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Abstract

In this paper, an analysis of the role of fuzzy logic
controllers is carried out. Its interpretation and the
conditions for successful implementation in several
eontrol structures, jointly with their advantages
and drawbacks with relation to other advanced con-
trol approaches are discussed.

- Keywords: Fuzzy control, fuzzy logic, advanced
process control.

1 Intr'cduction

Efficient control is tightly related to improvements
in the quality of industrial production processes. In
complex plants, a choice has to be made between
the various available strategies (conventional, fuzzy
and neural) developed in the last decade. In
the industry, neural network-based controllers with
learning capabilities are in a very initial stage. On
the other hand, users accept with ease and in-
terest a broad range of applications based in the
fuzzy logic paradigm, due to the parallelism with

the reasoning that operators do apply in some of

their decisions. The ability fuzzy systems pos
sess to explain their conclusion is an inherent user-
interaction advantage with respect to the rest of the
approaches. In the sequel, a detailed presentation

of those advantages and drawbacks will be one of

the main objectives of this work.

Granulafion is one of the key aspects in the ad-
vantageous success of fuzzy logic: the treatment
of information is divided in partially overlapping

clusters whose linguistic labels stand as symbols.
The creation of rules and exceptions produces a
reduced complexity description of a system. The
local model approaches to control [28] are somehow
related to fuzzy logic in that sense. Interpolation
complements granulation: smooth and simple 8ys-
tem descriptions are created.

The basic structure of any control system is as
depicted in figure 1, where two layers can be dis-
tinguished. At the local layer, the control function
is implemented. Usually this is an analogue (or
discretised) control action. The typical local con-
trollers are PID like controllers with a feedback,
feedforward or cascade structure. On the other
hand, at the upper layer, a decision is made about
either the operating conditions, the controller pa-
rameters, the proper structure of the local control
or even the control goals. This layer is a logic or
reasoning one and it is typically implemented by
means of a simple device {relay, selector), a PLC,
a piece of software c¢ode or a human action. One of
the advantages of the fuzzy logic controllers (FLC),
that is, controllers using the fuzzy logic concepts to
compute the control action, is the ability to com-
bine both layers activity: actions in both layers are
described in the same language.

Other than the basic control actions above men-
tioned, advanced control algorithms imply a more
complex control structure. Sorme of those with an
impact in practical applications [34] are based on:

s the internal structure of the process to be con-
trolled: State feedback, Decoupling, ...

@ the knowledge of the model of the process: In-
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Figure 1: Control structure.

ternal Model Consrol, Generalised Predictive
Contral, ...

o the controlled system uncertainties: Stochas-
tie, Adaptive and/or Robust control

s the nonlineszity of the process: Gain schednl-
ing, nonlinear controllers, feedback linearisa-
tion, ... .

The common characteristic of these approaches
is that they use ecrisp (or stochastic) information
for the description of both, the procass model and
the design criteria. In this sense, the user inter-
face can not be very friendly because the user must
Imow about the exact meaning of the parameters
o be tuned. This is one of the ressons why ba-
sic controllers (like PID ones) with easy to follow
sules of thumb for parameter tuning are so popular.
But, in many industrial applications, the knowl-
edge about the goals, the process, oF hoth, is just
approximated, and the interaction with the end-
user should be based on this kind of knowledge.
FLC are also able to provide an user-friendly inter-
face to some of these advanced control structures.
In & conventional control scheme, fuzzy systems can
algo carry out supervision tasks. '

The paper is organised as follows. The basic con-
cepts on fuzzy logic which are used in control are
reviewed in the pext section. The FLC’s structure
and operation are analysed in section 3. The difer-
ent approaches to degign a FL.C are outlined in sec-
tion 4. Then, some tools to develop and implement
a FLC, as well as some applications are discused
in section 5. Finally, a non-exhaustive summary of
advantages and drawbacks of FLC is presented.

2 Fuzzy Logic Systems

Since ancient Greek times (binary) logic has been

used to formalise reasoning, and a wide range of ap- R

plications are present in most industrial processes
cither as PLC's or as expert systems or decision .
trees based on propositional calculus or first-order
predicate logic axioms. Notwithstanding, an im-
portant aspect in industrial process control is un-
certainty modelling, and the treatment of qualita-
tive magnitudes not properly described by binary
concepts. In the particular area of logic, several
approaches have been devised to deal with the re-
ferred uncertzinty and ambiguousness: evidential -
reasoning [35], bavesian inference [36], certainty
facsors [7], rough sets {25}, and fuzzy logic [45] In -
some cases, uncertainty arises due to assumptions
that hold in most cases except a handful of excep- -
tions. Non-monotonic logic [16] deals with those
situations.

Tn the field of control design, the fuzzy logic al-

ternative is the one that has gaired most popular- -

ity. Fuzzy logic belongs to the clags of multivalued -
logics {30, 44).

2.1 Fuzzy sets

Fuzzy logic was originated as a legic of inexact or
ambiguous concepts. They are described by fuzay -
sets over a universe [/ that attain a membership

value p : U — [0, 1}. Thus, they are generalised or- '

‘dinary scts, which are described by a characteristic. ..

function £ : UV — {0,1}.

The meaning of that membership value (fuzzh -
nesg) can pose interpretation problems, and in par-
ticular, its relationship to the well~established con-. .
cept of probability. Some authors think of it as a :
particular @ priori bayesian probability assignment
[20]. In the particular case of industrial practice,
the possible interpretation as the knowladge the
control engineer has in mind, can lead to different
membership assignments to an element of the uni-
verse set, and from the formal point of view, some
operations can be allowed or forbidden depending .
on that interpretation. '

The interpretation of fuzziness can fall into the
following categories:

Probabilistic. The meaning of “the Temperature




is 0.7 High” could be that 70% of engineers
would say that the temperature being consid-
ered (for example, 80°C) is high, or that 70%
of them would propose an interval of temper-
atures considered high that would include the
referred value.

Metric. Fuzziness is considered as a kind of con-
ceptual distence that can be compared, added,
scaled, such that a distance of 1 means con-
trary concepts. -

Possibilistic. A fuzzy set is a distribution of the
“posgibility” that a variable attains a certain
numeric value given a purely lingnistic descrip-
tion. This is the interpretation of the fuzzy
modal logic approaches such as possibility the-
ory [12, 13] ' '

Others. Such as wutility (optimisation of an im-
plicit cost function in the mind of the designer)
or ordinality {only comparisons between logic
values are allowed).

The reader is referred to [14], for example, for a
more detailed discussion of these issues. The key
idea here is that membership assignment and its
interpretation can be one of the drawbacks of the
fuzzy approach. :

Fuzzy connectives. Conjunction, disjunction
and negation of fuzzy sets are described by triangu-
lar norms (T), conorms (S) and the 1-complement,
respectively:

paup(z) = T{pa(z), us (z))
tans(x) = S(palz), pn(z))
boalz) = 1— pa(z)

(1)

The relevant properties and a great set of those
norms and conorms can be found in [18, 42]. The
most prevalent choices are minimum and prod-
uct (as conjunctions) and the maximum (as dis-
junction). If other choices are used, they usu-

ally verify the De Morgan duality law: T(a,b) =
=(S(=a,~b)). More than a dozen of such pairings
(and some of them including infinite choices de-
pending on some parameters) can be found in the
cited references.

2.2 Rule-based fuzzy systems

In the context of industrial control and expert sys-
tems if fuzzy propositional calculus is applied, the
set of propositions to encode the knowledge is di-
vided into premises and rules. Premises are ob-
tained from either the user or a sensor input. Con-
clusions are obtained so they can be used as new
premises to ather rules. Rules are expressions usu-
ally in tmplication form: '

If z is A; (antecedent), Then y is B; (con-
sequent)

Antecedent and consequent can be atomic propo-
sition, as in the example or complex ones (only in
antecedent in most applications) formed by con-

junction and disjunction of atomic ones

Generalisation of the binary logic equivalences
for IMPLICATION (=) and DOUBLE IMPLICA-
TION (<), for example, -4 + B and -(A @ B)
respectively, to the fuzzy case is not obvious, glv-
ing also rise to various interpretations {19].

Errors in the definition of rules can originate
anomalies [28] such as redundancy, inconsistency,
incomplefeness, etc. Formal validation methods
should be set up in a general case to check for these
properties [31].

2.2.1 Evaluation of fuzzy systems

The evaluation process consists on extracting a nu-
meric conclusion from a set of data via a rulebase.
It is based on several steps.

Premise information is provided at the first step.

In ordinary inference, premises are propositions
with known logic value (in most cases, obtained by
Juzzification of sensor measurements). For exam-
ple, if N linguistic concepts (fuzzy sets) are de-
fined for a variable in a universe U, the fuzzifi-
cation operation transforms a crisp value u into
an N-length vector of fuzzy coordinates: FZ{u) =
(ﬂl ('M), ay #N(u))

The second step is rule evaluation (inference).
Several options are discussed in literature, such as
obtaining consequent fuzzy coordinates via a ma-
trix rule operator b = VL, 5 A pi(u), or ob-
taining individual consequent fuzzy sets pc, (y) =
I(IJ‘B.' (y): HA; (u))




The third step is the combination of conclusions
from individual rules, usually by means of a T-
conorm.

. The last step is defuzzification, i.e., the conver-
sion of fuzzy conclusion information to a crisp out-
put, needed to actually operate upon the process
being controlled. This operation can be carried out
with averaging formulae on the fuzzy coordinates b
(thus including in the same expression the previous
combination step) or otherwise operating on an ag-
gregated conclusion set obtained from individual C;
in the previous step. ‘

For further information on fuzzification-
inference-defuzzification schemes the reader is
referred to [18, 41, 42, 31}.

Generalised inference deals with obtaining con-
clusions from linguistic or ambiguous sensor input
expressed as fuzzy sets (interpreted as possibility
distributions). It is usually carried out by means
of compositional rules of inference [46].

QOne of the main concerns for real time operation
of rule based systems is the problem of dimension-
ality. If the number of rules, facts and variables is
high, the rule base should be very well structured
‘and debugged to avoid scheduling problems. That
claims for efficient ways of rule base inference and
validaticn.

Different choices in the selection of membership
functions, their assignment and interpretation, the
gelection of fuzzy connectives, the generalization of
logie eguivelencies as well as the many options in
the FLS evaluation introduce a great variety of pos-
gibilities but, in some sense, it results in a drawback
for an easy use

3 Fuzzy Logic Controllers

FLC can be considered as apprdrmated version of
alieady defined controilers or as a combination of a
number of operator strategies or controllers. In the
first, case, the function approximation property of
the fuzzy systems is used. In the second case, the
combination of reasoning and function approxima-
tion is exploited.

H.Jlmﬁ

3.1 Function approximators

In intelligent control applications {1, 4, 6], rule-
based fuzzy systems are in most cases used as fune.
tion approximators to emulate either a controller or
a plant model {for which some other fuzzy or non-
fuzzy control strategies may be devised).

The kind of models to be discussed in this paper
are those that can abide to the notion of locality or
granularity so that given an overall complex sys-
temn, its input space is decomposed into 7 granules”
with similar behaviour, being that behaviour given
by a “local description”. The local description may
be given by means of traditional functional expres-
sions or by alternatives such ag the fuzzy logic med-
els here discussed.

The core of the model definitions will be a static
model of a target function §: X — Y. This static
model will be defined via “granules” and “local de-
scription” as just mentioned, being the domain (in-
put universe) the plant state (or a reduced subset
of it) and/or the input variables. The output uni-
verse i3 either the control action (fuzzy regulator)
or the state space (fuzzy. model). Hence, dynamic
system models are obtained with the static function
f acting as part of a bigger structure such as:

&= f(z)

for continuous and discrete models, respectively
fi]. Delay lines are a common way of generat-
ing a state vector for discrete-time systems (ex-
tending FIR, ARMAX or BJ settings) and filter
banks (i e., noise-filtered measurements and trends
-derivatives-) for continuous-time ones.

Given a static function f : X — V¥, an order-0
fuzzy model of that function is defined as a set of
rules:

Try = f(x)

Hrigd; thenyis B; =1, . ,n
wherex € X,y € Y, and A;, B; are fuzzy subsets of
X and ¥ respectively, characterised by membership
functions g4, : X — {0,1] and pp, : ¥ = [0,1] ¥
formal validation is used for knowledge acquisition
supervision, the shape of the consequents has to
abide to certain requirements implied by the fuzzy
extension principle, even in the case that only cen-
troid and area information may be used for defuzzi-
fication [32].

In order to interprete a fuzzy system using the




notion of "locality”, the fuzzy sets A; must verify
certain restrictions:

o Distinguishability: different fuzzy sets should
correspond to different regions (granules) of
the input space. This can be expressed by:

iy
Y mafz)P <1

i=1

where p > 1 is a parameter for the restriction
strength.

‘o Convexity: Vi, 22 € X

pa;{ozy + (1 —a)zz) > min(ua,(#1), pa, (22))

e Coverage:

D pa(@P > 1

i=l

being in this case p < 1.

Add-1 partitions are a characteristic example of
locally-interpretable fuzzy set distributions. Multi-
dimensional partitions are usually constructed via
cartesian product of one-dimensional (triangular or
trapezoidal) add-1 partitions The curse of di-
mensionalify is present in many multivariable cases
{with 3 or more input variables). Gaussian cover-
ings are also often used, mainly in the neurofuzzy
context. Clustering techniques may avoid the ex-
ponential increase in the number of rules.

A key result ig the ability of fuzzy systerns to be
universal function approximators under mild con-
ditions (Stone-Weierstrass theorem [41]), ie., any
countinuous function in a compact set can be ap-
proximated within any desired error bound with a
certain number of rules (local models).

3.1.1 Tagaki-sugeno models

If the rules that model the function take the form:

If u is A;, then y is fi(u)
where f; : U — Y are component-models of the
function, then the fuzzy model is called Tagaki-
Sugeno model. K sets A4; are locally interpretable,
then f; are named "local models”.

i=1,...,0

The model output is usually obtained as a
weighted sum of the local-models output,

)= T ) fw)
E?:ml LA (u)

If fi(u) are constant, those models reduce to the
previously outlined ordinary inference averaging.
defuzzifier expressions. In that case, and also if
fi are linear in parameters, the whole fuzzy system
belongs to the class of linear in parameter approz-
tmators.

(2)

This kind of typology is very similar to some
widely referenced funetional-link or newro-fuzzy
systems [24, 17, 42]. :

3.2 FLC Structure

The simplest structure of a FLC is a direct transla-
tion of a fuzzy system used in real time It requires
a couple of input/output devices {the fuzzifier and
defuzzifier). to convert crisp data to fuzzy variables
and viceversa. As previously mentioned, the num-
ber of input (output) variables should be low (gen-
erally no more than two) to avoid an explosion in
the number of rules. Otherwise the controller res-
olution, related to the number of linguistic vari-

‘ables and its user-interpretability, or the comput-

ing time are questionable. The real-time operation
is a strong constraint for FLC. It does not allow for
the possibility of reasoning loops and, in general,
only one level of reasoning is used.

The structure of a fuzzy controller is depicted
in figure 2. Different controller structures can be
set up depending on the preprocessing and post-
processing operations, and the inference block must
meet, the real-time constraint above mentioned. For
example, a PID-like FI.C using a bidimensional in-
put space is depicted in figure 3. Several fuzzy con-
trollers can be combined in decentralized control

seipoinis

process state

Inference

R

Figure 2: Fuzzy regulator structure.
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Figure 3: PID-like fuzzy regulator.

gtrictures. Other variables can be present in the
rulebase acting, for example, as feedforward terms.

If the number of ruleg is very large, either because
the number of physical varisbles (state feedback
control, different modes of cperation) or that of the
fuzzy variables attached to ezch physical one is en-
larged, the rule base should be structured There
are three basic options:

o Hierarchy. This is the case if the ressoming
follows different levels of refining. For in-
stance, if the number of linguistic variables
is very high they could be accessed in two
steps. First it is determined if the physical
variable is positive/zero/negative and then if
it is large/medium /small. A eimilar treatment
can be planned for the case of many input vari-
ables, in which successive inputs refine the con-
clusicns of previous rulebases, so approximat-
ing a complex function via an expression such
as:

lF(E]_,xg,.Tg)=f1($1,f2($2,53)) (3)

in which f;, f2 are constructed by means of a
fuzzy system.

o Optional In this case, only a reduced number
of rules is applied, based on a previous level of
decision and selection. This is the typical case
for different and independent modes of opera-
tion. If the rule base is split into a number of
partial rulebases, one or two of them are fired
Their evaluation can be alsc combined to get
the final result. This approach can be used
in, for instance, in piecewise linearised control
of nonlinear systems. An example of the de-
scribed setting could be:

IF z; is True Then y = fi{x2,z3)
IF r; is False Then y = f2{z2,x3)

where f; and f2 are implemented as a reduceq
rule-get fuzzy controller.

o Multifunction. In large-scale nonlinear appli- -
cations, the rulebases can be divided into dif
ferent groups according to their goals, being
evaluated in a structured seguence. For in-
stance, there may be two groups: filtering or
state detection rules and action rules. Some
of the state detection rules may also act ag
mode of operation switches, as previously men-
tioned.

State detection:
¥ T, is High Then Yield i3 Low
IF Ty is Low Then Yield i3 Intermedicte

Action Rules:
T2 Yield i3 Low Then Increase €

4 TFuzzy Controller Design

As mentioned in the introduction, FLC is one of the
strategics devised to deal with control of systems
subject to uncertainty, based on symbolic (linguis-
tic, qualitative) information management for com-
plexity reduction.

The vse of fuzzy control at the decision or super-
vision level (fg. 1) is rather patural, as a way to
excpress reasoning basad on qualitstive information.
PID tuning [5] and adaptive control supervision [22]
are well referenced applications, .

Direct fuzzy control is suitable for application to:

e processes with modelling difficulties, either be-
cause it is unknown or it has a lot of adjustable
parameters,

¢ processes with ambiguous specifications,

e procesges zlready controlled by human opera-
torg to mimic them,

e processes with unreliable or imprecise sensor
measurements.

In structures where a fuzzy model of the process
is used, identification can be carried out by gradient
backpropagation, Levenberg-Marquardt and other
algorithms [9]. In linear in parameter-systems,
least-squares algorithms and dead-zone gradient
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methods can ensure a quick convergence [27]. In
recurrent structures {where some input compo-
nents are previous model outputs), dynamic back-
propagation has to be used, and backpropagation
through time should be used if target values are
delayed [44], as it is the case if the final positions
are specified. '

The plant controller design can be based on sev-
eral strategies: .

o Mimicking an expert operator knowledge: Ex-
amples of those are the applications fo cement
kilns [8] or waste water plants [39].

e Intuitive design of PID-like fuzzy controllers:
I processes are relatively fast in human per-
ception time-scale terms, operators have only
qualitative control information very similar to
the basic control actions. Many fuzzy sys-
tems are set up according to the structure de-
picted in figure 3. Depending on the values of
the scaling coefficients A,B,C and 1) different

. strategies (fuzzy-P,PLPD,PID) can be set up.
The rulebases are very similar in most cases,
and many optimisation schemes adapt only the
scaling coefficients. Only if the rulebases are
used to fine-tune asymmetric and nonlinear
characteristics (fot example, induding in the
rulebase the setpoint level} the performance of
these schemes can be substantially better than
that of conventional controllers [2].

e Porting any conventional controller into rule-
base form, due to the fact of the universal ap-
proximation property. Typical constructs in
this direction are fuzzy dead-zone-interpolated
sliding mode controllers {42]. Other references
[18] report pole assignment, state feedback,
etc.

. & FPuzzy combination of locally designed con-
trollers {local model approach). If local linear
controllers are devised for a plant described by
a modetl in the form (2}, then linear matrix in-
equality techniques can be used to test global
stability by searching for a common quadratic
Lyapunov function {37]. This is the inter-
polated generalisation of crisp switching con-
trolers for setpoint changes from a PLC.

o Direct and indirect adaptive -controllers.
Model reference adaptive controllers for affine

in control plants have been proposed, as well as
indirect approaches such as identification and
subsequent feedback linearisation. The reader
is referred to [41, 27] for details. Other model
predictive schemes can be adapted to previ-
ously identified fuzzy plant models.

e Direct learning and causal inversion of fuzzy
models via transforming the rules in a get of
equations [32]. Similarly, a neurofuzzy system
can directly learn plant inverses by switching
the role of input and output in the training
process.

e (Other neural-network related schemes based in
neurofuzzy equivalence (reinforcement learn-
ing, backpropagation through time) [17, 44,
23].

Global stability analysis may be carried out by
means of Lyapunov-La Salle theorems, passivity,
small gain theorem, phase plane analysis, etc. [3].
In this context, fuzzy systems are considered as or-
dinary nonlinear functions.

5 Controller implementation

The actual implementation of fuzzy logic con-
trollers has to be done via a piece of software on
a microprocessor-based system. Depending on the
level of interactivity with the end user, in the sense
of his ability and easé to modify controller param-
eters either in on-line or off-line operation (simula- -
tion), several solutions may be possible:

o Fuzzy logic in a chip. Specially designed DSP
chips, reading the controller parameters from a
tiny sized RAM or EPROM, can quickly carry
out simple fuzzy inferences [38, 43]. They may
implement certain fuzzy inference algorithms
or just perform a precompiled lookup table in-
terpolation.

e Intelligent PID regulators. Some companies
offer PID regulators with autotuning capabili-
ties implemented via a set of rules describing a
relation between overshoot, rise time, settling
time and controller parameter increments [5).

o Simple FLC routines. Non-generalised fuzzy
inference with centroidal defuzzification can be
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easily written into a short piece of code. This
code can ke part of a wider PLC-like control
gtructure, zs already used in the micrccon-
troller operations for photographic cameras or
washing machines. Its complexity is not much
grater than that of a conventional antiwindup-
PID. The execution time depends on the nume-
ber of rules.

e Design-tools. A lot of software packages have
been developed for desiga, implementation and
testing of FLC prototypes. Some of them are
libraries of general-purpose calculus packages
(fuzzy logic tcolbox for Matleb), and some
others are standalone applications (FULDEK
[10}, UNFUZZY [11],... ).

o (Real-time) Fuzzy ezpert systems. In large-

gcale applications with various control and su-
pesvision tasks, real-time expert systems have
been developed in which real-time specifica-
tions are combined with fuzzy and nonfuzzy
inference over large sets of rules (structured
in diferent layers of rulebases). Examples of
thoge are commercial packages (COGSYS, G2)
and cthers developed in scademia (RIGAS (8],
CONEZX [33]). Their flexibility is high but they
imply & high computing overkead and they do
not usually tacorporate simulation and design
tools.

5.1 Applications

The feld of epplications has been growing in the
Iast decade. Gther than the initial fuzzy controlof a
cement kiln, one of the pioner application propesed
by Mandami [21], fuzzy control has been applied

to a variety of processes. From appliances and do-

mestic devices {dishwashers, cameras, ...} to really
complex processes, such as wast-water treatment
[38]. The presence of biological and sometimes not
well understood processes call for approxdmate rea-
soning and computation.

The main point is the cooperative use of fuzzy
logic techniques together with other well-stablished
control techniques.

The hierarchical and integrated control structure
iz iilustrated by the cement kiln control system
RIGAS [8]. A number of controllers are provided

for each one of the manipulated variables. Accorg.

ing to the available computing time, always limiteq
in a realtime multipurpose control system, the most
guitable controller is selected and the best output
is computed and forwarded to the local actuators,

As previously mentioned, some PID controller

manufacturers provide some kind of autotuning in- 2

vaolving the use of reasoning and fuzzy logic imple
mentation [5]

Mobile robots trajectory planning and supervi-
gion is another field of application [15]. The un-

predictable and changing environment is a suitable

framework to use FLC.

6 Advantages and drawbacks

6.1 Advantages

Fuzzy logic is not the only way to reason with am-
biguous concepts but It secms to be the most apt

to function approximation in control engineering.

From the previous considerations, some of the most
important advantages the use of fuzzy logic can en-
tail to control system design are here detailed:

e Flexible, intuitive knowledge base design.
Control and supetvision speak the same lan-

guage.

¢ Convenient user interface, Easgier end-user in-
terpretation when the finzl user is not a control
engineer.

s Basy computation. Widely availabie toolboxes

and dedicated integrated circuits.

o Learning. Linear in parameter systems (in

most cases) make possible least squares, dead-
zone learning algorithms and other resulis
from adaptive control.

e Validation. Consistency, redundancy and com-
pleteness can be checked in rulebases (knowl

edge acquisition supervision). That could

spead up automated learning and improve user
interpretability

e Ambiguousness Fuzzy logicis a “natural” way -

of expressing uncertzain information. Research




must be done in reasoning with incomplete-
ness, i.e., concluding different actions depend-
ing on the possibility or necessity of certain
plant situations. Some tools for it are already
available [31].

e Combine regulation algorithms and logic
reasoning, allowing for integrated control
schemas,

o Tis conceptual model {granulation, soft com-
mutation [26]) has been used in many other
paradigms (RBFN, local models).

e FLC can incorporate a conventional design
(PID, state feedback) and fine-tune it to cer-
tain plant nonlinearities due to universal ap-
proximation capabilities.

6.2 Drawbacks

The previous discussion also points out that fuzzy
logic i3 not the perfect solution for all cases. Its
most relevant drawbacks may be summarised as fol-
lows:

e Experimental. Manual tuning in large-scale in-
dustrial applications. Time-consuming retun-
ing even il applied to a similar plant in other
location.

o Intuitive fuzzy PID-like design does not
clearly outperform well-tuned - conventional
controllers.

e The performance-robustness tradeoff iz not
usually taken into account in FLC tuning. Ro-
bustness is often assumed in FLC as a fun-
damental property but, in principle, that is a
false myth: mediocrely hand-tuned FLC hap-
pen to be robust because they do not exploit
to a full extent the nonlinear plant charac-
teristics so its performance is far from being
stringent and time-optimal. A non-aggressive
hand-tuned PID will share the same character-

istic: robustness is not a “natural” property of

fuzzy regulators.

¢ Many (localised) parameters. Manual local
tuning is tedious but it can be an advantage for
automated learning algorithms. A much gim-
pler global description may exist, being hidden
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by too detailed local descriptions. As in most
modelling situations, the compromise between
accuracy and readability may be present.

Many (unclear) options: thousands of differ-
ent fuzzy system configurations may arise de-
pending on conjunction, disjunction, implica-
tion and defuzzification choices. Some of the
alternatives even stem from the root interpre-
tation of the meaning of fuzziness.

Many actual implementations are just equiva-
lent to lookup-table interpolation schemes.

Commercial packages use non-standard file
formats, and have a huge software overhead
for simple applications.

Dimensionality Cartesian product of parti-
tions is the most used way of setting up an-
tecedents in multi-dimensional models. That
is a very inefficient and memory-intensive get-
ting for most functions (even linear ones).
Other approaches, such as multilayer neural
networks, can learn and generalise in a much
better way with a much more reduced set of
parameters (number of rules or neurones), at
the cost of a perhaps slower training progress
and less understandability If input data are
not evenly distributed on a highly dimensional
space, clustering prior to learning may be ad-
visable. :

The curse of dimensionality makes nearly im-
possible in practice to set up a rulebase with
more than three inputs (assuming from three
to nine seis over each of them) while pre-
serving end-user interpretability. If many in-
puts ar present, such as in control of com-
plex large-scale industrial processes, the fuzzy
system structure is set up as a collection of
chained rulebases, for example as a hierar-
chy of fuzzy observers (filtering and estimation
of unmeasured “state” variables), controllers
{action rules) and supervisors (mode changes,
anomalies detection) as previously discussed
in the FLC structure section. Decentralized
fuzzy controllers are also a way of dealing with
a great number of inputs and outputs. Clus-
tering techniques over experimental data can
help to reduce the number of rules, but at the




risk of losing the interpretability of the auto-
matically obtained classes. :

7 Conclusions

The paper has presented an outline of fuzzy logic
gystems and its use in control, oriented to raise the
discussion of advantages and diawbacks when com-
pared to other alternatives. The main conclusion
i3 that advanced nonfuzzy strategies can outper-
form FLC in processes with a detailed mathemat-
ical model to work with (for example, robotics).
However, in many industzy situations, where mod-
els are either inaccurate or totally absent, FLC can
integzate control and supervision tasks in a usa-

#riendly way, even accommodating PIDY strategies. -

For stringent specifications, manual or automated
learning can outperform conventional controtlers
but application of learning coentrollers ig still re-
gtricted o acedemia prototypes.
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