \delta(x) dx = 0$ Ejemplo:

$$f(x) = \underbrace{0.05 \cdot \delta(x+5) + 0.12 \cdot \delta(x-5)}_{discreta} + \underbrace{\begin{cases} 0.83/10 & -5 < x < 5 \\ 0 & \text{en caso contrario} \end{cases}}_{discreta}$$

continua, uniforme

*La δ de Dirac también aparece como "impulsos" en Física y en respuesta temporal de sistemas.

Conclusiones

- Variables aleatorias representan salidas $x \in \Omega$ de experimentos inciertos. Variables reales: $\Omega = \mathbb{R}$
- El espacio probabilístico se construye con la integral de "función de densidad" como medida de probabilidad.
- La función de distribución acumulativa, si se programa de forma eficiente, sirve para calcular probabilidades de intervalos rápidamente.
- Mixtas: componentes "impulsivos" de densidad.
- Casos particulares: uniforme, normal, ...

