MÉTODOS MATEMÁTICOS II
INGENIERÍA AERONÁUTICA

NOTAS DE CLASE

Damián Ginestar Peiró

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA
DEL DISEÑO
DEPARTAMENTO DE MATEMÁTICA APLICADA
UNIVERSIDAD POLITÉCNICA DE VALENCIA
<table>
<thead>
<tr>
<th>Índice general</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ecuaciones hiperbólicas</td>
</tr>
<tr>
<td>1.1. Ecuación de ondas unidimensional</td>
</tr>
<tr>
<td>1.2. Problema de la cuerda ilimitada</td>
</tr>
<tr>
<td>1.3. Problema de la cuerda finita. Separación de variables</td>
</tr>
<tr>
<td>1.4. Vibraciones forzadas de una cuerda</td>
</tr>
<tr>
<td>1.4.1. Extremos fijos</td>
</tr>
<tr>
<td>1.4.2. Extremos móviles</td>
</tr>
<tr>
<td>1.5. Solución mediante Transformada de Laplace</td>
</tr>
<tr>
<td>1.6. Vibración de una membrana rectangular</td>
</tr>
<tr>
<td>1.7. Vibración de una membrana circular</td>
</tr>
<tr>
<td>1.7.1. Funciones de Bessel</td>
</tr>
<tr>
<td>1.7.2. Ceros de las funciones de Bessel</td>
</tr>
<tr>
<td>1.7.3. Ortogonalidad de las funciones de Bessel</td>
</tr>
<tr>
<td>1.7.4. Continuación del problema de la membrana circular</td>
</tr>
<tr>
<td>1.8. Ejercicios</td>
</tr>
<tr>
<td>2. Ecuaciones parabólicas</td>
</tr>
<tr>
<td>2.1. Ecuación del calor</td>
</tr>
<tr>
<td>2.2. Ecuación del calor para una varilla finita</td>
</tr>
<tr>
<td>2.2.1. Ecuación del calor sin fuentes</td>
</tr>
<tr>
<td>2.2.2. Ecuación del calor con fuentes</td>
</tr>
<tr>
<td>2.2.3. Condiciones de contorno no homogéneas</td>
</tr>
</tbody>
</table>
2.3. Transformada de Laplace .. 43
2.4. Ecuación del calor en un medio infinito 46
2.5. Problema de convección-difusión 50
 2.5.1. Problema de la convección pura 50
 2.5.2. Problema de convección-difusión 51
2.6. Ejercicios ... 52

3. Ecuaciones elípticas .. 54
 3.1. Introducción .. 54
 3.2. Ecuación de Laplace en coordenadas cartesianas 55
 3.3. Ecuación de Poisson en coordenadas cartesianas 57
 3.4. Soluciones fundamentales 58
 3.5. Ecuación de Laplace en un círculo 60
 3.6. Ecuación de Laplace en coordenadas esféricas 62
 3.6.1. Simetría azimutal 63
 3.7. Ejercicios .. 68

4. Métodos Numéricos para problemas de valor inicial 69
 4.1. Introducción .. 69
 4.2. Método del desarrollo en serie de Taylor 70
 4.3. Método de Euler ... 72
 4.4. Métodos de Runge-Kutta 75
 4.5. Métodos múltipaso .. 77
 4.5.1. Polinomio interpolador 78
 4.6. Ecuaciones rígidas ... 82
 4.6.1. Estabilidad lineal 82
 4.6.2. Métodos implícitos hacia atrás 84
 4.7. Ejercicios .. 85

5. Métodos Numéricos para problemas de contorno 87
5.1. Diferencias finitas ... 87
5.2. Diferencias finitas para problemas elípticos 89
5.3. Diferencias finitas para problemas parabólicos 90
5.4. Diferencias finitas para problemas hiperbólicos 93
5.5. Ecuación de convección-difusión 94
5.6. Técnicas variacionales 97
5.7. Introducción a los elementos finitos 100

6. Teoría de curvas ... 106
 6.1. Curvas planas .. 106
 6.1.1. Vector velocidad 107
 6.1.2. Curvas regulares 107
 6.1.3. Rectas tangente y normal en un punto 107
 6.1.4. Reparametrizaciones 107
 6.1.5. Curvas en implícitas 108
 6.1.6. Longitud de una curva 109
 6.1.7. Parámetro longitud de arco 110
 6.1.8. Díestro de Frenet 110
 6.1.9. Curvatura .. 111
 6.2. Curvas en el espacio 112
 6.2.1. Triédro de Frenet 113
 6.3. Ejercicios .. 124

7. Teoría de superficies 129
 7.1. Definición y conceptos básicos 129
 7.2. El plano tangente 132
 7.3. Primera forma fundamental 134
 7.4. Longitud de curvas en superficies 136
 7.5. Área de una superficie 137
 7.6. Orientabilidad de superficies 138
Capítulo 1

Ecuaciones hiperbólicas

Las ecuaciones de tipo hiperbólico están asociadas a problemas de tipo oscilatorio, como el problema de la vibración de una cuerda, la vibración de membranas, propagación de ondas electromagnéticas, etc.

En este tema, estudiaremos distintos problemas asociados a ecuaciones de tipo hiperbólico.

1.1. Ecuación de ondas unidimensional

Comenzaremos estudiando la ecuación de ondas unidimensional,

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} . \quad (1.1)$$

Veamos cómo es posible resolver esta ecuación mediante el método de d’Alembert. Se introducen las variables

$$\xi = x - at ,$$

$$\eta = x + at .$$
Teniendo en cuenta que
\[
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}, \\
\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \xi^2} + 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}, \\
\frac{\partial u}{\partial t} = a \left(\frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \right), \\
\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial \xi^2} - 2a^2 \frac{\partial^2 u}{\partial \xi \partial \eta} + a^2 \frac{\partial^2 u}{\partial \eta^2},
\]
la ecuación (1.1) queda
\[
\frac{\partial^2 u}{\partial \xi \partial \eta} = 0. \tag{1.2}
\]

La solución de la ecuación (1.2) es
\[
u = \int w(\xi) \, d\xi + \theta_2(\eta) = \theta_1(\xi) + \theta_2(\eta),
\]
donde \(\theta_1\) y \(\theta_2\) son funciones arbitrarias. La solución en función de las variables \(x\) y \(t\), queda
\[
u(x, t) = \theta_1(x - at) + \theta_2(x + at). \tag{1.3}
\]
A la solución (1.3) se le llama solución de d’Alembert para la ecuación de ondas.

La solución
\[
u_1 = \theta_1(x - at),
\]
representa una onda que se propaga en el sentido positivo del eje \(OX\) a una velocidad \(a\). Análogamente, la solución
\[
u_2 = \theta_1(x + at),
\]
representa una onda que se propaga en el sentido negativo del eje \(OX\) a una velocidad \(a\).

1.2. Problema de la cuerda ilimitada

Pretendemos hallar una función \(u(x, t) \in C^2(\mathbb{R})\), que sea solución del problema
\[
\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \quad x \in \mathbb{R}
\]
con las condiciones iniciales
\[u(x,0) = \varphi_0(x) , \quad \frac{\partial u}{\partial t}(x,0) = \varphi_1(x) , \]
donde \(\varphi_0(x) \) es una función \(C^2(\mathbb{R}) \) y \(\varphi_1(x) \) es \(C^1(\mathbb{R}) \).

Se supone que la solución buscada es de la forma
\[u(x,t) = \theta_1(x-at) + \theta_2(x+at) , \]
y se impone que \(\theta_1 \) y \(\theta_2 \) sean tales que se satisfagan las condiciones iniciales
\[u(x,0) = \theta_1(x) + \theta_2(x) = \varphi_0(x) , \quad (1.4) \]
\[\frac{\partial u}{\partial t}(x,0) = -a (\theta'_1(x) - \theta'_2(x)) = \varphi_1(x) . \quad (1.5) \]

Integrando la ecuación (1.5) respecto de \(x \),
\[\theta_1(x) - \theta_2(x) = -\frac{1}{a} \int_0^x \varphi_1(\hat{x}) \, d\hat{x} + C . \]

Usando la ecuación (1.4), se llega a que
\[\theta_1(x) = \frac{1}{2} \varphi_0(x) - \frac{1}{2a} \int_0^x \varphi_1(\hat{x}) \, d\hat{x} + \frac{C}{2} , \]
\[\theta_2(x) = \frac{1}{2} \varphi_0(x) + \frac{1}{2a} \int_0^x \varphi_1(\hat{x}) \, d\hat{x} - \frac{C}{2} , \]
con lo que la solución buscada es
\[u(x,t) = \frac{1}{2} (\varphi_0(x-at) + \varphi_0(x+at)) + \frac{1}{2a} \int_{x-at}^{x+at} \varphi_1(\hat{x}) \, d\hat{x} , \quad (1.6) \]
que es la solución de d’Alembert para la cuerda infinita.

Ejemplo 1.1 Obtener la solución del problema
\[\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} , \quad -\infty < x < +\infty , \quad 0 < t < +\infty , \]
con las condiciones
\[u(x,0) = 0 , \quad \frac{\partial u}{\partial t}(x,0) = xe^{-x^2} , \quad -\infty < x < +\infty . \]
Dibujar la forma de la solución para \(t = 1, \ t = 2 \) y \(t = 3 \).

Solución: Hemos visto que la solución de este problema es de la forma
\[u(x,t) = \frac{1}{2} \int_{x-t}^{x+t} ze^{-z^2} \, dz = \frac{1}{4} e^{-(x-t)^2} (-1 + e^{4tx}) . \]
El dibujo de la solución en los tres instantes pedidos se presenta en la Figura [1.1].
1.3. Problema de la cuerda finita. Separación de variables

Consideremos ahora el problema de la vibración de una cuerda de longitud l, que se plantea del modo siguiente: buscar la solución de la ecuación

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \quad t > 0, \quad 0 \leq x \leq l,$$

(1.7)

con las condiciones de frontera

$$u(0, t) = u(l, t) = 0,$$

(1.8)

y las condiciones iniciales

$$u(x, 0) = \varphi_0(x), \quad \frac{\partial u}{\partial t}(x, 0) = \varphi_1(x), \quad 0 \leq x \leq l.$$

(1.9)

Buscamos soluciones particulares de esta ecuación con la siguiente estructura

$$u(x, t) = X(x)T(t).$$

Este método para encontrar la solución se denomina método de separación de variables.

Así, la ecuación (1.7) se escribe

$$\frac{d^2 T(t)}{dt^2} X(x) = a^2 T(t) \frac{d^2 X(x)}{dx^2},$$

o bien,

$$\frac{1}{a^2} \frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)}.$$
Esta igualdad se podrá satisfacer solamente si los dos cocientes son iguales a una constante
\[\frac{1}{a^2} T''(t) = \frac{X''(x)}{X(x)} = -\lambda , \]
o sea, se ha de cumplir
\[T''(t) + a^2 \lambda T(t) = 0 , \]
\[X''(x) + \lambda X(x) = 0 . \]

Si imponemos las condiciones de frontera (1.8), tenemos
\[u(0,t) = X(0)T(t) = 0 , \quad u(l,t) = X(l)T(t) = 0 , \]
como \(T(t) \neq 0 \), en general, se ha de satisfacer
\[X(0) = 0 , \quad X(l) = 0 . \quad (1.10) \]

Hemos de resolver pues el problema
\[X''(x) + \lambda X(x) = 0 , \quad X(0) = 0 , \quad X(l) = 0 . \quad (1.11) \]
Este problema tiene la solución trivial \(X(x) = 0 \), para cualquier \(\lambda \). Nos interesa encontrar los valores de \(\lambda \) para los cuales el problema (1.11) tenga soluciones no triviales. A estos valores \(\lambda \) se les llama autovalores del problema, y a las correspondientes soluciones, \(X(x) \), se les llama autofunciones. Un problema del tipo (1.11), se llama un problema de Sturm-Liouville.

Es fácil ver que si \(\lambda \leq 0 \) no existen soluciones no triviales del problema de Sturm-Liouville. En el caso que \(\lambda > 0 \), la solución general de la ecuación
\[X''(x) + \lambda X(x) = 0 , \]
es de la forma
\[X(x) = C_1 \cos \left(\sqrt{\lambda} x \right) + C_2 \sen \left(\sqrt{\lambda} x \right) . \]

Imponiendo las condiciones de frontera (1.10), se tiene el sistema
\[C_1 \cos \left(\sqrt{\lambda} l \right) + C_2 \sen \left(\sqrt{\lambda} l \right) = 0 , \]
que tiene soluciones no triviales si se cumple
\[\begin{bmatrix} 1 & 0 \\ \cos \left(\sqrt{\lambda} l \right) & \sen \left(\sqrt{\lambda} l \right) \end{bmatrix} = \begin{bmatrix} \sen \left(\sqrt{\lambda} l \right) \\ \sen \left(\sqrt{\lambda} l \right) \end{bmatrix} = 0 . \]
Esta condición se satisface si
\[\sqrt{\lambda l} = n\pi, \ n = \pm 1, \pm 2 \ldots, \]
con lo que los posibles autovalores del problema son
\[\lambda_n = \left(\frac{n\pi}{l}\right)^2, \ n = \pm 1, \pm 2 \ldots, \] (1.12)
y las correspondientes autofunciones
\[X_n(x) = \text{sen}\left(\frac{n\pi}{l} x\right). \] (1.13)

Tomando el autovalor \(\lambda_n \), hemos de obtener la solución de
\[T''(t) + a^2 \lambda_n T(t) = 0, \]
que es de la forma
\[T_n(t) = A_n \cos\left(\frac{n\pi at}{l}\right) + B_n \text{sen}\left(\frac{n\pi at}{l}\right). \]

Por tanto, una solución del problema (1.7) será de la forma
\[u_n(x,t) = X_n(x)T_n(t), \]
o sea,
\[u_n(x,t) = A_n \cos\left(\frac{n\pi at}{l}\right) \text{sen}\left(\frac{n\pi}{l} x\right) + B_n \text{sen}\left(\frac{n\pi at}{l}\right) \text{sen}\left(\frac{n\pi}{l} x\right). \]

Como la ecuación de la cuerda (1.7) es lineal y homogénea, cualquier suma de soluciones del tipo \(u_n(x,t) \) será también solución de la ecuación. Por construcción, las soluciones del tipo \(u_n(x,t) \), satisfacen las condiciones de frontera (1.8). Falta obtener la solución que satisfaga las condiciones iniciales (1.9).

Suponemos, en principio, que la solución se puede expresar como la serie
\[u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos\left(\frac{n\pi at}{l}\right) + B_n \text{sen}\left(\frac{n\pi at}{l}\right) \right) \text{sen}\left(\frac{n\pi}{l} x\right), \] (1.14)
y que las sucesiones \(A_n \) y \(B_n \) son tales que la serie converge uniformemente. Entonces podemos calcular la derivada
\[\frac{\partial u}{\partial t} = \sum_{n=1}^{\infty} \frac{n\pi a}{l} \left(-A_n \text{sen}\left(\frac{n\pi at}{l}\right) + B_n \cos\left(\frac{n\pi at}{l}\right) \right) \text{sen}\left(\frac{n\pi}{l} x\right). \] (1.15)
Haciendo uso de las condiciones iniciales (1.9), se tiene

$\varphi_0(x) = \sum_{n=1}^{\infty} A_n \sin \left(\frac{n\pi x}{l} \right),$ \\
$\varphi_1(x) = \sum_{n=1}^{\infty} \frac{n\pi a}{l} B_n \sin \left(\frac{n\pi x}{l} \right).$

Utilizando la propiedad de ortogonalidad,

$$\int_0^l \sin \left(\frac{n\pi x}{l} \right) \sin \left(\frac{m\pi x}{l} \right) dx = \frac{l}{2} \delta_{n,m},$$

llegamos a las expresiones para los coeficientes

$$A_n = \frac{2}{l} \int_0^l \sin \left(\frac{n\pi x}{l} \right) \varphi_0(x) dx,$$ \\
$$B_n = \frac{2}{n\pi a} \int_0^l \sin \left(\frac{n\pi x}{l} \right) \varphi_1(x) dx.$$

Se puede demostrar que si $\varphi_0(x) \in C^3([0,l])$ y satisface las condiciones

$$\varphi_0(0) = \varphi_0(l) = 0, \quad \varphi_0''(0) = \varphi_0''(l) = 0,$$

y además $\varphi_1(x) \in C^2([0,l])$ y satisface la condición

$$\varphi_1(0) = \varphi_1(l) = 0,$$

entonces la serie (1.14), donde los coeficientes A_n y B_n vienen dados por

las expresiones (1.17) y (1.18), converge uniformemente, su suma admite

derivadas parciales continuas, y es solución del problema de la cuerda dado

por (1.7), (1.8) y (1.9).

Si las condiciones de regularidad de las condiciones iniciales, $\varphi_0(x) \in C^3([0,l])$ y $\varphi_1(x) \in C^2([0,l])$, no se satisfacen, se puede probar la convergencia de la serie (1.14), pero puede que no existan las derivadas parciales de su

suma, y entonces se habla de soluciones generalizadas al problema de la cuerda.

Ejemplo 1.2 Se pretende encontrar la solución del problema de la cuerda

vibrante, fija en los extremos, con las condiciones iniciales

$$\varphi_0(x) = \sin \left(\frac{\pi x}{l} \right) + 0,5 \sin \left(\frac{3\pi x}{l} \right),$$ \\
$$\varphi_1(x) = 0.$$
Solución: Como hemos visto, la solución será de la forma

\[u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos \left(\frac{n\pi at}{l} \right) + B_n \sin \left(\frac{n\pi at}{l} \right) \right) \sin \left(\frac{n\pi x}{l} \right) , \]

donde

\[A_n = \frac{2}{l} \int_0^l \varphi_0(x) \sin \left(\frac{n\pi x}{l} \right) \, dx = \]
\[= \frac{2}{l} \int_0^l \left(\sin \left(\frac{\pi x}{l} \right) + 0,5 \sin \left(\frac{3\pi x}{l} \right) \right) \sin \left(\frac{n\pi x}{l} \right) \, dx , \]
\[B_n = 0 . \]

Calculando las integrales, obtenemos que los únicos coeficientes no nulos son

\[A_1 = 1 , \quad A_3 = 0,5 . \]

Así, la solución del problema será

\[u(x,t) = \cos \left(\frac{\pi t}{l} \right) \sin \left(\frac{\pi x}{l} \right) + 0,5 \cos \left(\frac{3\pi t}{l} \right) \sin \left(\frac{3\pi x}{l} \right) . \]

Si tomamos \(l = 10, \ a = 1, \) tenemos

\[u(x,t) = \cos \left(\frac{\pi t}{10} \right) \sin \left(\frac{\pi x}{10} \right) + 0,5 \cos \left(\frac{3\pi t}{10} \right) \sin \left(\frac{3\pi x}{10} \right) , \]

En la Figura 1.2 mostramos la forma de la solución para distintos instantes de tiempo.

Figura 1.2: Solución de la cuerda vibrante libre para distintos instantes.
1.4. Vibraciones forzadas de una cuerda

1.4.1. Extremos fijos

Supongamos ahora que se tiene una cuerda fija en los extremos que se somete a la acción de una fuerza exterior. La ecuación que modeliza este problema es de la forma

\[\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) , \]

con las condiciones de frontera

\[u(0, t) = u(l, t) = 0 , \]

y las condiciones iniciales

\[u(x, 0) = \varphi_0(x) , \quad \frac{\partial u}{\partial t}(x, 0) = \varphi_1(x) , \quad 0 \leq x \leq l . \]

Para resolver este problema, se busca una solución en forma de suma

\[u(x, t) = v(x, t) + w(x, t) , \]

donde \(v(x, t) \) es solución de la ecuación no homogénea

\[\frac{\partial^2 v}{\partial t^2} = a^2 \frac{\partial^2 v}{\partial x^2} + f(x, t) , \]

que satisface las condiciones de frontera

\[v(0, t) = v(l, t) = 0 , \]

y las condiciones iniciales

\[v(x, 0) = 0 , \quad v_t(x, 0) = 0 , \]

mientras que \(w(x, t) \) es solución de la ecuación homogénea

\[\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} , \]

con las condiciones de frontera

\[w(0, t) = w(l, t) = 0 , \]
y las condiciones iniciales

\[\begin{align*}
 w(x,0) &= \varphi_0(x) , \quad w_t(x,0) = \varphi_1(x) . \\
\end{align*} \]

(1.27)

Ya hemos visto que la solución para \(w(x,t) \) es de la forma

\[w(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos \left(\frac{n\pi at}{l} \right) + B_n \sin \left(\frac{n\pi at}{l} \right) \right) \sin \left(\frac{n\pi x}{l} \right) , \]

donde

\[\begin{align*}
 A_n &= \frac{2}{l} \int_0^l \sin \left(\frac{n\pi x}{l} \right) \varphi_0(x) \, dx , \\
 B_n &= \frac{2}{n\pi a} \int_0^l \sin \left(\frac{n\pi x}{l} \right) \varphi_1(x) \, dx .
\end{align*} \]

(1.28)

(1.29)

Para encontrar la solución \(v(x,t) \), supondremos que se puede escribir como

\[v(x,t) = \sum_{n=1}^{\infty} T_n(t) \sin \left(\frac{n\pi x}{l} \right) , \]

(1.30)

y entonces la ecuación (1.22) se expresará como

\[\sum_{n=1}^{\infty} \left(T_n''(t) + \frac{n^2 \pi^2 a^2}{l^2} T_n(t) \right) \sin \left(\frac{n\pi x}{l} \right) = f(x,t) . \]

(1.31)

Supongamos que \(f(x,t) \) se puede escribir como un desarrollo en serie de amplitudes, que son funciones de \(t \) por las funciones espaciales que satisfacen las condiciones de contorno, o sea,

\[f(x,t) = \sum_{n=1}^{\infty} f_n(t) \sin \left(\frac{n\pi x}{l} \right) , \]

donde

\[f_n(t) = \frac{2}{l} \int_0^l f(\hat{x},t) \sin \left(\frac{n\pi \hat{x}}{l} \right) \, d\hat{x} . \]

A partir de la ecuación (1.31), obtenemos las ecuaciones

\[T_n''(t) + \frac{n^2 \pi^2 a^2}{l^2} T_n(t) = f_n(t) , \quad n = 1,2,\ldots . \]

(1.32)
Para que se satisfagan las condiciones iniciales (1.24), basta exigir que

\[T_n(0) = 0, \quad T_n'(0) = 0. \quad (1.33) \]

En efecto, usando (1.30) y (1.33), se llega a que \(v(x, 0) = 0, \quad v_t(x, 0) = 0. \)

Para resolver las ecuaciones (1.32), primero obtenemos las soluciones generales de las ecuaciones homogéneas

\[T_n''(t) + \frac{n^2 \pi^2 a^2}{l^2} T_n(t) = 0, \]

que son de la forma

\[(T_n(t))_h = C_1 \cos \left(\frac{n \pi a t}{l} \right) + C_2 \sin \left(\frac{n \pi a t}{l} \right). \]

Usando el método de variación de las constantes tenemos que la solución general de la ecuación no homogénea será de la forma

\[T_n(t) = C_1(t) \cos \left(\frac{n \pi a t}{l} \right) + C_2(t) \sin \left(\frac{n \pi a t}{l} \right), \quad (1.34) \]

donde \(C_1(t) \) y \(C_2(t) \) satisfacen las ecuaciones

\[C_1' \cos \left(\frac{n \pi a t}{l} \right) + C_2' \sin \left(\frac{n \pi a t}{l} \right) = 0 \]
\[C_1' \left(-\frac{n \pi a}{l} \sin \left(\frac{n \pi a t}{l} \right) \right) + C_2' \left(\frac{n \pi a}{l} \cos \left(\frac{n \pi a t}{l} \right) \right) = f_n(t). \]

Resolviendo el sistema e integrando, obtenemos que

\[C_1(t) = -\frac{l}{n \pi a} \int_0^t f_n(\tau) \sin \left(\frac{n \pi a \tau}{l} \right) d\tau + K_1, \]
\[C_2(t) = \frac{l}{n \pi a} \int_0^t f_n(\tau) \cos \left(\frac{n \pi a \tau}{l} \right) d\tau + K_2. \]

Sustituyendo en la ecuación (1.34) e imponiendo las condiciones iniciales (1.33), se llega a que

\[T_n(t) = \frac{l}{n \pi a} \int_0^t f_n(\tau) \sin \left(\frac{n \pi a (t - \tau)}{l} \right) d\tau, \quad k = 1, 2, \ldots. \quad (1.35) \]
Por tanto, la solución del problema de partida (1.19), (1.20), y (1.21) se expresa como

\[u(x, t) = \sum_{n=1}^{\infty} T_n(t) \sin \left(\frac{n\pi x}{l} \right) + \sum_{n=1}^{\infty} \left(A_n \cos \left(\frac{n\pi at}{l} \right) + B_n \sin \left(\frac{n\pi at}{l} \right) \right) \sin \left(\frac{n\pi x}{l} \right), \] (1.36)

donde los \(T_n(t) \) vienen dados por la expresión (1.35), y los coeficientes \(A_n \) y \(B_n \) por las expresiones (1.28) y (1.29), respectivamente.

Se puede ver que si \(\varphi_0(x) \in C^3([0, l]), \varphi_1(x) \in C^2([0, l]) \) y \(f(x, t) \) es continua, tiene derivadas parciales hasta segundo orden inclusive y para todo \(t \), cumple las condiciones \(f(0, t) = f(l, t) = 0 \), entonces la serie solución (1.36) converge uniformemente y su suma es la solución del problema de la cuerda forzada.

Ejemplo 1.3 Resolver el problema forzado

\[
\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \sin \left(\frac{\pi x}{10} \right), \quad 0 \leq x \leq 10 ,
\]

con las condiciones de frontera \(u(0, t) = u(10, t) = 0 \) y las condiciones iniciales

\[
u(x, 0) = \sin \left(\frac{\pi x}{10} \right) + 0.5 \sin \left(\frac{3\pi x}{10} \right), \quad u_t(x, 0) = 0 .
\]

Solución: Como se ha expuesto antes, se busca una solución de la forma

\[u(x, t) = v(x, t) + w(x, t) . \]

En el ejemplo 1.2 ya hemos visto que la solución libre era

\[w(x, t) = \cos \left(\frac{\pi t}{10} \right) \sin \left(\frac{\pi x}{10} \right) + 0.5 \cos \left(\frac{3\pi t}{10} \right) \sin \left(\frac{3\pi x}{10} \right) . \]

La solución \(v(x, t) \) es de la forma

\[v(x, t) = \sum_{n=1}^{\infty} T_n(x) \sin \left(\frac{n\pi x}{10} \right) , \]

donde

\[T_n(x) = \frac{10}{n\pi} \int_{0}^{t} f_n(\tau) \sin \left(\frac{n\pi(t - \tau)}{10} \right) d\tau . \]
Como

\[f_n(t) = \frac{2}{10} \int_0^{10} \sin \left(\frac{\pi \hat{x}}{10} \right) \sin \left(\frac{n \pi \hat{x}}{10} \right) \, d\hat{x} = \delta_{1,n} , \]

se tiene que sólo hay un \(T_n(t) \) no nulo, que es

\[T_1(t) = \frac{10}{\pi} \int_0^t \sin \left(\frac{\pi (t - \tau)}{10} \right) \, d\tau = \frac{200}{\pi^2} \, \text{sen}^2 \left(\frac{\pi t}{20} \right) , \]

y

\[v(x,t) = \frac{200}{\pi^2} \, \text{sen}^2 \left(\frac{\pi t}{20} \right) \, \text{sen} \left(\frac{\pi x}{10} \right) . \]

La solución del problema será

\[u(x,t) = \cos \left(\frac{\pi t}{10} \right) \, \text{sen} \left(\frac{\pi x}{10} \right) + 0,5 \cos \left(\frac{3 \pi t}{10} \right) \, \text{sen} \left(\frac{3 \pi x}{10} \right) + \frac{200}{\pi^2} \, \text{sen}^2 \left(\frac{\pi t}{20} \right) \, \text{sen} \left(\frac{\pi x}{10} \right) . \]

En la Figura 1.3 mostramos la forma de la solución para distintos instantes de tiempo.

Figura 1.3: Solución de la cuerda vibrante forzada para distintos instantes.

1.4.2. Extremos móviles

Ahora consideramos el problema donde las condiciones de frontera no son cero. Esto es, trataremos de resolver el problema

\[\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x,t) , \] \hspace{1cm} (1.37)
con las condiciones de frontera

\[u(0, t) = \psi_1(t) , \quad u(l, t) = \psi_2(t) , \] (1.38)
y las condiciones iniciales

\[u(x, 0) = \varphi_0(x) , \quad \frac{\partial u}{\partial t}(x, 0) = \varphi_1(x) , \quad 0 \leq x \leq l . \] (1.39)

Lo primero que hay que hacer es obtener un problema con condiciones de frontera nulas u homogéneas. Para ello, se introduce la función auxiliar

\[z(x, t) = \psi_1(t) + (\psi_2(t) - \psi_1(t)) \frac{x}{l} , \] (1.40)
que cumple

\[z(0, t) = \psi_1(t) , \quad z(l, t) = \psi_2(t) . \]

Se busca una solución del problema (1.37) de la forma

\[u(x, t) = v(x, t) + z(x, t) . \]

Así, las condiciones de frontera que ha de satisfacer \(v(x, t) \), son homogéneas, o sea, \(v(0, t) = v(l, t) = 0 \).

Las condiciones iniciales serán

\[
\begin{align*}
v(x, 0) &= u(x, 0) - z(x, 0) = \varphi_0(x) - \psi_1(0) - ((\psi_2(0) - \psi_1(0)) \frac{x}{l} = \tilde{\varphi}_0(x) , \\
v_t(x, 0) &= \varphi_1(x) - \psi_1'(0) - (\psi_2(0) - \psi_1(0)) \frac{x}{l} = \tilde{\varphi}_1(x) .
\end{align*}
\]

La ecuación para la nueva función \(v(x, t) \) es de la forma

\[
\frac{\partial^2 v}{\partial t^2} = a^2 \frac{\partial^2 v}{\partial x^2} + f_1(x, y) ,
\]
donde

\[
f_1(x, t) = f(x, t) - \psi''_1(t) - (\psi''_2(t) - \psi''_1(t)) \frac{x}{l} .
\]
Hemos pues reducido el problema de las oscilaciones de la cuerda forzada con extremos móviles a un problema con condiciones de frontera homogéneas, que ya hemos estudiado.

Ejemplo 1.4 Resolver el problema

\[
\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} , \quad 0 \leq x \leq l ,
\] (1.41)
con las condiciones de frontera

\[u(0, t) = 0 , \quad u(l, t) = t , \]

y las condiciones

\[u(x, 0) = 0 , \quad u_t(x, 0) = 0 . \]

Solución: Introducimos la función auxiliar

\[z(x, t) = \frac{tx}{l} , \]

y probamos una solución de la forma

\[u(x, t) = v(x, t) + \frac{tx}{l} . \]

La ecuación (1.41) se escribe

\[\frac{\partial^2 v}{\partial t^2} = \frac{\partial^2 v}{\partial x^2} , \]

con condiciones de frontera homogéneas y las condiciones iniciales

\[v(x, 0) = 0 , \quad v_t(x, 0) = -\frac{x}{l} . \]

La solución de este problema es de la forma

\[v(x, t) = \sum_{n=1}^{\infty} \left(A_n \cos \left(\frac{n\pi t}{l} \right) + B_n \sen \left(\frac{n\pi t}{l} \right) \right) \sen \left(\frac{n\pi x}{l} \right) , \]

con \(A_n = 0 \) y

\[B_n = \frac{2}{n\pi} \int_0^l \sen \left(\frac{n\pi x}{l} \right) \left(-\frac{x}{l} \right) dx = \frac{2l(-1)^n}{n^2\pi^2} , \]

luego la solución del problema inicial es

\[u(x, t) = \frac{xt}{l} + \sum_{n=1}^{\infty} \frac{2l(-1)^n}{n^2\pi^2} \sen \left(\frac{n\pi t}{l} \right) \sen \left(\frac{n\pi x}{l} \right) . \]
1.5. Solución mediante Transformada de Laplace

Los problemas lineales en los que el tiempo varía entre \(0\) y \(+\infty\), en general, admiten una solución formal haciendo uso de la Transformada de Laplace. El que se obtenga una expresión cerrada para la solución del problema dependerá de si es posible obtener la Transformada de Laplace inversa de una cierta función.

Para utilizar el método de la Transformada de Laplace tenemos en cuenta que si \(L[u(x,t)] = U(x,s)\), podemos escribir para las derivadas espaciales
\[
L \left[\frac{\partial u}{\partial x} \right] = \frac{d}{dx} U(x,s) , \quad L \left[\frac{\partial^2 u}{\partial x^2} \right] = \frac{d^2}{dx^2} U(x,s) , \tag{1.42}
\]
y para las derivadas temporales
\[
L \left[\frac{\partial u}{\partial t} \right] = sU(x,s) - u(x,0) , \quad L \left[\frac{\partial^2 u}{\partial t^2} \right] = s^2U(x,s) - su(x,0) - u_t(x,0) . \tag{1.43}
\]
Estas identidades permiten pasar de la ecuación en derivadas parciales inicial a una ecuación diferencial ordinaria para \(U(x,s)\). Una vez resuelta la ecuación ordinaria, la solución \(u(x,t) = L^{-1}\left[U(x,s)\right]\). Veamos un ejemplo.

Ejemplo 1.5 Resolver la ecuación
\[
\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} , \tag{1.44}
\]
dado que

a) \(u(x,0) = 0\) cuando \(x > 0\).

b) \(u_t(x,0) = xe^{-\frac{x}{c}}\) cuando \(x \geq 0\).

c) \(u(0,t) = 0\) cuando \(t \geq 0\).

d) \(u(x,t) \rightarrow 0\) cuando \(x \rightarrow \infty\) y \(t \geq 0\).

Solución: Tomando la Transformada de Laplace de la ecuación \((1.44)\) y usando las igualdades \((1.42)\) y \((1.43)\), se llega a la ecuación
\[
c^2 \frac{d^2}{dx^2} U(x,s) = s^2U(x,s) - xe^{-\frac{x}{c}} ,
\]
cuya solución general es de la forma

\[U(x, s) = A e^{\frac{sx}{c}} + B e^{-\frac{sx}{c}} - \frac{e^{-\frac{x}{s}}}{\frac{c^2}{a^2} - s^2} \left(x + \frac{2c^2}{a^2} \right) , \]

donde A y B son constantes arbitrarias.

Haciendo uso de las condiciones de contorno se llega a que

\[A = 0 , \quad B = \frac{2c^2}{\left(\frac{c^2}{a^2} - s^2 \right)^2} , \]

con lo que

\[U(x, s) = \frac{2c^2}{\left(\frac{c^2}{a^2} - s^2 \right)^2} e^{-\frac{sx}{c}} - \frac{e^{-\frac{x}{s}}}{\frac{c^2}{a^2} - s^2} \left(x + \frac{2c^2}{a^2} \right) . \]

Tomando la Transformada inversa de Laplace se llega a que

\[u(x, t) = \frac{a}{c} \left(ct - x \right) \cosh \left(\frac{ct - x}{a} \right) H(ct - x) - cte^{-\frac{x}{a}} \cosh \left(\frac{ct}{a} \right) + \frac{a}{c} \left(e^{-\frac{x}{a}} (x + a) \sinh \left(\frac{ct}{a} \right) - a \sinh \left(\frac{ct - x}{a} \right) \right) H(ct - x) , \]

donde \(H(t) \) es la función paso de Heaviside.

1.6. Vibración de una membrana rectangular

La ecuación que modeliza las vibraciones de una membrana, es de la forma

\[\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) , \quad (x, y) \in [0, l_1] \times [0, l_2] . \] \hspace{1cm} (1.45)

Suponemos que las condiciones de frontera son

\[u(x, 0, t) = 0 , \quad u(x, l_2, t) = 0 , \quad x \in [0, l_1] , \]
\[u(0, y, t) = 0 , \quad u(l_1, y, t) = 0 , \quad y \in [0, l_2] , \] \hspace{1cm} (1.46)

y las condiciones iniciales

\[u(x, y, 0) = \varphi_0(x, y) , \quad u_t(x, y, 0) = \varphi_1(x, y) . \] \hspace{1cm} (1.47)
Se utiliza el método de separación de variables y se buscan soluciones de la forma

\[u(x, y, t) = X(x)Y(y)T(t) . \]

La ecuación (1.45) queda

\[\frac{d^2T(t)}{dt^2} X(x)Y(y) = a^2 \left(T(t) \frac{d^2X(x)}{dx^2} Y(y) + T(t) X(x) \frac{d^2Y(y)}{dy^2} \right) , \]

o bien,

\[\frac{1}{a^2} \frac{d^2T}{dt^2} = \left(\frac{d^2X}{dx^2} + \frac{d^2Y}{dy^2} \right) = -\lambda . \]

Se buscan soluciones de la forma

\[\frac{d^2T}{dt^2} + a^2 \lambda T = 0 , \]

\[\frac{d^2X}{dx^2} + \mu X = 0 , \]

\[\frac{d^2Y}{dy^2} + \nu Y = 0 , \]

con \(\lambda = \mu + \nu . \)

Imponiendo las condiciones de frontera (1.46), se llega a que \(X \) e \(Y \) satisfacen las condiciones

\[X(0) = X(l_1) = 0 , \quad Y(0) = Y(l_2) = 0 . \]

Razonando de igual modo a como se hace en el problema de la cuerda unidimensional, se tiene que los posibles valores de \(\mu \) y \(\nu \) para que haya solución no trivial, son

\[\mu_n = \left(\frac{n\pi}{l_1} \right)^2 , \quad \nu_m = \left(\frac{m\pi}{l_2} \right)^2 , \]

y, por tanto, los autovalores del problema son

\[\lambda_{n,m} = \pi^2 \left(\frac{n^2}{l_1^2} + \frac{m^2}{l_2^2} \right) , \quad n, m = 1, 2, \ldots , \quad (1.48) \]

y las correspondientes autofunciones son,

\[X_n(x)Y_m(y) = \text{sen} \left(\frac{n\pi x}{l_1} \right) \text{sen} \left(\frac{m\pi y}{l_2} \right) . \quad (1.49) \]
Queda resolver la ecuación
\[\frac{d^2T}{dt^2} + a^2\lambda_{n,m} T = 0 , \]
cuya solución general es
\[T_{n,m}(t) = A_{n,m} \cos \left(a\sqrt{\lambda_{n,m}} t \right) + B_{n,m} \sin \left(a\sqrt{\lambda_{n,m}} t \right) . \]

Por tanto, podemos escribir la solución del problema de la membrana rectangular como
\[u(x,y,t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(A_{n,m} \cos \left(a\sqrt{\lambda_{n,m}} t \right) + B_{n,m} \sin \left(a\sqrt{\lambda_{n,m}} t \right) \right) \times \]
\[\times \sin \left(\frac{n\pi x}{l_1} \right) \sin \left(\frac{m\pi y}{l_2} \right) ; \quad (1.50) \]
lad derivada
\[u_t(x,y,t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(-a\sqrt{\lambda_{n,m}} \right) \left(A_{n,m} \sin \left(a\sqrt{\lambda_{n,m}} t \right) \right)
- B_{n,m} \cos \left(a\sqrt{\lambda_{n,m}} t \right) \sin \left(\frac{n\pi x}{l_1} \right) \sin \left(\frac{m\pi y}{l_2} \right) . \quad (1.51) \]

Utilizando las condiciones iniciales \([1.47]\), se llega a que
\[A_{n,m} = \frac{4}{l_1 l_2} \int_0^{l_1} dx \int_0^{l_2} dy \varphi_0(x,y) \sin \left(\frac{n\pi x}{l_1} \right) \sin \left(\frac{m\pi y}{l_2} \right) , \]
\[B_{n,m} = \frac{4}{l_1 l_2 a\sqrt{\lambda_{n,m}}} \int_0^{l_1} dx \int_0^{l_2} dy \varphi_1(x,y) \sin \left(\frac{n\pi x}{l_1} \right) \sin \left(\frac{m\pi y}{l_2} \right). \quad (1.52) \]

1.7. Vibración de una membrana circular

Como hemos visto en la sección anterior, la ecuación que modeliza la vibración de una membrana es de la forma
\[\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) . \quad (1.53) \]
La membrana que consideraremos ahora tiene forma circular, por tanto, será conveniente expresar la ecuación en coordenadas polares, definidas por

\[
x = r \cos(\theta), \quad y = r \sen(\theta).
\] (1.54)

Para escribir la ecuación (1.53) en coordenadas polares, tenemos en cuenta que

\[
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x},
\]

\[
\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial y}.
\]

Derivando (1.54) respecto de \(x\), obtenemos las ecuaciones

\[
1 = \frac{\partial r}{\partial x} \cos(\theta) - r \sen(\theta) \frac{\partial \theta}{\partial x},
\]

\[
0 = \frac{\partial r}{\partial x} \sen(\theta) + r \cos(\theta) \frac{\partial \theta}{\partial x},
\] (1.55)

y derivando (1.54) respecto de \(y\), obtenemos

\[
0 = \frac{\partial r}{\partial y} \cos(\theta) - r \sen(\theta) \frac{\partial \theta}{\partial y},
\]

\[
1 = \frac{\partial r}{\partial y} \sen(\theta) + r \cos(\theta) \frac{\partial \theta}{\partial y}.
\] (1.56)

Resolviendo los sistemas (1.55) y (1.56) se tiene

\[
\frac{\partial r}{\partial x} = \cos(\theta), \quad \frac{\partial \theta}{\partial x} = -\frac{1}{r} \sen(\theta), \quad \frac{\partial r}{\partial y} = \sen(\theta), \quad \frac{\partial \theta}{\partial y} = \frac{1}{r} \cos(\theta).
\] (1.57)

Utilizando

\[
\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial r} \right) \frac{\partial r}{\partial x} + \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial \theta} \right) \frac{\partial \theta}{\partial x},
\]

\[
\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial r} \right) \frac{\partial r}{\partial y} + \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial \theta} \right) \frac{\partial \theta}{\partial y},
\]

y las igualdades (1.57) se llega a que

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.
\] (1.58)
De este modo, el problema de las vibraciones de la membrana circular se formula del modo siguiente: resolver la ecuación

\[
\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right),
\]

donde \(u(r, \theta, t) \) es una función \(2\pi \)-periódica en la variable \(\theta \).

Se supone que la membrana está fija en el contorno, o sea, se satisface la condición de frontera

\[
u(r_0, \theta, t) = 0 ,
\]

y, además, que se cumplen las condiciones iniciales

\[
u(r, \theta, 0) = f_1(r, \theta) , \quad u_t(r, \theta, 0) = f_2(r, \theta) .
\]

Para resolver el problema, se usa el método de separación de variables y se buscan soluciones de la forma

\[
u(r, \theta, t) = T(t)R(r)\Theta(\theta) ,
\]

con lo que la ecuación [1.59], se expresa como

\[
\frac{1}{a^2} \frac{T''}{T} = \frac{R''}{R} + \frac{1}{r} \frac{R'}{R} + \frac{1}{r^2} \frac{\Theta''}{\Theta} = -\lambda .
\]

Buscamos soluciones para \(\Theta(\theta) \) de la forma

\[
\Theta'' + \nu \Theta = 0 .
\]

Por la naturaleza de la solución \(\Theta(\theta) \) es una función \(2\pi \)-periódica. Por ello, se ha de cumplir que

\[
\nu > 0 \quad \text{y} \quad \sqrt{\nu} = n , \quad n = 1, 2, \ldots ,
\]

con lo que la solución general del problema [1.63] es

\[
\Theta_n(\theta) = A_n \cos(n\theta) + B_n \sin(n\theta) .
\]

Sustituyendo en la ecuación [1.62], se tiene que resolver

\[
R'' + \frac{1}{r} R' + \left(\lambda - \frac{n^2}{r^2} \right) R = 0 .
\]
1.7.1. Funciones de Bessel

Partimos de una ecuación de Bessel de la forma

$$R'' + \frac{1}{r} R' + \left(1 - \frac{\alpha^2}{r^2} \right) R = 0 .$$ \hspace{1cm} (1.65)

Para resolverla se utiliza el método de Frobenius, o sea, se prueban soluciones de la forma

$$R(r) = \sum_{k=0}^{\infty} a_k r^{k+p} ,$$

con

$$R'(r) = \sum_{k=0}^{\infty} a_k (k+p)r^{k+p-1} ,$$

$$R''(r) = \sum_{k=0}^{\infty} a_k (k+p)(k+p-1)r^{k+p-2} .$$

Sustituyendo en la ecuación (1.65), tenemos

$$\sum_{k=0}^{\infty} a_k (k+p)(k+p-1)r^{k-2+p} + \sum_{k=0}^{\infty} a_k (k+p)r^{k-2+p}$$

$$+ \sum_{k=0}^{\infty} a_k r^{k+p} - \alpha^2 \sum_{k=0}^{\infty} a_k r^{k-2+p} = 0 ,$$

que se reescribe como

$$a_0 \left(p^2 - \alpha^2 \right) r^{-2+p} + a_1 \left((p+1)^2 - \alpha^2 \right) r^{-1+p}$$

$$+ \sum_{m=0}^{\infty} \left(a_{m+2} \left((m+2+p)^2 - \alpha^2 \right) + a_m \right) r^{m+p} = 0 .$$

Si suponemos que $a_0 \neq 0$, se tiene $p = \pm \alpha y$, por tanto $a_1 = 0$. También se tiene la relación

$$a_{m+2} = - \frac{a_m}{(m+2+p)^2 - \alpha^2} .$$

Así, como $a_1 = 0$ los términos impares son nulos y, si tomamos $p = \alpha$, los
términos pares son de la forma

\[a_2 = \frac{-a_0}{(2 + \alpha)^2 - \alpha^2} = \frac{-a_0}{2 \cdot 2(\alpha + 1)}, \]

\[a_4 = \frac{-a_2}{(4 + \alpha)^2 - \alpha^2} = \frac{-a_2}{2 \cdot 4(\alpha + 2)} = \frac{a_0}{2^2 \cdot 2 \cdot 4(\alpha + 1)(\alpha + 2)}, \]

\[a_6 = \frac{-a_4}{(6 + \alpha)^2 - \alpha^2} = \frac{-a_4}{2 \cdot 6(\alpha + 3)} = \frac{-a_0}{2^4 \cdot 2 \cdot 4 \cdot 6(\alpha + 1)(\alpha + 2)(\alpha + 3)}, \]

en general,

\[a_{2l} = (-1)^l \frac{a_0}{2^{2l} l!(\alpha + 1)(\alpha + 2) \cdots (\alpha + l)}, \quad l = 1, 2, \ldots. \]

Como \(a_0 \) es arbitrario, se puede elegir como

\[a_0 = \frac{1}{2^\alpha \Gamma(\alpha + 1)}, \]

donde se ha introducido la función \(\Gamma \) de Euler

\[\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} \, dx, \]

que cumple,

\[\Gamma(\alpha + 1) = \alpha \Gamma(\alpha). \]

Utilizando este \(a_0 \), obtenemos una solución de la ecuación de Bessel (1.65) de la forma

\[J_\alpha(r) = \left(\frac{r}{2} \right)^\alpha \left(\frac{1}{\Gamma(\alpha + 1)} - \frac{1}{\Gamma(\alpha + 2)} \left(\frac{r}{2} \right)^2 + \frac{1}{2 \Gamma(\alpha + 3)} \left(\frac{r}{2} \right)^4 - \cdots \right) \]

\[= \left(\frac{r}{2} \right)^\alpha \sum_{k=0}^\infty \frac{(-1)^k}{k! \Gamma(\alpha + k + 1)} \left(\frac{r}{2} \right)^{2k}. \quad (1.66) \]

Si se repiten los mismos cálculos con \(p = -\alpha \) y eligiendo

\[a_0 = \frac{1}{2^{-\alpha} \Gamma(-\alpha + 1)}, \]

se llega a otra posible solución

\[J_{-\alpha}(r) = \left(\frac{r}{2} \right)^{-\alpha} \left(\frac{1}{\Gamma(-\alpha + 1)} - \frac{1}{\Gamma(-\alpha + 2)} \left(\frac{r}{2} \right)^2 + \frac{1}{2 \Gamma(-\alpha + 3)} \left(\frac{r}{2} \right)^4 - \cdots \right). \quad (1.67) \]

Las funciones \(J_\alpha(r) \) y \(J_{-\alpha}(r) \) se denominan las funciones de Bessel de primera especie.

Se tienen las siguientes posibilidades, según el valor de \(\alpha \),
1) Si α es no nulo y tampoco es un número entero, entonces la solución general de la función de Bessel (1.65) es de la forma

$$R(r) = C_1J_\alpha(r) + C_2J_{-\alpha}(r),$$

donde C_1 y C_2 son constantes arbitrarias.

2) Si $\alpha = 0$, las dos funciones de Bessel coinciden con

$$J_0(r) = 1 - \left(\frac{r}{2}\right)^2 + \frac{1}{(2!)^2} \left(\frac{r}{2}\right)^4 - \frac{1}{(3!)^2} \left(\frac{r}{2}\right)^6 + \cdots.$$

3) Si α es un número entero, se puede ver que se satisface la relación

$$J_{-\alpha}(r) = (-1)^\alpha J_\alpha(r),$$

con lo que las dos funciones de Bessel de primera especie no son independientes y hace falta encontrar una solución de la ecuación de Bessel que sea independiente de $J_\alpha(r)$.

Como en el caso de las vibraciones de una membrana circular α es un número entero, será pues necesario buscar una solución de la ecuación de Bessel, que sea independiente de $J_\alpha(r)$.

Para encontrar esta solución, se utiliza el método de variación de constantes, probando

$$Y_\alpha(r) = C(r)J_\alpha(r),$$

con lo que

$$Y'_\alpha(r) = C'(r)J_\alpha(r) + C(r)J'_\alpha(r),$$

$$Y''_\alpha(r) = C''(r)J_\alpha(r) + 2C'(r)J'_\alpha(r) + C(r)J''_\alpha(r).$$

Sustituyendo en la ecuación (1.65), tenemos

$$C''J_\alpha + 2C'J'_\alpha + CJ''_\alpha + \frac{1}{r} (C'J_\alpha + C'J'_\alpha) + \left(1 - \frac{\alpha^2}{r^2}\right) CJ_\alpha = 0,$$

como J_α es solución, queda

$$C''J_\alpha + 2C'J'_\alpha + \frac{1}{r}C'J_\alpha = 0,$$

que es una ecuación separable en C', cuya solución es

$$C' = A \frac{1}{rJ^2_\alpha(r)} , \quad C(r) = A \int \frac{dr}{rJ^2_\alpha(r)} + B ,$$

29
con lo que la solución, \(Y_\alpha(r) \), es

\[
Y_\alpha(r) = J_\alpha(r) \left(A \int \frac{dr}{rJ_\alpha^2(r)} + B \right).
\]

Desarrollando en serie el integrando y eligiendo adecuadamente las constantes de integración se llega a que la función de Bessel de segunda especie

\[
Y_\alpha(r) = \frac{2}{\pi} \left(\ln \left(\frac{r}{2} \right) + \gamma \right) J_\alpha(r) - \frac{1}{\pi} \sum_{k=0}^{\alpha-1} \frac{\Gamma(\alpha-k)}{\Gamma(k+1)} \left(\frac{r}{2} \right)^{\alpha-2k}
\]

\[
- \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k (\frac{r}{2})^{\alpha+2k}}{\Gamma(k+1)\Gamma(\alpha+k+1)} \left(1 + \frac{1}{2} + \cdots + \frac{1}{k} + 1 + \frac{1}{2} + \cdots + \frac{1}{\alpha+k} \right),
\]

(1.68)
donde \(\gamma = -\Gamma'(1) = 0.5772 \) es la constante de Euler-Mascheroni.

La función \(Y_\alpha(r) \) es independiente de \(J_\alpha(r) \) y, por tanto, la solución general de la ecuación de Bessel (1.65), se puede escribir como

\[
R(r) = C_1 J_\alpha(r) + C_2 Y_\alpha(r).
\]

1.7.2. Ceros de las funciones de Bessel

Los ceros de la función de Bessel de índice entero son las raíces de la ecuación

\[
J_n(x) = 0, \ n = 0, 1, \ldots
\]

Se cumple que las funciones de Bessel de índice entero no tienen ceros complejos y además tienen un número infinito de ceros reales que están dispuestos simétricamente respecto de \(x = 0 \). Todos los ceros son simples a excepción de \(x = 0 \) que tiene multiplicidad \(n \) cuando \(n = 1, 2, \ldots \).

En la Tabla [I.1] se muestran algunos de estos ceros.

1.7.3. Ortoogonalidad de las funciones de Bessel

Partimos ahora de una ecuación de la forma

\[
y'' + \frac{1}{x}y' + \left(\frac{\mu^2}{x^2} - \frac{\nu^2}{x^2} \right) y = 0.
\]

(1.70)
Tabla 1.1: Ceros de las funciones de Bessel.

<table>
<thead>
<tr>
<th>Cero</th>
<th>$J_0(x)$</th>
<th>$J_1(x)$</th>
<th>$J_2(x)$</th>
<th>$J_3(x)$</th>
<th>$J_4(x)$</th>
<th>$J_5(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4048</td>
<td>3.8317</td>
<td>5.1356</td>
<td>6.3802</td>
<td>7.5883</td>
<td>8.7715</td>
</tr>
<tr>
<td>2</td>
<td>5.5201</td>
<td>7.0156</td>
<td>8.4172</td>
<td>9.7610</td>
<td>11.0647</td>
<td>12.3386</td>
</tr>
</tbody>
</table>

Si introducimos la nueva variable $z = \mu x$, se tiene

$$\frac{dy}{dx} = \mu \frac{dy}{dz}, \quad \frac{d^2y}{dx^2} = \mu^2 \frac{d^2y}{dz^2},$$

y la ecuación (1.70) queda como

$$\frac{d^2y}{dz^2} + \frac{1}{z} \frac{dy}{dz} + \left(1 - \frac{\nu^2}{z^2}\right) y = 0,$$

cuya solución es

$$y = J_\nu(z) = J_\nu(\mu x).$$

Consideremos ahora $y_1 = J_\nu(\mu_1 x)$ e $y_2 = J_\nu(\mu_2 x)$, respectivamente, soluciones de

$$y''_1 + \frac{1}{x} y'_1 + \left(\mu_1^2 - \frac{\nu^2}{x^2}\right) y_1 = 0,$$

$$y''_2 + \frac{1}{x} y'_2 + \left(\mu_2^2 - \frac{\nu^2}{x^2}\right) y_2 = 0.$$ \hspace{1cm} (1.71)

\hspace{1cm} (1.72)

Multiplicando (1.71) por y_2 y (1.72) por y_1 y restando las ecuaciones, obtenemos

$$y''_2 y_1 - y_1 y''_2 + \frac{1}{x} (y'_1 y_2 - y_1 y'_2) + (\mu_1^2 - \mu_2^2) y_1 y_2 = 0,$$

que es equivalente a

$$\frac{d}{dx} (x (y'_1 y_2 - y_1 y'_2)) = (\mu_2^2 - \mu_1^2) x y_1 y_2.$$

Integrando entre 0 y 1, obtenemos

$$[x (y'_1 y_2 - y_1 y'_2)]_0^1 = (\mu_2^2 - \mu_1^2) \int_0^1 x y_1(x) y_2(x) \, dx.$$
o bien,

\[J'_\nu (\mu_1) J_\nu (\mu_2) - J'_\nu (\mu_1) J'_\nu (\mu_2) = (\mu_1^2 - \mu_2^2) \int_0^1 x J_\nu (\mu_1 x) J_\nu (\mu_2 x) \, dx , \]

con lo que, si \(\mu_1 \) y \(\mu_2 \) son dos ceros distintos de \(J_\nu (x) \), se cumple la relación de ortogonalidad para las funciones de Bessel siguiente

\[\int_0^1 x J_\nu (\mu_1 x) J_\nu (\mu_2 x) \, dx = 0 \quad , \quad \mu_1 \neq \mu_2 . \]

(1.73)

1.7.4. Continuación del problema de la membrana circular

Para continuar con el problema de las vibraciones la membrana circular hemos de resolver la ecuación

\[\frac{d^2 R}{dr^2} + \frac{1}{r} \frac{dR}{dr} + \left(\lambda - \frac{n^2}{r^2} \right) R = 0 . \]

(1.74)

Se introduce una nueva variable \(z = \sqrt{\lambda} r \), y se tiene

\[\frac{dR}{dr} = \sqrt{\lambda} \frac{dR}{dz} , \quad \frac{d^2 R}{dz^2} = \lambda \frac{d^2 R}{dz^2} , \]

y la ecuación (1.74) se expresa como

\[\frac{d^2 R}{dz^2} + \frac{1}{z} \frac{dR}{dz} + \left(1 - \frac{n^2}{z^2} \right) R = 0 , \]

cuya solución general ya hemos visto que se expresa como

\[R = C_1 J_n(z) + C_2 Y_n(z) = C_1 J_n(\sqrt{\lambda} r) + C_2 Y_n(\sqrt{\lambda} r) . \]

Debido al término logarítmico que aparece en la definición (1.68), se tiene que \(Y_n(0) \to \infty \). Como la solución que se busca ha de ser finita en \(r = 0 \), necesariamente \(C_2 = 0 \), y la solución para la parte radial es

\[R(r) = C_1 J_n(\sqrt{\lambda} r) . \]

Se ha de cumplir la condición de contorno \(u(r_0, \theta, t) = 0 \) y, por lo tanto, imponemos la condición

\[R(r_0) = C_1 J_n(\sqrt{\lambda} r_0) = 0 , \]
con lo que tenemos

\[\sqrt{\lambda} r_0 = \mu_{n,1}, \mu_{n,2}, \ldots , \]

donde \(\mu_{n,1}, \mu_{n,2}, \ldots \), son los ceros de la función \(J_n(x) \). Así los posibles valores del autovalor \(\lambda \) son

\[\lambda_{n,m} = \left(\frac{\mu_{n,m}}{r_0} \right)^2 , \quad n = 0, 1, 2, \ldots ; \quad m = 1, 2, \ldots . \]

De este modo, las soluciones para la parte espacial de \(u(r, \theta, t) \) serán combinaciones lineales de

\[R_{n,m}(r) \Theta_{n,m}(\theta) = A_{n,m} \cos(n\theta) J_n \left(\sqrt{\lambda_{n,m}} r \right) + B_{n,m} \sin(n\theta) J_n \left(\sqrt{\lambda_{n,m}} r \right) \]

y, por tanto, la parte temporal cumplirá para cada autovalor \(\lambda_{n,m} \), la ecuación

\[T''_{n,m} + \alpha^2 \lambda_{n,m} T_{n,m} = 0 , \]

cuya solución general será de la forma

\[T_{n,m} = C_{n,m} \cos \left(a \sqrt{\lambda_{n,m}} t \right) + D_{n,m} \sin \left(a \sqrt{\lambda_{n,m}} t \right) . \]

Por tanto, la solución para la ecuación de la vibración de la membrana circular se expresa como

\[
\begin{align*}
 u(r, \theta, t) &= \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} E_{n,m} \cos (n\theta) J_n \left(\frac{\mu_{n,m}}{r_0} r \right) \cos \left(a \frac{\mu_{n,m}}{r_0} t \right) \\
 &\quad + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} F_{n,m} \sin (n\theta) J_n \left(\frac{\mu_{n,m}}{r_0} r \right) \cos \left(a \frac{\mu_{n,m}}{r_0} t \right) \\
 &\quad + \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} G_{n,m} \cos (n\theta) J_n \left(\frac{\mu_{n,m}}{r_0} r \right) \sin \left(a \frac{\mu_{n,m}}{r_0} t \right) \\
 &\quad + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} H_{n,m} \sin (n\theta) J_n \left(\frac{\mu_{n,m}}{r_0} r \right) \sin \left(a \frac{\mu_{n,m}}{r_0} t \right) .
\end{align*}
\]

(1.75)

Para determinar los coeficientes \(E_{n,m}, F_{n,m}, G_{n,m} \) y \(H_{n,m} \), se utilizan las relaciones de ortogonalidad del sistema trigonométrico y de las funciones de Bessel, (1.73), al imponer las condiciones iniciales,

\[u(r, \theta, 0) = f_1(r, \theta) , \quad u_t(r, \theta, 0) = f_2(r, \theta) , \]

de forma similar a como se hace en el problema de la membrana rectangular.
1.8. Ejercicios

1. Demostrar que la función

\[U = U_0 \sen \left(\frac{\pi x}{L} \right) \cos \left(\frac{\pi ct}{L} \right) , \]

satisface una ecuación de ondas. ¿Cuál es la velocidad de la onda?

2. Comprobar que la función

\[u = u_0 \exp \left(- \left(\frac{x - ct}{h} \right)^2 \right) , \]

satisface la ecuación de ondas

\[\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2}{\partial x^2} . \]

Dibujad la función en \(x \in [-4, 10] \) y para los instantes \(t = 0, t = \frac{2h}{c}, y \)
\(t = \frac{4h}{c} \).

3. Obtener la solución de la ecuación de ondas que satisface las condiciones

\[\frac{\partial u}{\partial t}(x, 0) = 0 \quad u(x, 0) = \begin{cases} 1 - x & 0 \leq x \leq 1 \\ 1 + x & -1 \leq x \leq 0 \\ 0 & \text{en otro caso} \end{cases} , \]

4. Obtener la solución del problema de la cuerda vibrante libre de longitud \(l \), fijada en los extremos, si en el instante inicial se tiene

\[u(x, 0) = hx(x - l) , \quad h > 0 , \quad u_t(x, 0) = 0 . \]

5. Obtener la solución del siguiente problema

\[\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \quad h \leq x \leq k , \]

con las condiciones

\[u(h, t) = u(k, t) = 0 , \]
\[u(x, 0) = f(x) , \quad u_t(x, 0) = g(x) . \]

34
6. Obtener la solución del problema de frontera

\[\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \quad 0 \leq x \leq l, \quad t > 0, \]

con las condiciones de frontera \(u(0, t) = u(l, t) = 0 \) y las condiciones iniciales

\[u(x, 0) = 0, \quad u_t(x, 0) = g(x), \]

donde

\[g(x) = \begin{cases}
0 & 0 \leq x < l/4, \\
1 & l/4 \leq x \leq 3l/4, \\
0 & 3l/4 \leq x \leq l.
\end{cases} \]

7. Encontrar la función \(u(x, t) \) que describe las vibraciones de una cuerda de longitud \(l = 1 \), fija en sus extremos y en posición horizontal, cuyo desplazamiento y velocidad inicial son nulos y que está sometida a una fuerza externa proporcional a la distancia a uno de sus extremos.

8. Se puede ver que la energía de una cuerda de longitud \(l \) que vibra sujeta por sus extremos es de la forma

\[E = \frac{K}{2} \int_0^l \left(a^2 \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial t} \right)^2 \right) \, dx, \]

donde \(u(x, t) \) es el desplazamiento de la cuerda, \(K \) es una constante y \(a \) es la velocidad de propagación de la onda. Obtener la energía de una cuerda vibrante, sujeta por sus extremos, que parte del reposo y cuya posición inicial es

\[u(x, 0) = \text{sen} \left(\frac{\pi x}{l} \right). \]

9. Analizar las oscilaciones transversales forzadas de una cuerda sujeta en el extremo \(x = 0 \) y sometida en el extremo \(x = l \) a una fuerza que provoca el desplazamiento \(u(l, t) = A \text{sen}(\omega t) \), si se parte de las condiciones iniciales

\[u(x, 0) = u_t(x, 0) = 0. \]

10. Utilizar el método de separación de variables para obtener la solución del problema

\[\frac{\partial^2 u}{\partial t^2} = v^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right), \]
con las condiciones
\[u(0, y, z, t) = u(\pi, y, z, t) = u(x, 0, z, t) = u(x, \pi, z, t) \]
\[= u(x, y, 0, t) = u(x, y, \pi, t) = 0 , \]
\[u(0, y, z, t) = xyz(\pi - x)(\pi - y)(\pi - z) . \]

11. Dada la ecuación de ondas
\[\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} , \]
con las condiciones
a) \(u(x, 0) = 0 \) cuando \(x > 0 \).
b) \(u_t(x, 0) = 0 \) cuando \(x > 0 \).
c) \(u(0, t) = a \sen(wt) \) cuando \(t > 0 \).
d) El desplazamiento \(u(x, t) \) está acotado.

utilizando la Transformada de Laplace, demostrar que
\[u(x, t) = a \sen \left(w \left(t - \frac{x}{c} \right) \right) H \left(t - \frac{x}{c} \right) , \]
donde \(H(t) \) es la función de Heaviside.

12. Obtener la solución del problema de la vibración de una membrana circular, en el caso que haya simetría circular, o sea \(\frac{\partial^2 u}{\partial \theta^2} = 0 \) y las condiciones iniciales no dependen de \(\theta \).
Capítulo 2

Ecuaciones parabólicas

Las ecuaciones de tipo parabólico aparecen asociadas a algunas leyes de conservación, como la ecuación del calor, la ecuación de difusión de los gases, etc. En este capítulo estudiaremos algunos problemas relacionados con estas ecuaciones.

2.1. Ecuación del calor

Para obtener la ecuación del calor en un recinto tridimensional, consideremos un elemento cúbico con uno de sus vértices en el punto \((x, y, z)\) y cuyas aristas tienen longitudes \((\Delta x, \Delta y, \Delta z)\). Se introducen las magnitudes

- \(T(x, y, z)\) \((^\circ C)\) La temperatura en el punto \((x, y, z)\).
- \(q_x(x, y, z)\) \((W/m^2)\) El flujo de calor por unidad de superficie transversal al eje X, o sea, la energía calorífica que fluye por unidad de tiempo y unidad de superficie a través de una superficie transversal al eje X en el punto \((x, y, z)\) y en el instante \(t\). Análogamente, se introducen \(q_y(x, y, z)\), \(q_z(x, y, z)\), para los ejes Y y Z, respectivamente.
- \(Q(x, y, z, t)\), \((W/m^\circ C)\) Una fuente de calor, o sea, la energía calorífica que se genera o se saca del elemento por unidad de tiempo y de volumen.
- \(k_x(x, y, z)\), \((W/m^\circ C)\). La conductividad térmica del material en la dirección del eje X. Análogamente se introducen \(k_y(x, y, z)\), \(k_z(x, y, z)\), para los ejes Y y Z.
- \(\rho(x, y, z)\), \((Kg/m^3)\). La densidad del material.
• $c(x, y, z)$ $(J/Kg°C)$. El calor específico del material.

Suponiendo que el calor fluye en la dirección positiva de los ejes, se tiene, por ejemplo, que el calor por unidad de tiempo que sale por la cara del elemento cuya primera coordenada es $x + \Delta x$ es $q_x(x + \Delta x, y, z)\Delta y\Delta z$, y el calor que entra por la cara cuya primera coordenada es x es $q_x(x, y, z)\Delta y\Delta z$. De igual forma se tienen expresiones para el calor en el eje Y y el eje Z. Por otra parte, el calor correspondiente a la fuente por unidad de tiempo es $Q(x, y, z)\Delta x\Delta y$. Si consideramos un intervalo de tiempo Δt, el balance de energía en el elemento será

$$\Delta E = (q_x(x, y, z, t) - q_x(x + \Delta x, y, z, t)) \Delta y\Delta z\Delta t$$
$$+ (q_y(x, y, z, t) - q_y(x, y + \Delta y, z, t)) \Delta x\Delta z\Delta t$$
$$+ (q_z(x, y, z, t) - q_z(x, y, z + \Delta z, t)) \Delta x\Delta y\Delta t + Q(x, y, z, t)\Delta x\Delta y\Delta z\Delta t.$$

(2.1)

La energía generada o perdida en el elemento, se usa en calentarlo o enfriarlo, por tanto,

$$\Delta E = \rho(x, y, z)c(x, y, z)(T(x, y, z, t + \Delta t) - T(x, y, z, t)) \Delta x\Delta y\Delta z.$$

(2.2)

Igualando (2.1) y (2.2), desarrollando en serie de Taylor alrededor del punto (x, y, z) y tomando el límite cuando Δx, Δy, Δz y Δt tienden a cero, se llega a que

$$- \frac{\partial q_x}{\partial x} - \frac{\partial q_y}{\partial y} - \frac{\partial q_z}{\partial z} + Q = \rho c \frac{\partial T}{\partial t}.$$

Por la Ley de Fourier se tiene que

$$q_x = -k_x \frac{\partial T}{\partial x}; \quad q_y = -k_y \frac{\partial T}{\partial y}; \quad q_z = -k_z \frac{\partial T}{\partial z};$$

y, por tanto, se tiene la ecuación del calor, que es de la forma

$$\frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial T}{\partial z}\right) + Q = \rho c \frac{\partial T}{\partial t}.$$

(2.3)

De manera similar se puede obtener la ecuación de la difusión de los gases, la difusión de contaminantes, etc.

En caso que ρ, c, $k_x = k_y = k_z = k$ sean constantes, la ecuación del calor se escribe de la forma

$$\frac{\partial T}{\partial t} = \frac{k}{\rho c} \nabla^2 T + \dot{Q}.$$

(2.4)
2.2. Ecuación del calor para una varilla finita

Consideremos el problema de una varilla finita cuyos extremos están a una temperatura conocida y se pretende estudiar la evolución de la distribución de temperatura en la varilla si se conoce la distribución inicial. Este problema se plantea del modo siguiente: resolver

$$\frac{\partial T}{\partial t} = a^2 \frac{\partial^2 T}{\partial x^2} + Q(x, t) , \quad 0 < x < l , \quad t > 0 ,$$

con las condiciones de frontera

$$T(0, t) = f_1(t) , \quad T(l, t) = f_2(t) ,$$

y la condición inicial

$$T(x, 0) = g(x) .$$

2.2.1. Ecuación del calor sin fuentes

Comenzaremos resolviendo el problema más sencillo, donde se considera que no hay fuentes de calor y las condiciones de contorno son homogéneas. Esto es, resolveremos el problema,

$$\frac{\partial T}{\partial t} = a^2 \frac{\partial^2 T}{\partial x^2} , \quad 0 < x < l , \quad t > 0 , \quad (2.5)$$

con las condiciones de contorno

$$T(0, t) = 0 , \quad T(l, t) = 0 , \quad (2.6)$$

y la condición inicial

$$T(x, 0) = g(x) . \quad (2.7)$$

Para resolver este problema, utilizaremos el método de separación de variables, buscando soluciones de la forma

$$T(x, t) = X(x)P(t) .$$

Sustituyendo esta solución en la ecuación (2.5), obtenemos

$$\frac{P'(t)}{a^2 P(t)} = \frac{X''(x)}{X(x)} = -\lambda ,$$

39
o sea,

\[P'(t) + a^2 \lambda P(t) = 0 , \quad (2.8) \]
\[X'' + \lambda X(x) = 0 . \quad (2.9) \]

Al aplicar las condiciones \((2.6)\), obtenemos

\[X(0) = 0 , \quad X(l) = 0 . \quad (2.10) \]

Como ya vimos en el problema de la cuerda vibrante, el problema dado por \((2.9)\), y las condiciones \((2.10)\), tiene por solución los autovalores

\[\lambda_n = \left(\frac{n \pi}{l} \right)^2 , n = 1, 2, \ldots , \]

y las autofunciones

\[X_n(x) = \sin \left(\frac{n \pi x}{l} \right) . \]

Al tomar un autovalor \(\lambda_n\), la ecuación para la parte temporal queda de la forma

\[P'' + a^2 \lambda_n P = 0 , \]

cuya solución es de la forma

\[P_n(t) = a_n e^{-a^2 \lambda_n t} = a_n e^{-\left(\frac{n \pi a}{l} \right)^2 t} . \]

La solución del problema \((2.5)\), se escribirá de la forma

\[T(x,t) = \sum_{n=1}^{\infty} a_n e^{-\left(\frac{n \pi a}{l} \right)^2 t} \sin \left(\frac{n \pi x}{l} \right) . \quad (2.11) \]

Como se ha de satisfacer la condición inicial \((2.7)\), se cumplirá

\[g(x) = \sum_{n=1}^{\infty} a_n \sin \left(\frac{n \pi x}{l} \right) , \]

y utilizando la propiedad de ortogonalidad del sistema trigonométrico, se tiene que

\[a_n = \frac{2}{l} \int_0^l g(x) \sin \left(\frac{n \pi x}{l} \right) \, dx . \]

Se puede demostrar que si \(g(x) \in C^2([0,l])\), con \(g(0) = 0\) y \(g(l) = 0\) para \(t > 0\) la serie \((2.11)\) converge absoluta y uniformemente y su suma es la solución del problema dado por \((2.5)\), \((2.6)\) y \((2.7)\).
2.2.2. Ecuación del calor con fuentes

Consideramos ahora el problema

\[
\frac{\partial T}{\partial t} = a^2 \frac{\partial^2 T}{\partial x^2} + Q(x,t) , \quad 0 < x < l , \quad t > 0 ,
\]

con las condiciones de frontera

\[T(0,t) = 0 , \quad T(l,t) = 0 ,\]

y la condición inicial

\[T(x,0) = g(x) .\]

Para resolver este problema se buscan soluciones de la forma

\[T(x,t) = u(x,t) + v(x,t) ,\]

donde \(u(x,t)\) satisface

\[
\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} , \quad 0 < x < l , \quad t > 0 ,
\]

con la condición de frontera

\[u(0,t) = 0 , \quad u(l,t) = 0 ,\]

y la condición inicial

\[u(x,0) = g(x) .\]

La función \(v(x,t)\) será solución del problema

\[
\frac{\partial v}{\partial t} = a^2 \frac{\partial^2 v}{\partial x^2} + Q(x,t) , \quad 0 < x < l , \quad t > 0 ,
\]

con la condición de frontera

\[v(0,t) = 0 , \quad v(l,t) = 0 ,\]

y la condición inicial

\[v(x,0) = 0 .\]

La solución \(u(x,t)\), ya hemos visto que es de la forma

\[u(x,t) = \sum_{n=1}^{\infty} a_n e^{-\left(\frac{n \pi}{l}\right)^2 t} \sin\left(\frac{n \pi x}{l}\right) .\]
con
\[a_n = \frac{2}{l} \int_0^l g(x) \sin \left(\frac{n\pi x}{l} \right) \, dx \, . \]

Veamos ahora cómo obtener la solución \(v(x, t) \). Probamos soluciones de la forma
\[v(x, t) = \sum_{n=1}^\infty v_n(t) \sin \left(\frac{n\pi x}{l} \right) \, . \] (2.19)

Introduciendo la expresión (2.19), en la ecuación (2.16), obtenemos
\[\sum_{n=1}^\infty \left(v_n'(t) + a^2 \left(\frac{n\pi}{l} \right)^2 v_n(t) \right) \sin \left(\frac{n\pi x}{l} \right) = Q(x, t) \, . \] (2.20)

Ya que \(Q(x, t) \) admite el desarrollo
\[Q(x, t) = \sum_{n=1}^\infty q_n(t) \sin \left(\frac{n\pi x}{l} \right) \, , \]
con
\[q_n(t) = \frac{2}{l} \int_0^l Q(x, t) \sin \left(\frac{n\pi x}{l} \right) \, dx \, . \]

Entonces la ecuación (2.20) da lugar a
\[v_n'(t) + a^2 \left(\frac{n\pi}{l} \right)^2 v_n(t) = q_n(t) \, , \ n = 1, 2, \ldots \] (2.21)

Además, la condición inicial para \(v(x, t) \), implica que
\[0 = \sum_{n=1}^\infty v_n(0) \sin \left(\frac{n\pi x}{l} \right) \, , \ n = 1, 2, \ldots \, , \]
o sea,
\[v_n(0) = 0 \, , \ n = 1, 2, \ldots \, . \] (2.22)

La solución del problema (2.21) con la condición inicial (2.22), es de la forma
\[v_n(t) = \int_0^t q_n(\tau) e^{-\left(\frac{a^2 n^2 \pi^2}{l^2} \right)(t-\tau)} \, d\tau \, , \ n = 1, 2, \ldots \, , \]
por tanto,
\[v(x, t) = \sum_{n=1}^\infty \left(\int_0^t q_n(\tau) e^{-\left(\frac{a^2 n^2 \pi^2}{l^2} \right)(t-\tau)} \, d\tau \right) \sin \left(\frac{n\pi x}{l} \right) \, . \] (2.23)
2.2.3. Condiciones de contorno no homogéneas

Veamos ahora cómo resolver el problema

\[\frac{\partial T}{\partial t} = a^2 \frac{\partial^2 T}{\partial x^2} + Q(x, t) , \quad 0 < x < l , \quad t > 0 , \]

con las condiciones de frontera

\[T(0, t) = f_1(t) , \quad T(l, t) = f_2(t) , \]

y la condición inicial

\[T(x, 0) = g(x) . \]

De forma similar a como se ha hecho en el problema de la cuerda vibrante, se buscan soluciones de la forma

\[T(x, t) = u(x, t) + w(x, t) , \]

donde \(w(x, t) \) es de la forma

\[w(x, t) = f_1(t) + \frac{x}{l} (f_2(t) - f_1(t)) . \]

De este modo, \(u(x, t) \) será solución de un problema de la forma

\[\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + \tilde{Q}(x, t) , \]

con las condiciones de frontera

\[u(0, t) = 0 , \quad u(l, t) = 0 , \]

y la condición inicial

\[u(x, 0) = g(x) - f_1(0) - \frac{x}{l} (f_2(0) - f_1(0)) . \]

Este tipo de problema ya lo hemos tratado anteriormente.

2.3. Transformada de Laplace

Supongamos que se ha de resolver un problema de la forma

\[\frac{\partial T}{\partial t} = a^2 \frac{\partial^2 T}{\partial x^2} , \quad 0 < x < l , \quad t > 0 , \quad (2.24) \]
con las condiciones de frontera

\[T(0, t) = 0, \quad T(l, t) = f(t), \]

y la condición inicial

\[T(x, 0) = 0. \]

Para resolver este problema, se puede hacer uso de la Transformada de Laplace. Tomando la Transformada de Laplace de la ecuación (2.24), se tiene

\[L \left[\frac{\partial T}{\partial t} \right] = a^2 \frac{\partial^2 L[T]}{\partial x^2}. \] \hspace{1cm} (2.25)

Llamamos \(L[T] = T(x, s) \) y, teniendo en cuenta la condición inicial, \(T(x, 0) = 0 \), se tiene que

\[L \left[\frac{\partial T}{\partial t} \right] = sT(x, s) - T(x, 0) = sT(x, s), \]

así, la ecuación (2.25), se expresa como

\[a^2 \frac{\partial^2 T(x, s)}{\partial x^2} - sT(x, s) = 0, \] \hspace{1cm} (2.26)

con las condiciones

\[T(0, s) = 0, \quad T(l, s) = L[f(t)] = F(s). \] \hspace{1cm} (2.27)

La solución general de la ecuación (2.26), es de la forma

\[T(x, s) = A \sinh \left(\frac{\sqrt{s} a}{2} x \right) + B \cosh \left(\frac{\sqrt{s} a}{2} x \right). \]

Imponiendo las condiciones (2.27), se obtiene

\[T(x, s) = F(s) \frac{\sinh \left(\frac{\sqrt{s} a}{2} x \right)}{\sinh \left(\frac{\sqrt{s} a}{2} l \right)}. \] \hspace{1cm} (2.28)

Ahora consideramos el problema auxiliar

\[\frac{\partial w}{\partial t} = a^2 \frac{\partial^2 w}{\partial x^2}, \] \hspace{1cm} (2.29)
con la condición de frontera

\[w(0, t) = 0, \quad w(l, t) = 1, \quad (2.30) \]

y la condición inicial

\[w(x, 0) = 0. \quad (2.31) \]

Si tomamos la Transformada de Laplace de la ecuación (2.29), se tiene

\[sw(x, s) = a^2 \frac{\partial^2 w}{\partial x^2}, \]

con las condiciones

\[w(0, s) = 0, \quad w(l, s) = \frac{1}{s}. \]

La solución de este problema es de la forma

\[w(x, s) = \frac{\text{senh} \left(\frac{\sqrt{s} a x}{a} \right)}{s \text{senh} \left(\frac{\sqrt{s} a l}{a} \right)}. \]

Como

\[L \left[\frac{\partial w}{\partial t} \right] = sL[w] - w(x, 0) = sw(x, s) = \frac{\text{senh} \left(\frac{\sqrt{s} x}{a} \right)}{s \text{senh} \left(\frac{\sqrt{s} l}{a} \right)}, \]

tenemos que la expresión (2.28), se puede escribir como

\[T(x, s) = F(s)L \left[\frac{\partial w}{\partial t} \right], \]

y, por tanto,

\[T(x, t) = L^{-1} \left[F(s)L \left[\frac{\partial w}{\partial t} \right] \right] \]

\[= \int_0^t f(\tau) \frac{\partial w(x, t - \tau)}{\partial t} d\tau \quad (2.32) \]

\[= - [f(\tau)w(x, t - \tau)]_0^t + \int_0^t f'(\tau)w(x, t - \tau) d\tau \]

\[= \int_0^t f'(\tau)w(x, t - \tau) + f(0)w(x, t) . \quad (2.33) \]
Para obtener la solución del problema auxiliar \([2.29], (2.30)\) y \((2.31)\) se prueba una función de la forma
\[
w(x, t) = \frac{x}{l} + v(x, t) ,
\]
donde \(v(x, t)\) satisface la ecuación
\[
\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} ,
\]
con las condiciones
\[
v(0, t) = 0 , \quad v(l, t) = 0 , \quad v(x, 0) = -\frac{x}{l} .
\]
La solución de este problema es
\[
v(x, t) = \sum_{n=1}^{\infty} a_n e^{-\left(\frac{n\pi}{l}\right)^2 t} \sin \left(\frac{n\pi x}{l}\right) ,
\]
con
\[
a_n = \frac{2}{l} \int_0^l \left(-\frac{x}{l} \right) \sin \left(\frac{n\pi x}{l} \right) \, dx
= \frac{2(-1)^n}{n\pi} .
\]
De este modo
\[
w(x, t) = \frac{x}{l} + \sum_{n=1}^{\infty} \frac{2(-1)^n}{n\pi} e^{-\left(\frac{n\pi}{l}\right)^2 t} \sin \left(\frac{n\pi x}{l}\right) ,
\]
y la solución de \(T(x, t)\), se obtiene a partir de la expresión \((2.33)\).

2.4. Ecuación del calor en un medio infinito

Consideramos el problema asociado a la ecuación del calor unidimensional sin fuentes, de la forma
\[
\frac{\partial T}{\partial t} = a^2 \frac{\partial^2 T}{\partial x^2} , \quad -\infty < x < +\infty , \quad t > 0 , \quad (2.34)
\]
con la condición inicial
\[
T(x, 0) = f(x) .
\]
Este problema modeliza la evolución temporal de la distribución espacial de la temperatura en una varilla homogénea ilimitada sin pérdidas de calor, suponiendo que en el instante inicial se tiene la distribución de temperaturas dada por \(f(x) \).

Para resolver este problema supondremos que \(T(x,t) \) y \(f(x) \) admiten transformadas de Fourier. Utilizando la definición de la Transformada de Fourier, tenemos

\[
T(w,t) = \mathcal{F}[T] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-iwx} T(x,t) \, dx ,
\]

\[
F(w) = \mathcal{F}[f] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-iwx} f(x) \, dx ,
\]

\[
\mathcal{F} \left[\frac{\partial T}{\partial t} \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-iwx} \frac{\partial T}{\partial t} \, dx .
\]

Además se supone que las funciones y las derivadas se anulan en el infinito de forma que usando la integración por partes dos veces, podemos escribir

\[
\mathcal{F} \left[\frac{\partial^2 T}{\partial x^2} \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-iwx} \frac{\partial^2 T}{\partial x^2} \, dx = -\frac{w^2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-iwx} T(x,t) \, dx
\]

\[
= -w^2 T(w,t) .
\]

Tomando la transformada de Fourier de la ecuación (2.34), se llega a

\[
\frac{\partial T(w,t)}{\partial t} + w^2 a^2 T(w,t) = 0 , \tag{2.35}
\]

con la condición

\[
T(w,0) = F(w) . \tag{2.36}
\]

La solución del problema (2.35) y (2.36) es

\[
T(w,t) = F(w)e^{-w^2a^2t} ,
\]

con lo que

\[
T(x,t) = \mathcal{F}^{-1} \left[F(w)e^{-w^2a^2t} \right] .
\]

Para obtener esta transformada de Fourier inversa, en primer lugar, calcularemos la transformada de Fourier de

\[
g(x) = e^{-\alpha x^2} , \quad \alpha > 0 .
\]
Utilizando la definición
\[F[g(x)] = G(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\alpha x^2} e^{-iwx} \, dx . \]

Si calculamos
\[\frac{dG(w)}{dw} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\alpha x^2} e^{-iwx} (-ix) \, dx , \]

integrando por partes, se llega a que
\[\frac{dG(w)}{dw} = -\frac{w}{2\alpha} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\alpha x^2} e^{-iwx} \, dx = -\frac{w}{2\alpha} G(w) . \]

Se tiene pues la ecuación diferencial
\[\frac{dG(w)}{dw} = -\frac{w}{2\alpha} G(w) , \]

cuya solución es
\[G(w) = G(0) e^{-\frac{w^2}{4\alpha}} , \]

donde
\[G(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\alpha x^2} \, dx . \]

Para calcular la integral,
\[I = \int_{-\infty}^{+\infty} e^{-\alpha x^2} \, dx , \]

tenemos en cuenta que
\[I^2 = \left(\int_{-\infty}^{+\infty} e^{-\alpha x^2} \, dx \right) \left(\int_{-\infty}^{+\infty} e^{-\alpha y^2} \, dy \right) = \iint_{\mathbb{R}^2} e^{-\alpha(x^2+y^2)} \, dx\,dy , \]

haciendo un cambio a coordenadas polares,
\[I^2 = \int_{0}^{2\pi} d\theta \int_{0}^{+\infty} d\rho \rho e^{-\alpha \rho^2} = \frac{\pi}{\alpha} . \]

Con lo que se llega al resultado,
\[F[e^{-\alpha x^2}] = \frac{1}{\sqrt{2\alpha}} e^{-\frac{w^2}{4\alpha}} . \] (2.37)
Tomando $\alpha = 1/(4a^2t)$, en (2.37), se tiene

$$e^{-w^2a^2t} = \mathcal{F} \left[\frac{1}{a\sqrt{2t}} e^{-\frac{x^2}{4a^2t}} \right].$$

Recordemos ahora el teorema de convolución de la transformada de Fourier,

$$\mathcal{F} [f_1 * f_2] = \sqrt{2\pi} \mathcal{F} [f_1] \mathcal{F} [f_2],$$
donde el producto de convolución es

$$(f_1 * f_2) (x) = \int_{-\infty}^{+\infty} f_1(\tau) f_2(x - \tau) \, d\tau.$$

Utilizando este teorema podemos escribir la solución del problema de la transmisión del calor en una varilla infinita como la integral

$$T(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} f(\tau) e^{-\frac{(x-\tau)^2}{4a^2t}} \, d\tau.$$

(2.38)

Esta integral se conoce con el nombre de Integral de Poisson.

A la función

$$G(x,t,\tau) = \frac{1}{2a\sqrt{\pi t}} e^{-\frac{(x-\tau)^2}{4a^2t}},$$

que aparece en la solución de la ecuación del calor, se llama solución fundamental de la ecuación del calor.

Ejemplo 2.1 Se tiene una varilla homogénea e infinita sin pérdidas. Si la distribución inicial de temperaturas es

$$T(x,0) = T_0 e^{-\sigma^2x^2}, \quad -\infty < x < +\infty,$$

obtener la distribución de temperaturas en la varilla en un instante $t > 0$.

Solución:

Hemos visto que la distribución de temperaturas viene dada por la integral de Poisson

$$T(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} T_0 e^{-\sigma^2\tau^2} e^{-\frac{(x-\tau)^2}{4a^2t}} \, d\tau.$$

Completando el cuadrado, se llega a la identidad

$$-\sigma^2\tau^2 - \frac{1}{4a^2} \left(x^2 - 2x\tau + \tau^2 \right) = -\frac{4a^2\sigma^2t + 1}{4a^2t} \left(\tau - \frac{x}{4a^2\sigma^2t + 1} \right)^2 - \frac{\sigma^2x^2}{4a^2\sigma^2t + 1},$$

49
con lo que
\[T(x, t) = \frac{T_0}{2a\sqrt{\pi t}} e^{-\frac{\sigma^2 x^2}{4a^2 t^2}} \int_{-\infty}^{+\infty} e^{-\frac{4a^2 \sigma^2 t}{4a^2 t^2} \left(\frac{x^2}{4a^2 \sigma^2 + 1} \right)^2} d\tau. \]

Haciendo el cambio de variable
\[z = \tau - \frac{x}{4a^2 \sigma^2 t + 1}, \]
se llega a
\[T(x, t) = \frac{T_0}{\sqrt{4a^2 \sigma^2 t + 1}} e^{-\frac{\sigma^2 x^2}{4a^2 \sigma^2 t + 1}}. \]

2.5. Problema de convección-difusión

En problemas de difusión en un medio que se mueve con una cierta velocidad, a parte del fenómeno de la difusión se tiene el fenómeno de la convección. El conjunto de los dos fenómenos se describe por la ecuación de convección-difusión, que es de la forma
\[\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} - V \frac{\partial u}{\partial x}, \]
donde D es el coeficiente de difusión y V la velocidad del medio.

2.5.1. Problema de la convección pura

Si el coeficiente de difusión del medio es pequeño, se puede despreciar el término de la derivada segunda y un proceso de convección viene descrito por la ecuación,
\[\frac{\partial u}{\partial t} = -V \frac{\partial u}{\partial x}. \]

Estudiemos el problema semiinfinito
\[\frac{\partial u}{\partial t} = -V \frac{\partial u}{\partial x}, \quad 0 < x < +\infty, \quad t > 0, \]
con la condición de frontera
\[u(0, t) = P, \]
y la condición inicial

\[u(x, 0) = 0 . \]

Este problema puede modelizar el transporte de un cierto contaminante en un canal, donde \(u(x, t) \) será la concentración de contaminante.

Para resolver este problema, utilizaremos la transformada de Laplace, así se tiene

\[
su(x, s) = -V \frac{\partial u(x, s)}{\partial x} , \]

\[u(0, s) = \frac{P}{s} , \]

cuya solución es

\[u(x, s) = \frac{P}{s} e^{-\frac{sx}{V}} , \]

y tomando la antitransformada de Laplace,

\[u(x, t) = PH \left(t - \frac{x}{V} \right) , \]

donde \(H(t) \) es la función de Heaviside, o sea,

\[u(x, t) = \begin{cases}
0 & t < \frac{x}{V} , \\
0 & t \geq \frac{x}{V} .
\end{cases} \]

2.5.2. Problema de convección-difusión

En las situaciones donde se ha de tener en cuenta la difusión y la convección, en general hay que resolver una ecuación de la forma

\[
\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} - V \frac{\partial u}{\partial x} . \tag{2.39}
\]

Una posibilidad para resolver esta ecuación es hacer el cambio

\[u(x, t) = e^{\frac{V}{4D}(x-\frac{Vt}{2})} v(x, t) . \]

Se tiene,

\[
\frac{\partial u}{\partial t} = e^{\frac{V}{4D}(x-\frac{Vt}{2})} \left(-\frac{V^2}{4D} v + \frac{\partial v}{\partial t} \right) ,
\]

\[
\frac{\partial u}{\partial x} = e^{\frac{V}{4D}(x-\frac{Vt}{2})} \left(\frac{V}{2D} v + \frac{\partial v}{\partial x} \right) ,
\]

\[
\frac{\partial^2 u}{\partial x^2} = e^{\frac{V}{4D}(x-\frac{Vt}{2})} \left(\frac{V^2}{4D^2} v + \frac{V \partial v}{D \partial x} + \frac{\partial^2 v}{\partial x^2} \right) .
\]
Con lo que la ecuación (2.39) queda
\[
\frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial x^2},
\]
que es una ecuación de difusión para \(v(x,t)\), a la que se le pueden aplicar las técnicas que se han expuesto en las secciones anteriores.

2.6. Ejercicios

1. (Mathematica) Demuestra que la función
\[
T = \frac{1}{\sqrt{t}} \exp \left(-\frac{x^2}{4\kappa t} \right),
\]
satisface la ecuación del calor unidimensional. Dibuja \(T(t,x)\) para distintos instantes \(t > 0\) y \(x \in [0,4]\). Comenta el sentido físico de la solución.

2. Resolver la ecuación del calor
\[
\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2},
\]
sujeta a las condiciones
 a) \(T(0,t) = 0\) cuando \(t > 0\).
 b) \(T_x(l,t) = 0\) cuando \(t > 0\).
 c) \(T(x,0) = T_0 \operatorname{sen} \left(\frac{3\pi x}{2l} \right)\) cuando \(0 \leq x \leq l\).

3. Resolver la ecuación del calor
\[
\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2},
\]
sujeta a las condiciones
 a) \(u(0,t) = 0\) cuando \(t > 0\).
 b) \(u(l,t) = 0\) cuando \(t > 0\).
 c) \(u(x,0) = \left(\frac{1}{2} - \frac{x}{l} \right)\) cuando \(0 \leq x \leq l\).
4. Resolver la ecuación del calor

\[\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} , \]

sujeta a las condiciones

a) \(u(0, t) = 0 \) cuando \(t > 0 \).

b) \(u(1, t) = 1 \) cuando \(t > 0 \).

c) \(u(x, 0) = x(2 - x) \) cuando \(0 \leq x \leq 1 \).

5. Utilizando el método de la Transformada de Laplace, resolver la ecuación del calor

\[\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} , \]

sabiendo que la temperatura es una función acotada y que se satisfacen las condiciones

a) \(u(x, 0) = 0 \) cuando \(t > 0 \).

b) \(u(a, t) = T\delta(t) \).

Nota: Hace falta utilizar la propiedad de la Transformada de Laplace siguiente:

\[L^{-1} \left[e^{-\frac{b}{\sqrt{s}}} \right] = \frac{b}{2\sqrt{\pi}} t^{-\frac{3}{2}} e^{-\frac{b^2}{4t}} . \]

6. Se sabe que la función \(\varphi(x, t) \) satisface la ecuación

\[\frac{\partial \varphi}{\partial t} = a \frac{\partial^2 \varphi}{\partial x^2} + b , \quad (-h \leq x \leq h, \ t > 0) , \]

con las condiciones de contorno

a) \(\varphi(-h, t) = \varphi(h, t) = 0 \) cuando \(t > 0 \).

b) \(\varphi(x, 0) = 0 \) cuando \(-h < x < h\).

Demostrad que la trasformada de Laplace de \(\varphi(x, t) \) es

\[\Phi(x, s) = \frac{b}{s^2} \left(1 - \frac{\cosh \left(\left(\frac{a}{s} \right)^{\frac{1}{2}} x \right)}{\cosh \left(\left(\frac{a}{s} \right)^{\frac{1}{2}} h \right)} \right) . \]
Capítulo 3

Ecuaciones elípticas

3.1. Introducción

Las ecuaciones de tipo elíptico aparecen cuando se estudian problemas estacionarios, o sea, problemas que no cambian con el tiempo. La ecuación elíptica más simple es la ecuación de Laplace

\[\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0. \]

(3.1)

Esta ecuación aparece en distintos contextos, como en problemas de gravedad y de electrostática, para describir el potencial de velocidades de un fluido no turbulento, para describir la distribución estacionaria de temperaturas, etc.

En el caso de problemas bidimensionales, la ecuación de Laplace es

\[\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0. \]

(3.2)

De este modo, las soluciones de la ecuación de Laplace para un recinto bidimensional son funciones armónicas.

Otra ecuación elíptica muy usual es la ecuación de Poisson,

\[\nabla^2 u = Q, \]

(3.3)

que aparece en problemas estacionarios con fuentes.

Si se pretende resolver las ecuaciones (3.1) o (3.3), en un recinto finito, \(\Omega \), será necesario tener unas condiciones de contorno, que pueden ser de la forma:
1. \(u(\vec{x}) = f(\vec{x}), \vec{x} \in \Sigma \), siendo \(\Sigma \) la frontera de \(\Omega \). Este problema se conoce como un problema de Dirichlet o primer problema de contorno.

2. \(\vec{n} \vec{\nabla} u = g(\vec{x}) \), siendo \(\vec{n} \) un vector unitario normal a la superficie \(\Sigma \). A este problema se le llama problema de Neumann o segundo problema de contorno.

3. \(\vec{n} \vec{\nabla} u + \alpha u = h(\vec{x}), \vec{x} \in \Sigma \). A este problema se le llama problema mixto o tercer problema de contorno.

3.2. Ecuación de Laplace en coordenadas cartesianas

Supongamos que se quiere estudiar la solución de la ecuación de Laplace

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0,
\]

sobre un paralelepípedo de aristas \((a, b, c)\), suponiendo que se tienen condiciones de frontera de la forma

\[
u(0, y, z) = u(a, y, z) = u(x, 0, z) = u(x, b, z) = u(x, y, 0) = 0,
\]
y \(u(x, y, c) = V(x, y) \).

Este problema se corresponde, por ejemplo, con un problema de potencial en un paralelepípedo donde todas sus caras se mantienen a potencial 0 salvo una que se mantiene a un potencial \(V(x, y) \).

Para resolver este problema, se utiliza el método de separación de variables, buscando soluciones de la forma

\[
u(x, y, z) = X(x)Y(y)Z(z).
\]

Introduciendo este tipo de solución en la ecuación \((3.4)\), obtenemos la ecuación

\[
\frac{1}{X(x)} \frac{d^2 X}{dx^2} + \frac{1}{Y(y)} \frac{d^2 Y}{dy^2} + \frac{1}{Z(z)} \frac{d^2 Z}{dz^2} = 0.
\]
Para resolver (3.5), suponemos que
\[
\begin{align*}
\frac{1}{X(x)} \frac{d^2X}{dx^2} &= -\alpha^2 \\
\frac{1}{Y(y)} \frac{d^2Y}{dy^2} &= -\beta^2 \\
\frac{1}{Z(z)} \frac{d^2Z}{dz^2} &= \gamma^2
\end{align*}
\]
con \(\gamma^2 = \alpha^2 + \beta^2\).

Si imponemos las condiciones de contorno para \(u(x, y, z)\), se tiene que \(X(x), Y(y)\) y \(Z(z)\) han de cumplir
\[
X(0) = X(a) = Y(0) = Y(b) = Z(0) = 0 .
\]
Por ello, se tienen las soluciones
\[
\begin{align*}
X(x) &= \text{sen} (\alpha x) \\
Y(y) &= \text{sen} (\beta y) \\
Z(z) &= \text{senh} \left(\sqrt{\alpha^2 + \beta^2} z \right)
\end{align*}
\]
siendo
\[
\alpha = \frac{\pi n}{a} , \quad \beta = \frac{\pi m}{b} , \quad n, m \in \mathbb{Z} .
\]

La forma general de la solución buscada es pues
\[
u(x, y, z) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{m,n} \text{sen} (\alpha_n x) \text{sen} (\beta_m y) \text{senh} (\gamma_{n,m} z) \quad (3.6)
\]
siendo
\[
\alpha_n = \frac{\pi n}{a} , \quad \beta_m = \frac{\pi m}{b} , \quad \gamma_{n,m} = \pi \sqrt{\frac{n^2}{a^2} + \frac{m^2}{b^2}} .
\]
Si imponemos la condición de contorno restante, \(u(x, y, c) = V(x, y)\), se tiene la condición
\[
V(x, y) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{m,n} \text{sen} (\alpha_n x) \text{sen} (\beta_m y) \text{senh} (\gamma_{n,m} c) ,
\]
de lo que se tiene que
\[
A_{n,m} = \frac{4}{ab \text{senh} (\gamma_{n,m} c)} \int_{0}^{a} dx \int_{0}^{b} dy V(x, y) \text{sen} (\alpha_n x) \text{sen} (\beta_m y) .
\]
Si hay más de una cara con condiciones no homogéneas, la solución de este tipo de problemas se puede obtener como superposición de soluciones del tipo (3.6).
3.3. Ecuación de Poisson en coordenadas cartesianas

Supongamos que se quiere resolver la ecuación de Poisson

\[
\nabla^2 u = Q(x, y, z),
\]

sobre un cubo \(\Omega = (0, \pi) \times (0, \pi) \times (0, \pi) \), con condiciones de contorno homogéneas.

Hay que resaltar que si se tiene un problema sobre un cubo de distintas dimensiones, bastará hacer un cambio de coordenadas para reducirlo a un problema de este tipo.

Para resolver este problema se comienza resolviendo el problema auxiliar

\[
\nabla^2 v = -\lambda^2 v,
\]

que se resuelve utilizando el método de separación de variables. Esto es, se prueban soluciones de la forma

\[

v(x, y, z) = X(x)Y(y)Z(z),
\]

con lo que la ecuación (3.8), se escribe

\[

\frac{1}{X} \frac{d^2 X}{dx^2} + \frac{1}{Y} \frac{d^2 Y}{dy^2} + \frac{1}{Z} \frac{d^2 Z}{dz^2} = -\lambda^2.
\]

Suponemos que \(X, Y \) y \(Z \) son tales que satisfacen

\[
\frac{d^2 X}{dx^2} + i^2 X = 0, \quad X(0) = X(\pi) = 0,
\]

\[
\frac{d^2 Y}{dy^2} + j^2 Y = 0, \quad Y(0) = Y(\pi) = 0,
\]

\[
\frac{d^2 Z}{dz^2} + k^2 Z = 0, \quad Z(0) = Z(\pi) = 0,
\]

con lo que se tiene que

\[

\lambda^2 = i^2 + j^2 + k^2.
\]

Una solución genérica de la ecuación (3.8), se escribirá

\[

v_{ijk}(x, y, z) = \text{sen}(ix) \text{sen}(jy) \text{sen}(kz).
\]
Suponemos ahora, que la solución del problema inicial se expresa como

\[u(x, y, z) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} A_{ijk} v_{ijk} . \]

(3.11)

Introduciendo la solución (3.11) en la ecuación (3.7), obtenemos

\[-\lambda^2 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} A_{ijk} v_{ijk} = Q(x, y, z) , \]

con lo que

\[A_{ijk} = -\frac{8}{\pi^3 \lambda^2} \int_0^{\pi} dx \int_0^{\pi} dy \int_0^{\pi} dz Q(x, y, z) \sin(i\pi x) \sin(j\pi y) \sin(k\pi z) . \]

3.4. Soluciones fundamentales

Cuando se quieren estudiar soluciones de la ecuación de Laplace en distintas geometrías, es interesante hacer cambios de coordenadas. Los cambios más usuales son los cambios a coordenadas cilíndricas y a coordenadas esféricas.

Las coordenadas cilíndricas vienen dadas por

\[x = r \cos(\theta) , \]
\[y = r \sin(\theta) , \]
\[z = z , \]

donde \(\theta \in [0, 2\pi] \), y \(r > 0 \). En estas coordenadas la ecuación de Laplace queda

\[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} = 0 . \]

(3.12)

En el caso que no se considere la coordenada \(z \), se tiene la ecuación en un plano en coordenadas polares

\[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 . \]

(3.13)

Las coordenadas esféricas vienen dadas por

\[x = r \sin(\theta) \cos(\varphi) , \]
\[y = r \sin(\theta) \sin(\varphi) , \]
\[z = r \cos(\theta) , \]
donde $\theta \in [0, \pi]$, $\varphi \in [0, 2\pi]$ y $r > 0$. En estas coordenadas la ecuación de Laplace queda

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 u}{\partial \varphi^2} = 0 . \quad (3.14)
\]

Supongamos que por la simetría del problema, sabemos que la solución no depende de la parte angular. Para un plano, la ecuación de Laplace se escribe

\[
\frac{d}{dr} \left(r \frac{du}{dr} \right) = 0 ,
\]

o sea,

\[
r \frac{du}{dr} = C_1 ,
\]

cuya solución es

\[
u = C_1 \ln(r) + C_2 .
\]

Tomando $C_1 = -1$, y $C_2 = 0$, se tiene la solución

\[
u_0(r) = \ln \left(\frac{1}{r} \right) ,
\]

que se llama solución fundamental de la ecuación de Laplace en el plano.

Si se tiene simetría radial en un problema tridimensional, entonces a partir de la ecuación de Laplace (3.14) en la que se elimina la dependencia angular, se tiene

\[
\frac{d}{dr} \left(r^2 \frac{du}{dr} \right) = 0 ,
\]

cuya solución general es

\[
u = -\frac{C_1}{r} + C_2 .
\]

Tomando $C_1 = -1$ y $C_2 = 0$, obtenemos la solución

\[
u_0(r) = \frac{1}{r} ,
\]

que es la solución fundamental de la ecuación de Laplace en el espacio. Una solución de este tipo, es el potencial asociado a una carga puntual, e, situada en el origen de coordenadas,

\[
V(r) = \frac{Ke}{r} .
\]
3.5. Ecuación de Laplace en un círculo

Se quiere resolver la ecuación de Laplace en un círculo con una condición de contorno de la forma \(u(r_0, \theta) = f(\theta) \).

Se escribe la ecuación de Laplace en coordenadas polares

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 ,
\]

y se utiliza el método de separación de variables, probando una solución de la forma

\[
u(r, \theta) = R(r) \Theta(\theta) .
\]

Sustituyendo esta solución en la ecuación (3.15) se obtiene

\[
\frac{r}{R(r)} \frac{\partial}{\partial r} \left(r \frac{\partial R(r)}{\partial r} \right) + \frac{1}{\Theta(\theta)} \frac{\partial^2 \Theta(\theta)}{\partial \theta^2} = 0 ,
\]

o sea,

\[
n \left(r^2 \frac{\partial^2 R(r)}{\partial r^2} + r \frac{\partial R(r)}{\partial r} \right) = - \frac{1}{\Theta(\theta)} \frac{\partial^2 \Theta(\theta)}{\partial \theta^2} = \lambda .
\]

Como la función \(\Theta(\theta) \) ha de ser \(2\pi \)-periódica, se ha de cumplir que \(\lambda = n^2 \), siendo \(n \) un número entero. De esta forma se tiene

\[
\frac{\partial^2 \Theta}{\partial \theta^2} + n^2 \Theta = 0 ,
\]

cuya solución general es de la forma

\[
\Theta(\theta) = A_n \cos(n\theta) + B_n \sin(n\theta) .
\]

Para la función radial se tiene la ecuación

\[
r^2 \frac{d^2 R_n}{dr^2} + r \frac{dR_n}{dr} - n^2 R_n = 0 ,
\]

que es una ecuación de Euler. Hacemos el cambio \(r = e^\rho \) y queda la ecuación

\[
\frac{dR_n}{d\rho^2} - n^2 R_n = 0 ,
\]

cuya solución es de la forma

\[
R_n(\rho) = \begin{cases}
 c_0 + d_0 \rho & \text{si } n = 0 , \\
 c_n e^{n \rho} + d_n e^{-n \rho} & \text{si } n \neq 0 ,
\end{cases}
\]
o sea,

\[R_n(r) = \begin{cases}
 c_0 + d_0 \ln(r) & \text{si } n = 0, \\
 c_n r^n + d_n r^{-n} & \text{si } n \neq 0,
\end{cases} \]

Así la solución para \(u(r, \theta) \), se escribe

\[
\begin{align*}
 u(r, \theta) &= a_0 + b_0 \ln(r) + \sum_{n=1}^{\infty} (a_n r^n + b_n r^{-n}) \cos(n\theta) \\
 &\quad + \sum_{n=1}^{\infty} (c_n r^n + d_n r^{-n}) \sin(n\theta).
\end{align*}
\]

Las constantes \(a_0, b_0, a_n, b_n, c_n \) y \(d_n \) se determinan a partir de la condición de contorno. Veamos un ejemplo.

Ejemplo 3.1 Se pretende resolver el problema de Laplace

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0,
\]

sobre un disco de centro \(\theta \) y radio \(r_0 \), con la condición de contorno

\[
u(r_0, \theta) = f(\theta) = \begin{cases}
 100 & \text{si } 0 \leq \theta \leq \pi, \\
 0 & \text{si } \pi < \theta < 2\pi.
\end{cases}
\]

Solución:

Como la solución que buscamos ha de ser regular en \(r = 0 \), la solución general del problema será de la forma

\[
u(r, \theta) = a_0 + \sum_{n=1}^{\infty} (a_n r^n) \cos(n\theta) + \sum_{n=1}^{\infty} (c_n r^n) \sin(n\theta).
\]

Usando la ortogonalidad del sistema trigonométrico y la condición de contorno en \(r_0 \) tenemos

\[
\begin{align*}
 a_0 &= \frac{1}{2\pi} \int_0^{2\pi} f(\theta) \, d\theta = 50, \\
 a_n &= \frac{1}{\pi r_0^n} \int_0^{2\pi} f(\theta) \cos(n\theta) \, d\theta = 0, \quad n \neq 0, \\
 c_n &= \frac{1}{\pi r_0^n} \int_0^{2\pi} f(\theta) \sin(n\theta) \, d\theta = \begin{cases}
 0 & \text{si } n = 2k, \quad k = 1, 2, \ldots, \\
 \frac{200}{200\pi} & \text{si } n = 2k - 1, \quad k = 1, 2, \ldots.
\end{cases}
\end{align*}
\]

Así, la solución del problema se escribe

\[
u(r, \theta) = 50 + \frac{200}{\pi} \sum_{k=1}^{\infty} \frac{1}{2k-1} \left(\frac{r}{r_0} \right)^{2k-1} \sin((2k-1)\theta).
\]
3.6. Ecuación de Laplace en coordenadas esféricas

En problemas con simetría radial, en ocasiones es interesante hacer un cambio de variables pasando a coordenadas esféricas. Ya hemos visto que la ecuación de Laplace en coordenadas esféricas se escribe

\[
\frac{1}{r} \frac{\partial^2}{\partial r^2} (ru) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 u}{\partial \varphi^2} = 0 .
\] (3.16)

Para resolver este tipo de problemas, se prueban soluciones con la estructura siguiente,

\[
u(r, \theta, \varphi) = \frac{R(r)}{r} P(\theta) Q(\varphi).
\]

Sustituyendo este tipo de funciones en la ecuación (3.16), obtenemos

\[
PQ \frac{d^2 R}{dr^2} + \frac{RQ}{r^2 \sin^2(\theta)} \frac{d}{d\theta} \left(\sin(\theta) \frac{dP}{d\theta} \right) + \frac{RP}{r^2 \sin^2(\theta)} \frac{d^2 Q}{d\varphi^2} = 0,
\]

que se reescribe como

\[
r^2 \sin^2(\theta) \left(\frac{1}{R} \frac{d^2 R}{dr^2} + \frac{1}{P r^2 \sin(\theta)} \frac{d}{d\theta} \left(\sin(\theta) \frac{dP}{d\theta} \right) \right) + \frac{1}{Q} \frac{d^2 Q}{d\varphi^2} = 0 .
\] (3.17)

Se buscan soluciones tales que

\[
\frac{1}{Q} \frac{d^2 Q}{d\varphi^2} = -m^2 ,
\]
o sea, soluciones de la forma

\[
Q = C_{1,m} \sin(m \varphi) + C_{2,m} \cos(m \varphi) .
\] (3.18)

Para tener soluciones 2π-periódicas en la variable φ, m ha de ser un número entero.

Ahora imponemos que los $R(r)$ sean tales que

\[
d^2 R \quad \frac{d^2 R}{dr^2} = \frac{l(l+1)}{r^2} R ,
\] (3.19)

donde $l(l+1)$, en principio, es una constante real. Reescribimos (3.19), como

\[
r^2 \frac{d^2 R}{dr^2} - l(l+1)R = 0 .
\]
Se hace el cambio
\[r = e^z, \quad r \frac{dR}{dr^2} = \frac{dR}{dz}, \quad r^2 \frac{d^2R}{dr^2} = \frac{d^2R}{dz^2} - \frac{dR}{dz}. \]
y queda la ecuación
\[\frac{d^2R}{dz^2} - \frac{dR}{dz} - l(l + 1)R = 0, \]
cuya ecuación característica es
\[\lambda^2 - \lambda - l(l + 1) = 0. \]
Las soluciones son \(\lambda_1 = -l, \lambda_2 = l + 1 \), por tanto, la solución general de (3.19), se escribe como
\[R(r) = B_1 r^{l+1} + B_2 r^{-l}. \] (3.20)

Utilizando las funciones (3.18) y (3.20), en la ecuación (3.17), se llega a la ecuación
\[\frac{1}{\sin(\theta)} \frac{d}{d\theta} \left(\sin(\theta) \frac{dP}{d\theta} \right) + \left(l(l + 1) - \frac{m^2}{\sin^2(\theta)} \right) P = 0. \] (3.21)

Se hace el cambio \(x = \cos(\theta) \), con lo que la ecuación (3.21), queda
\[\frac{d}{dx} \left(1 - x^2 \right) \frac{dP}{dx} + \left(l(l + 1) - \frac{m^2}{1 - x^2} \right) P = 0. \] (3.22)

3.6.1. Simetría azimutal

Supongamos, en principio, que \(m = 0 \). Esta situación corresponde a problemas con simetría azimutal, o sea, donde \(u(r, \theta, \varphi) = u(r, \theta) \). En este caso, la ecuación (3.22) se expresa como
\[\frac{d}{dx} \left(1 - x^2 \right) \frac{dP}{dx} + l(l + 1)P = 0, \]
que se conoce como la ecuación diferencial de Legendre. Se buscarán soluciones de la ecuación (3.23), que sean finitas y continuas para \(-1 \leq x \leq 1\). Para encontrar estas soluciones se utiliza el método de Frobenius, esto es, se prueban soluciones como series de potencias de la forma
\[P(x) = x^\alpha \sum_{n=0}^{\infty} a_n x^n. \] (3.24)
y la ecuación \((3.23)\), queda
\[
\sum_{n=0}^{\infty} (n+\alpha)(n+\alpha-1)a_n x^{n+\alpha-2} - \sum_{n=0}^{\infty} (n+\alpha)(n+\alpha+1)a_n x^{n+\alpha} + (l+1) \sum_{n=0}^{\infty} a_n x^{n+\alpha} = 0 ,
\]
que se puede reescribir como
\[
\alpha(\alpha - 1)a_0 x^{\alpha-2} + \alpha(\alpha + 1)x^{\alpha-1} \\
+ \sum_{m=0}^{\infty} (m + \alpha + 2)(m + \alpha + 1)a_{m+2} x^{m+\alpha} \\
- ((m + \alpha)(m + \alpha + 1) - l(l + 1))a_m x^{m+\alpha} = 0 ,
\]
Supongamos que \(a_0 \neq 0\) (un resultado similar se obtiene si se supone que \(a_1 \neq 0\)). Entonces, necesariamente se ha de cumplir
\[
\alpha(\alpha - 1) = 0 ,
\]
\[
a_{m+2} = \frac{(m + \alpha)(m + \alpha + 1) - l(l + 1)}{(m + \alpha + 1)(m + \alpha + 2)} a_m \quad m = 0, 1, 2, \ldots (3.25)
\]
Se tiene pues que \(\alpha = 0\), o bien, \(\alpha = 1\). Para los dos valores de \(\alpha\), se puede ver que la serie \((3.24)\) con los valores de \(a_n\) dados por \((3.25)\), converge para \(x^2 < 1\) y diverge para \(x = \pm 1\). Para obtener una solución convergente en \(x = \pm 1\), es necesario que la serie se corte, esto es, que \(a_n = 0\) a partir de un cierto \(n\). Supongamos que \(\alpha = 0\), la serie se cortará solamente si \(l\) es 0 o un número entero par. De igual forma, si \(\alpha = 1\), para que la serie se corte, \(l\) ha de ser un número entero impar. De este modo, se obtienen como soluciones de la ecuación \((3.23)\) polinomios de grado \(l\). Si se elige la constante de normalización de forma que los polinomios valgan 1 en \(x = +1\), las soluciones obtenidas se conocen como los polinomios de Legendre.

Los primeros polinomios de Legendre son
\[
P_0(x) = 1 ,
\]
\[
P_1(x) = x ,
\]
\[
P_2(x) = \frac{1}{2} (3x^2 - 1) ,
\]
\[
P_3(x) = \frac{1}{2} (5x^3 - 3x) ,
\]
\[
P_4(x) = \frac{1}{8} (35x^4 - 30x^2 + 3) ,
\]
\[
\vdots
\]
64
Se puede obtener una representación compacta de los polinomios de Legendre, conocida como fórmula de Rodríguez, y que es de la forma

\[P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l . \]

Además, se pueden generar a partir de la relación de recurrencia

\[
\begin{align*}
P_0(x) &= 1 , \\
P_1(x) &= x , \\
(l + 1)P_{l+1}(x) - (2l + 1)xP_l(x) + lP_{l-1}(x) &= 0 .
\end{align*}
\]

Los polinomios de Legendre forman una base de polinomios en el intervalo \([-1, 1]\), que son ortogonales en este intervalo. Para ver esto, tenemos en cuenta que se cumple

\[
\frac{d}{dx} \left((1 - x^2) \frac{dP_l(x)}{dx} \right) + l(l + 1)P_l(x) = 0 ,
\]

por tanto,

\[
\int_{-1}^{+1} P_l(x) \left(\frac{d}{dx} \left((1 - x^2) \frac{dP_l(x)}{dx} \right) + l(l + 1)P_l(x) \right) dx = 0 .
\]

Integrando por partes el primer término, obtenemos

\[
\int_{-1}^{+1} \left(x^2 - 1 \right) \frac{d}{dx} P_l(x) \frac{d}{dx} P_l(x) + l(l + 1)P_l(x)P_l(x) \right) dx = 0 . \quad (3.26)
\]

Intercambiando \(l \) por \(l' \), se llega a que

\[
\int_{-1}^{+1} \left(x^2 - 1 \right) \frac{d}{dx} P_l(x) \frac{d}{dx} P_{l'}(x) + l(l + 1)P_l(x)P_{l'}(x) \right) dx = 0 . \quad (3.27)
\]

y restando \(\text{(3.26)} \) y \(\text{(3.27)} \), se obtiene

\[
(l(l + 1) - l'(l' + 1)) \int_{-1}^{+1} P_l(x)P_{l'}(x) dx = 0 .
\]

Así, si \(l \neq l' \), se tiene

\[
\int_{-1}^{+1} P_l(x)P_{l'}(x) dx = 0 . \quad (3.28)
\]

Usando la fórmula de Rodríguez, se prueba que

\[
\int_{-1}^{+1} P_l^2(x) dx = \frac{2}{2l + 1} . \quad (3.29)
\]
Ejemplo 3.2 Obtener la solución de la ecuación de Laplace con simetría azimutal en el interior de una esfera de radio r_0, que satisface la condición de contorno

$$u(r_0, \theta) = \begin{cases}
+V & 0 \leq \theta < \frac{\pi}{2} \\
-V & \frac{\pi}{2} < \theta \leq \pi
\end{cases}$$

Solución: La solución general de la ecuación de Laplace para un problema con simetría azimutal es de la forma

$$u(r, \theta) = \sum_{l=0}^{\infty} \left(B_{1,l} r^{l+1} + B_{2,l} r^{-l} \right) P_l(\cos(\theta)) .$$

Como la solución ha de ser regular en el origen, necesariamente $B_{2,l} = 0$, $l = 1, 2, \ldots$ y se puede escribir

$$u(r, \theta) = \sum_{l=0}^{\infty} A_l P_l(\cos(\theta)) .$$

Imponiendo la condición de contorno

$$u(r_0, \theta) = \sum_{l=0}^{\infty} A_l r_0^l P_l(\cos(\theta)) ,$$

con lo que

$$A_l = \frac{2l + 1}{2r_0^l} \left(\int_{0}^{1} V P_l(x) dx - \int_{-1}^{0} V P_l(x) dx \right) .$$

Se tiene que si l es par, los polinomios de Legendre $P_l(x)$ son pares y, por tanto, sólo van a ser distintos de cero los coeficientes A_l con l impar, que vienen dados por

$$A_l = \frac{2l + 1}{r_0^l} V \int_{0}^{1} P_l(x) dx , \quad l = 1, 3, \ldots .$$

Para evaluar la integral

$$I_l = \int_{0}^{1} P_l(x) dx , \quad l = 1, 3, \ldots ,$$

66
se puede usar la fórmula de Rodrigues,

\[I_1 = \int_0^1 \frac{1}{2} \frac{d}{dx} (x^2 - 1) \, dx = \frac{1}{2}, \]

\[I_3 = \int_0^1 \frac{1}{2^33!} \frac{d}{dx^3} (x^2 - 1)^3 \, dx = -\frac{1}{8}, \]

\[I_5 = \int_0^1 \frac{1}{2^55!} \frac{d}{dx^5} (x^2 - 1)^5 \, dx = \frac{1}{16}, \]

con lo que la solución se expresará como

\[u(r, \theta) = \frac{3V}{2r_0} r P_1(\cos(\theta)) - \frac{7V}{8r_0^3} r^3 P_3(\cos(\theta)) + \frac{11V}{16r_0^5} r^5 P_5(\cos(\theta)) + \cdots. \]
3.7. Ejercicios

1. (Mathematica) Demuestra que la función
\[
\psi = y \left(1 - \frac{1}{x^2 + y^2} \right),
\]
satisface la ecuación de Laplace. Dibuja las soluciones \(\psi = 0, \psi = 0,1, \psi = 0,3 \) y \(\psi = 1 \) para \(x \in [-2,5] \).

2. Usa el método de separación de variables para obtener la solución de la ecuación de Laplace, \(u(x, y) \), que satsface las condiciones

 \[\begin{align*}
 &a) \quad u(x, 0) = 0 \text{ si } 0 < x < 2. \\
 &b) \quad u(x, 1) = 0 \text{ si } 0 < x < 2. \\
 &c) \quad u(0, y) = 0 \text{ si } 0 < y < 1. \\
 &d) \quad u(2, y) = a \sin(2\pi y) \text{ si } 0 < y < 1.
 \end{align*} \]

3. Resolvé el problema
\[
\psi_{xx} + \psi_{yy} = 0, \quad 0 < x < 1, \quad 0 < y < 2,
\]
con las condiciones de contorno
\[
\begin{align*}
 &u(x, 0) = x^2, \quad u(x, 2) = x + 2, \\
 &u(0, y) = y, \quad u(1, y) = y + 1.
\end{align*}
\]

4. Obtén la solución de la ecuación de Laplace, \(u(x, y) \), que satsface las condiciones

 \[\begin{align*}
 &a) \quad u(x, 0) = x \text{ si } 0 \leq x \leq 1. \\
 &b) \quad u(x, 2) = 0 \text{ si } 0 \leq x \leq 2. \\
 &c) \quad u(0, y) = 0 \text{ si } 0 \leq y \leq 1. \\
 &d) \quad u_x(1, y) = 0 \text{ si } 0 \leq y \leq 1.
 \end{align*} \]

5. Determinar la temperatura en estado estacionario del sector circular
\[
0 \leq r \leq 1, \quad 0 \leq \theta \leq \frac{\pi}{4},
\]
si la temperatura se mantiene a 0 en los bordes rectos y a 10 grados en el borde curvo.

6. Suponde que la temperatura a lo largo de la circunferencia interior de un anillo circular de radio \(r_1 \) se mantiene a \(T(r_1, \theta) = 0 \), y en la circunferencia exterior a \(T(r_2, \theta) = \sin(\theta) \). Calcula la temperatura en el interior del anillo en estado estacionario.
Capítulo 4

Métodos Numéricos para problemas de valor inicial

4.1. Introducción

Los métodos analíticos de integración de ecuaciones diferenciales sólo son útiles para resolver una pequeña parte de las ecuaciones diferenciales que aparecen en la práctica. Este hecho justifica, junto al avance de la capacidad de computación, el interés práctico por los métodos que se denominan aproximados.

Los métodos numéricos son los métodos aproximados de uso más extendido en la resolución de problemas reales científicos y técnicos. Se caracterizan porque proporcionan una solución aproximada dada mediante una tabla de valores, y tienen la gran ventaja de basarse en procedimientos generales que no dependen del tipo de ecuación a resolver. No obstante, obtener resultados con una precisión aceptable con estos métodos exige tener que hacer un gran número de cálculos, para lo cual es necesario el uso del ordenador. Dediquemos este capítulo a exponer una introducción a los métodos numéricos para la resolución de problemas de valor inicial asociados a una ecuación diferencial.

Recordemos que un problema de valores iniciales que consiste en

\[\text{Dada una ecuación diferencial obtener la función solución } y(t) \]
\[\text{de la que se conoce su valor y el de sus derivadas en un punto inicial } t_0. \]

En caso de resolver analíticamente el problema, las condiciones iniciales son las que permiten determinar las \(n \) constantes de la solución general y, de
En este capítulo, presentamos métodos numéricos para obtener un valor aproximado de la solución $y(t_0)$ del problema de valor inicial

$$
\begin{align*}
 y' &= f(t, y), \\
 y(t_0) &= y_0,
\end{align*}
$$

(4.1)

con la hipótesis de que la función f es tal que el problema tiene solución única en un intervalo que contiene a t_0.

En el caso de un problema de valor inicial asociado a una ecuación diferencial de orden n, consideraríamos su equivalencia con un sistema de ecuaciones diferenciales de primer orden y, a éste, le aplicaríamos los métodos numéricos aquí expuestos generalizándolos para funciones vectoriales.

4.2. Método del desarrollo en serie de Taylor

Partimos de la ecuación diferencial (4.1), con el objetivo de obtener el valor de la función y en el punto b, conocido el valor de y en el punto t_0. Para ello, dividimos el intervalo $[t_0, b]$ en subintervalos iguales, tomando $t_i = t_{i-1} + h$, $i = 1, 2, \ldots, n$, $h = \frac{b-t_0}{n}$. Por lo tanto, $t_n = b$.

El método del desarrollo en serie de Taylor es un método paso a paso en el sentido de que, partiendo de $y_0 = y(t_0)$, se avanza paso a paso para obtener el valor de la solución en distintos puntos. En el primer paso, se calcula un valor aproximado de la solución exacta en $t_1 = t_0 + h$, que llamaremos y_1. En el segundo paso, se calcula un valor aproximado y_2 de la solución exacta en $t_2 = t_0 + 2h$, etc. En cada paso, los cálculos se llevan a cabo mediante la misma fórmula.

Suponiendo que la solución, $y = y(t)$, admite desarrollo en serie de Taylor en un entorno del punto $t = t_0$, la solución de la ecuación diferencial en t_1 se puede escribir,

$$
y(t_1) = y(t_0 + h) = y(t_0) + y'(t_0)h + y''(t_0)\frac{h^2}{2!} + \cdots + y^{(n)}(t_0)\frac{h^n}{n!} + \cdots,
$$

donde los coeficientes pueden ser calculados a partir de la ecuación diferencial.
Tendremos

\[
\begin{align*}
y(t_0) &= y_0, \\
y'(t_0, y_0) &= f(t_0, y_0), \\
y''(t_0, y_0) &= \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial y} \frac{dy}{dt} \right) \bigg|_{(t_0, y_0)} = (f_t + f_y f) \big|_{(t_0, y_0)}, \\
y'''(t_0, y_0) &= (f_t + f_y f)' \big|_{(t_0, y_0)} = \\
&= \left(\frac{\partial}{\partial t} (f_t + f_y f) + \frac{\partial}{\partial y} (f_t + f_y f) f \right) \bigg|_{(t_0, y_0)}.
\end{align*}
\]

De esta forma, sucesivamente, pueden obtenerse las derivadas de \(y \) en \((t_0, y_0) \). Por lo tanto, si consideramos el desarrollo de Taylor hasta orden 3 en \(h \), obtenemos

\[
y(t_1) = y_0 + f(t_0, y_0) h + \frac{1}{2!} h^2 (f_t + f_y f) \big|_{(t_0, y_0)} + \\
+ \frac{1}{3!} h^3 \left(f_{tt} + 2f_{ty} f + f_y f_t + f_{yy} f^2 + f_y f_y f \right) \big|_{(t_0, y_0)} + O(h^4).
\]

donde denotamos por \(O(h^4) \) a los siguientes términos del desarrollo que serán proporcionales a potencias de \(h \) iguales o superiores a 4. En este caso, podemos aproximar \(y(t_1) \) por \(y_1 \)

\[
y_1 = y_0 + f(t_0, y_0) h + \frac{1}{2} h^2 (f_t + f_y f) \big|_{(t_0, y_0)} + \\
+ \frac{1}{3!} h^3 \left(f_{tt} + 2f_{ty} f + f_y f_t + f_{yy} f^2 + f_y f_y f \right) \big|_{(t_0, y_0)} . \tag{4.2}
\]

Una vez obtenido \(y_1 \), calculamos \(y_2 \) sustituyendo en la expresión (4.2), \(t_0 \) por \(t_1 \) e \(y_0 \) por el valor \(y_1 \) que hemos obtenido. El método iterativo, consiste en seguir este proceso obteniéndose la \(n \)-ésima aproximación,

\[
y_n = y_{n-1} + f(t_{n-1}, y_{n-1}) h + \frac{1}{2} h^2 (f_t + f_y f) \big|_{(t_{n-1}, y_{n-1})} + \\
+ \frac{1}{3!} h^3 \left((f_{tt} + 2f_{ty} f + f_y f_t + f_{yy} f^2 + f_y f_y f) \right) \big|_{(t_{n-1}, y_{n-1})} .
\]

Ejemplo 4.1 Considere el problema de valor inicial

\[
y' = y - t^2 + 1, \quad 0 \leq t \leq 2, \quad y(0) = 0.5 . \tag{4.3}
\]

Este problema tiene como solución analítica

\[
y(t) = 1 - \frac{1}{2} t^2 + 2t + t^2.
\]
Construiremos los métodos de Taylor de orden 1 y orden 3, para este problema.

El método de Taylor de orden 1 es

\[y_{i+1} = y_i + hf(t_i) \]

Para el problema (4.3),

\[y_{i+1} = (1 + h)y_i - ht_i^2 + h \]

El método de Taylor de orden 3 es de la forma

\[y_{i+1} = y_i + hf(t_i) + \frac{1}{2}h^2 y''(t_i) + \frac{1}{6}h^3 y'''(t_i) \]

Para el problema (4.3), se tiene

\[
\begin{align*}
 y' &= y - t^2 + 1 \\
 y'' &= y - t^2 - 2t + 1 \\
 y''' &= y - t^2 - 2t - 1
\end{align*}
\]

y, por tanto, el método de Taylor de orden 3 es

\[y_{i+1} = y_i + h \left(y_i - t_i^2 + 1 \right) + \frac{1}{2}h^2 \left(y_i - t_i^2 - 2t_i + 1 \right) + \frac{1}{6}h^3 \left(y_i - t_i^2 - 2t_i - 1 \right) \]

Como puede observarse, el proceso a seguir en el método del desarrollo de Taylor es, en general, costoso desde el punto de vista de los cálculos que hay que realizar. Puede resultar interesante su aplicación cuando la función \(f(t, y) \) sea algebraica, en cuyo caso las derivadas sucesivas se calcularán fácilmente y se anularán a partir de cierto término. En resumen, este método permite aumentar indefinidamente la precisión tomando muchos términos del desarrollo de Taylor, siempre a costa de aumentar también el esfuerzo computacional.

4.3. Método de Euler

El método de Euler es el más simple de los métodos numéricos de resolución de ecuaciones diferenciales. No es muy utilizado debido a que el error
que se comete al aplicarlo, crece considerablemente con el número de iteraciones. El método de Euler es un caso particular del método del desarrollo en serie de Taylor, donde nos quedamos en el primer orden de h,

$$y(t_0 + h) \approx y(t_0) + hy'(t_0).$$

A partir de la ecuación diferencial $y'(t_0) = f(t_0,y_0)$, obtenemos

$$y_1 = y_0 + hf(t_0,y_0).$$

Análogamente, utilizando y_1 como condición inicial, tenemos en el segundo paso,

$$y_2 = y_1 + hf(t_1,y_1),$$

y, en general,

$$y(t_0) = y_0,$$

$$y_{i+1} = y_i + hf(t_i + ih, y_i), \quad i = 1, 2, \ldots$$

Geométricamente, este método consiste en realizar una aproximación de la curva $y(t)$ mediante un polígono cuyo primer lado es tangente a la curva en t_0 (véase la Fig. 4.1).
El error que se comete en la primera iteración es,
\[
\varepsilon_1 = |y(t_1) - y_1| = |y(t_1) - y_0 - hf(t_0, y_0)| = |y(t_0) + hy'(t_0) + \frac{1}{2}h^2y''(t_0) + \cdots - y_0 - hf(t_0, y_0)| = O(h^2).
\]
A este error se le llama error local o error de truncamiento del método.

Lógicamente, el error aumentará a medida que aumente el número de iteraciones. El valor práctico de este método es limitado aunque resulta útil para obtener al menos una primera aproximación de la solución, para un valor de h suficientemente pequeño.

Ejemplo 4.2 Dado el problema de valor inicial \(y' = y - t \), con la condición \(y(0) = y_0 = 1.5 \), cuya solución analítica es
\[
y = 1 + \frac{1}{2}e^t + t.
\]
Vamos a calcular, mediante el método de Euler, una aproximación a \(y(1.5) \).
Tomamos \(h = 0.25 \) y realizamos los cálculos, con un redondeo de cuatro decimales, que figuran en la siguiente tabla

| \(i \) | \(t_i \) | \(y_i \) | \(y(t_i) \) | \(|y(t_i) - y_i| \) |
|---|---|---|---|---|
| 0 | 0 | 1.5000 | 1.5000 | 0.0000 |
| 1 | 0.25 | 1.8750 | 1.9920 | 0.0170 |
| 2 | 0.50 | 2.2812 | 2.3244 | 0.0432 |
| 3 | 0.75 | 2.7265 | 2.8085 | 0.0820 |
| 4 | 1.00 | 3.2206 | 3.3591 | 0.1385 |
| 5 | 1.25 | 3.7758 | 3.9952 | 0.2194 |
| 6 | 1.50 | 4.4072 | 4.7408 | 0.3356 |

Al final, se tiene que \(y(1.5) \approx 4.4072 \) con un error de 0.3356. Como ya hemos comentado, el error va aumentando a medida que aumenta el número de iteraciones.

Para el método de Euler, el siguiente teorema nos da una cota para el error global que se comete.

Teorema 4.1 Si \(y(t) \) es la solución del problema del valor inicial
\[
y' = f(t, y), \quad a \leq t \leq b, \quad y(a) = y_0,
\]
y llamamos \(y_0, y_1, \ldots, y_n \) las aproximaciones generadas con el método de Euler con paso \(h \). Supongamos que \(f \) es continua para \(t \in [a, b] \) e \(y \in]-\infty, +\infty[\) y que existen constantes \(L \) y \(M \) tales que

\[
\left| \frac{\partial f}{\partial y}(t, y) \right| \leq L \quad \text{y} \quad |y''| \leq M .
\]

Entonces, para \(i = 0, 1, 2, \ldots, n \), se cumple

\[
|y(t_i) - y_i| \leq \frac{hM}{2L} \left(e^{L(t_i-a)} - 1 \right) .
\]

Hemos de resaltar que el error local o de truncamiento del método de Euler es \(O(h^2) \) mientras que el error global es \(O(h) \). Esta reducción del error local al error global en un grado de \(h \) es típica de las técnicas numéricas para problemas de valor inicial.

4.4. Métodos de Runge-Kutta

Como ya hemos comentado, el método del desarrollo en serie de Taylor es computacionalmente costoso debido, sobre todo, a la complicación creciente de las derivadas de \(f \). Los métodos de Runge evitan este cálculo mediante la evaluación de \(f \) en uno o varios puntos auxiliares, elegidos apropiadamente, de forma que el desarrollo en serie que se obtiene se ajuste al desarrollo de Taylor con una aproximación mejor que la del método de Euler.

Veamos cómo es posible desarrollar métodos de Runge-Kutta de orden 2. Utilizando el desarrollo de Taylor, tenemos

\[
y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2} y''(t_i) + \frac{h^3}{3!} y'''(\xi)
\]

\[
= y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2} f'(t_i, y(t_i)) + \frac{h^3}{3!} y'''(\xi)
\]

\[
= y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2} \left(\frac{\partial f}{\partial t}(t_i, y(t_i)) + \frac{\partial f}{\partial y}(t_i, y(t_i)) f(t_i, y(t_i)) \right)
\]

\[
+ \frac{h^3}{3!} y'''(\xi) . \quad (4.4)
\]

Por otra parte, se puede buscar un método de la forma

\[
y(t_{i+1}) = y(t_i) + ha_1 f(t_i + \alpha, y(t_i) + \beta) ,
\]

75
que tenga el mismo error de truncamiento que el método de Taylor \(4.4\).

Como

\[
a_1 f(t_i + \alpha, y(t_i) + \beta) \approx a_1 f(t_i, y(t_i)) + a_1 \alpha \frac{\partial f}{\partial t}(t_i, y(t_i)) + a_1 \beta \frac{\partial f}{\partial y}(t_i, y(t_i)),
\]

para tener el mismo error de truncamiento se ha de cumplir

\[
1 = a_1, \quad \frac{h}{2} = a_1 \alpha, \quad \frac{h}{2} f(t_i, y(t_i)) = a_1 \beta,
\]

o sea,

\[
a_1 = 1, \quad \alpha = \frac{h}{2}, \quad \beta = \frac{h}{2} f(t_i, y(t_i)).
\]

Obtenemos de esta forma el \emph{método del punto medio}

\[
y_0 = y(t_0),
\]
\[
y_{i+1} = y_i + h f\left(t_i + \frac{h}{2}, y_i + \frac{h}{2} f(t_i, y_i)\right),
\]

que tiene un error de truncamiento \(O(h^3)\) y un error global \(O(h^2)\).

Otra posible elección del método numérico es

\[
y_{i+1} = y_i + h (a_1 f(t_i, y_i) + a_2 f(t_i + \alpha, y(t_i) + \beta)).
\]

El parámetro adicional que se introduce permite la posibilidad de construir muchos métodos de Runge-Kutta. Tomando \(a_1 = a_2 = \frac{1}{2}, \alpha = h, \beta = h f(t_i, y_i)\), se obtiene el \emph{método de Euler modificado}

\[
y_0 = y(t_0),
\]
\[
y_{i+1} = y_i + h f\left(t_i, y_i + \frac{h}{2} \left(f(t_i, y_i) + f(t_i + h, y_i + h f(t_i, y_i))\right)\right),
\]

que también tiene un error de truncamiento \(O(h^3)\) y un error global \(O(h^2)\).

Tomando \(a_1 = \frac{1}{4}, a_2 = \frac{3}{4} y \alpha = \frac{2}{3} h y \beta = \frac{2}{3} h f(t_i, y_i)\), se obtiene el \emph{método de Heun}

\[
y_0 = y(t_0),
\]
\[
y_{i+1} = y_i + \frac{h}{4} \left(f(t_i, y_i) + 3 f\left(t_i + \frac{2}{3} h, y_i + \frac{2}{3} h f(t_i, y_i)\right)\right),
\]

que tiene un error de truncamiento \(O(h^3)\) y un error global \(O(h^2)\).
Se pueden obtener métodos de Runge-Kutta de orden superior de una forma análoga a la desarrollada para los métodos de orden 2. Uno de los métodos de Runge-Kutta de orden 4 más utilizados hace uso de las cantidades,

\[k_{1i} = hf(t_i, y_i), \]
\[k_{2i} = hf(t_i + h/2, y_i + k_{1i}/2), \]
\[k_{3i} = hf(t_i + h/2, y_i + k_{2i}/2), \]
\[k_{4i} = hf(t_i + h, y_i + k_{3i}), \]

y se basa en la sucesión recurrente construida a partir de la relación,

\[y(t_0) = y_0, \]
\[y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \]

Puede demostrarse, mediante el mismo razonamiento que el seguido para los algoritmos anteriores, que el error de truncamiento es \(O(h^5) \) y el error global del método es \(O(h^4) \).

4.5. Métodos multipaso

Los métodos de Euler y de Runge-Kutta que se han expuesto son métodos de un paso. Esto es, para calcular la aproximación \(y_{i+1} \) de \(y(t_{i+1}) \), hacen uso sólomente de la aproximación \(y_i \). Se puede mejorar el funcionamiento de los métodos si al calcular la aproximación \(y_{i+1} \), se involucran otras aproximaciones, \(y_i, y_{i-1}, \ldots, y_{i-k} \), calculadas previamente. Los métodos que hacen uso de estas aproximaciones se llaman métodos multipaso.

Partimos del problema de valor inicial

\[\frac{dy}{dt} = f(t, y), \quad t_0 \leq t \leq t_n. \quad (4.5) \]

Integrando en el intervalo \([t_i, t_{i+1}]\), tenemos

\[y(t_{i+1}) - y(t_i) = \int_{t_i}^{t_{i+1}} f(t, y(t)) \, dt. \quad (4.6) \]

Antes de seguir con la construcción de los métodos multipaso, veamos el concepto de polinomio interpolador.
4.5.1. Polinomio interpolador

Supongamos conocidos los valores de una función \(f(t) \) en \(k + 1 \) puntos distintos \(t_0, t_1, \ldots, t_k \), que supondremos ordenados de menor a mayor.

Nuestro problema es obtener una función que aproxime el valor de \(f(t) \) en un punto arbitrario \(t \in [t_0, t_k] \). Para resolverlo, construiremos un polinomio \(L_k(t) \) de grado menor o igual que \(k \) que cumpla que

\[
L_k(t_i) = f(t_i) = f_i, \quad i = 0, 1, \ldots, k,
\]

A \(L_k(t) \) se le denomina polinomio interpolador de la función \(f(t) \) en los puntos \(t_0, t_1, \ldots, t_k \) que, a su vez, se llaman nodos de interpolación de la función \(f(t) \).

Una posible forma de resolver el problema sería el plantear un polinomio de grado \(k \)

\[
P_k(t) = a_0 + a_1 t + a_2 t^2 + \ldots + a_k t^k,
\]

con coeficientes \(a_i, \ i = 0, 1, \ldots, k \), indeterminados tal que \(P_k(t_i) = f_i \ i = 0, 1, \ldots, k \). Esto significa que obtener el polinomio interpolador es equivalente a resolver el sistema de ecuaciones

\[
\begin{align*}
a_0 + a_1 t_0 + \ldots + a_k t_k^k &= f_0, \\
a_0 + a_1 t_1 + \ldots + a_k t_k^k &= f_1, \\
\vdots \\
a_0 + a_1 t_k + \ldots + a_k t_k^k &= f_k.
\end{align*}
\]

Esta forma de afrontar el problema es, desde el punto de vista práctico, poco operativa.

El siguiente resultado proporciona una forma explícita del polinomio interpolador buscado.

Teorema 4.2 (Polinomio interpolador de Lagrange) Dado el conjunto de puntos \((t_0, f_0), (t_1, f_1), \ldots, (t_k, f_k) \), se considera el polinomio

\[
L_k(t) = \sum_{i=0}^{k} P_{k,i}(t) f_i
\]

donde

\[
P_{k,i}(t) = \frac{(t - t_0) \cdots (t - t_{i-1}) (t - t_{i+1}) \cdots (t - t_k)}{(t_i - t_0) \cdots (t_i - t_{i-1}) (t_i - t_{i+1}) \cdots (t_i - t_k)}.
\]

78
con \(i = 0, 1, \ldots, k \). Este polinomio es un polinomio interpolador para la función \(f(t) \).

Demostración.

En primer lugar, el polinomio \(L_k(t) \) tiene grado menor o igual que \(k \) puesto que es combinación lineal de los polinomios \(P_{k,i}(t) \), y éstos tienen grado menor o igual que \(k \). Por otra parte, observemos que

\[
P_{k,i}(t_l) = \prod_{j=0}^{k} \frac{t_l - t_j}{t_i - t_j} = \begin{cases} 1 & \text{si } l = i \\ 0 & \text{si } l \neq i \end{cases},
\]
de donde

\[
L_k(t_i) = P_{k,i}(t_i) f_i = f_i, \quad i = 0, 1, \ldots, n.
\]

El polinomio obtenido en el Teorema 4.2 se conoce con el nombre de polinomio interpolador de Lagrange.

Una vez visto el concepto de polinomio interpolador, seguiremos con el desarrollo de los métodos multipaso para el problema (4.6). Supongamos que conocemos las aproximaciones a la solución del problema (4.5), \(y_j \) correspondientes a los tiempos \(t_j-k, t_j-k+1, \ldots, t_j \), y construimos el polinomio interpolador que pasa por los puntos \((t_j-k, f(t_j-k, y_j-k)), (t_j-k+1, f(t_j-k+1, y_j-k+1)), \ldots, (t_j, f(t_j, y_j))\),

\[
L_k(t) = \sum_{l=0}^{k} P_{k,j-l}(t)f(t_{j-l}, y_{j-l}) .
\]

A continuación, se sustituye el problema (4.6) por la aproximación

\[
y_{i+1} = y_i + \int_{t_i}^{t_{i+1}} L_k(t) \, dt = y_i + \sum_{l=0}^{k} f(t_{j-l}, y_{j-l}) \int_{t_i}^{t_{i+1}} P_{k,j-l}(t) \, dt .
\]

Llamando

\[
\alpha_{k,l} = \int_{t_i}^{t_{i+1}} P_{k,j-l}(t) \, dt ,
\]
se obtienen los métodos multipaso o métodos de Adams

\[
y_{i+1} = y_i + \sum_{l=0}^{k} \alpha_{k,l} f(t_{j-l}, y_{j-l}) . \quad (4.7)
\]
Ejemplo 4.3 Supongamos que se conocen las aproximaciones \(y_i, y_{i-1} \) de un problema de la forma (4.3). Si construimos el polinomio interpolador que pasa por \((t_{i-1}, f(t_{i-1}, y_{i-1}))\), \((t_i, f(t_i, y_i))\),

\[
L_1(t) = \frac{t - t_i}{t_{i-1} - t_i} f(t_{i-1}, y_{i-1}) + \frac{t - t_{i-1}}{t_i - t_{i-1}} f(t_i, y_i),
\]

queda el método numérico

\[
y_{i+1} = y_i + \frac{f(t_{i-1}, y_{i-1})}{t_{i-1} - t_i} \int_{t_i}^{t_{i+1}} (t - t_i) \, dt + \frac{f(t_i, y_i)}{t_i - t_{i-1}} \int_{t_i}^{t_{i+1}} (t - t_{i-1}) \, dt
\]

Si los instantes \(t_j \) están igualmente espaciados, con un paso temporal \(h \), se tiene el método,

\[
y_{i+1} = y_i + \frac{h}{2} (3f(t_i, y_i) - f(t_{i-1}, y_{i-1})) .
\]

Se distinguirán dos tipos de métodos, los **métodos explícitos**, que son aquellos que para el cálculo de \(y_{i+1} \) sólo hacen uso de \(f(t_i, y_i) \) así como de la función \(f \) valorada en la solución correspondiente a instantes anteriores. Los métodos multipaso explícitos se llaman también métodos de *Adams-bashforth*. Algunos de estos métodos son:

Método de Adams-bashforth de tres pasos

\[
y_0 = \alpha_0 , \quad y_1 = \alpha_1 , \quad y_2 = \alpha_2 ,
\]

\[
y_{i+1} = y_i + \frac{h}{12} (23f(t_i, y_i) - 16f(t_{i-1}, y_{i-1}) + 5f(t_{i-2}, y_{i-2}))
\]

que tiene un error local \(O(h^4) \).

Método de Adams-bashforth de cuatro pasos

\[
y_0 = \alpha_0 , \quad y_1 = \alpha_1 , \quad y_2 = \alpha_2 , \quad y_3 = \alpha_3 ,
\]

\[
y_{i+1} = y_i + \frac{h}{24} (55f(t_i, y_i) - 59f(t_{i-1}, y_{i-1}) + 37f(t_{i-2}, y_{i-2})
\]

\[
- 9f(t_{i-3}, y_{i-3})) .
\]
que tiene un error local $O(h^5)$.

Los métodos implícitos para el cálculo de y_{i+1} hacen uso de $f(t_{i+1}, y_{i+1})$. Veamos un ejemplo.

Ejemplo 4.4 Supongamos que se conocen las aproximaciones y_i, y_{i+1} de un problema de la forma (4.5). Si construimos el polinomio interpolador que pasa por $(t_i, f(t_i, y_i))$, y $(t_{i+1}, f(t_{i+1}, y_{i+1}))$,

$$L_1(t) = \frac{t-t_{i+1}}{t_i-t_{i+1}} f(t_i, y_i) + \frac{t-t_i}{t_{i+1}-t_i} f(t_{i+1}, y_{i+1}) ;$$

quedan los métodos numéricos

$$y_{i+1} = y_i + \frac{t_{i+1}-t_i}{2} \left(f(t_i, y_i) + f(t_{i+1}, y_{i+1}) \right) .$$

A los métodos multipaso implícitos se les llama métodos de Adams-Moulton. Algunos de estos métodos son los siguientes:

Método de Adams-Moulton de tres pasos

$$y_0 = \alpha_0 , \quad y_1 = \alpha_1 , \quad y_2 = \alpha_2 ,$$

$$y_{i+1} = y_i + \frac{h}{24} (9f(t_{i+1}, y_{i+1}) + 19f(t_i, y_i) - 5f(t_{i-1}, y_{i-1}) + f(t_{i-2}, y_{i-2}))$$

que tiene un error local $O(h^5)$.

Método de Adams-Moulton de cuatro pasos

$$y_0 = \alpha_0 , \quad y_1 = \alpha_1 , \quad y_2 = \alpha_2 , y_3 = \alpha_3 ,$$

$$y_{i+1} = y_i + \frac{h}{720} (251f(t_{i+1}, y_{i+1}) + 646f(t_i, y_i) - 246f(t_{i-1}, y_{i-1})$$

$$+ 106f(t_{i-2}, y_{i-2}) - 19f(t_{i-3}, y_{i-3})) .$$

que tiene un error local $O(h^5)$.

En la práctica, los métodos multipaso implícitos no se usan en solitario, más bien se utilizan para mejorar las aproximaciones obtenidas por los métodos explícitos. La combinación de una técnica explícita con una implícita se llama método de predicción y corrección o método predictor-corrector.
4.6. Ecuaciones rígidas

Los métodos numéricos para la aproximación de la solución de problemas de valores iniciales tienen fórmulas de error que incluyen una derivada de orden superior de la solución de la ecuación diferencial. Si la derivada de la solución se puede acotar por una constante, entonces el error del método numérico se puede mantener bajo control. Hay ciertos problemas en los que el valor de la derivada se hace grande y el error del método puede dominar los cálculos a medida que crece el número de iteraciones. A este tipo de problemas se les llama problemas rígidos.

Ejemplo 4.5 Consideremos el problema de valores iniciales

\[u_1' = 9u_1 + 24u_2 + 5\cos(t) - \frac{1}{3}\sen(t), \quad u_1(0) = \frac{4}{3}, \]

\[u_2' = -24u_1 - 52u_2 - 9\cos(t) + \frac{1}{3}\sen(t), \quad u_2(0) = \frac{2}{3}. \]

La solución analítica del problema es

\[u_1(t) = 2e^{-3t} - e^{-39t} + \frac{1}{3}\cos(t), \]

\[u_2(t) = -e^{-3t} + 2e^{-39t} - \frac{1}{3}\cos(t), \]

Si se usa un método de Runge-Kutta de 4 pasos para calcular la solución del problema obtenemos, por ejemplo, los resultados para \(u_1(t)\) de la siguiente tabla

<table>
<thead>
<tr>
<th>(t)</th>
<th>(u_1(t))</th>
<th>(u_{1i} (h = 0.05))</th>
<th>(u_{1i} (h = 0.1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.793061</td>
<td>1.712219</td>
<td>-2.645169</td>
</tr>
<tr>
<td>0.2</td>
<td>1.423901</td>
<td>1.414070</td>
<td>-18.451583</td>
</tr>
<tr>
<td>0.3</td>
<td>1.131575</td>
<td>1.130523</td>
<td>-87.47221</td>
</tr>
<tr>
<td>0.4</td>
<td>0.909409</td>
<td>0.909276</td>
<td>-934.0722</td>
</tr>
<tr>
<td>0.5</td>
<td>0.738788</td>
<td>0.738751</td>
<td>-1760.016</td>
</tr>
</tbody>
</table>

4.6.1. Estabilidad lineal

En el ejemplo anterior hemos visto que un método numérico puede tener un comportamiento divergente o oscilante cuando el número de iteraciones tiende a infinito. Por ello, va a ser interesante tratar de caracterizar en qué condiciones un método dado se hace inestable.
Supongamos que se está interesado en utilizar un método numérico para
estudiar la ecuación
\[
\frac{dy}{dt} = \lambda y, \quad y(t_0) = y_0,
\]
donde \(\lambda \) es una constante negativa. La solución analítica del problema es
\[
y = y_0 e^{\lambda t},
\]
que satisface \(y \to 0 \) cuando \(t \to \infty \). Si utilizamos el método de Euler
\[
y_{i+1} = y_i + \lambda h y_i,
\]
se tiene la ecuación en diferencias
\[
y_{i+1} - (1 + \lambda h) y_i = 0.
\]
Si probamos soluciones de la forma \(y_i = r^i \), tenemos
\[
r^{i+1} - (1 + \lambda h)r^i = 0,
\]
que da lugar a la ecuación característica
\[
r - (1 + \lambda h) = 0.
\]
La solución de la ecuación (4.8) es
\[
y_i = (1 + \lambda h)^i y_0.
\]
Para que el método numérico sea estable se ha de satisfacer
\[
|1 + \lambda h| < 1,
\]
lo que implica
\[
h < \frac{2}{|\lambda|}.
\]
Si ahora repetimos el análisis utilizando el método de Euler hacia atrás
\[
y_{i+1} = y_i + \lambda h y_{i+1},
\]
se tiene la ecuación en diferencias
\[
(1 - \lambda h)y_{i+1} - y_i = 0.
\]
La ecuación característica es
\[
(1 - \lambda h)r - 1 = 0,
\]
y la solución de la ecuación (4.9) es

\[y_i = \left(\frac{1}{1 - \lambda h} \right)^i y_0 . \]

Para que el método numérico sea estable, se ha de cumplir

\[\left| \frac{1}{1 - \lambda h} \right| < 1 \Rightarrow |1 + |\lambda|h| > 1 , \]

lo cual se satisface para cualquier valor de \(h \).

Este tipo de análisis se puede repetir para los métodos de Runge-Kutta y para los métodos multipaso. Así, los métodos de Runge-Kutta y los métodos multipaso explícitos tienen problemas para aproximar ecuaciones diferenciales rígidas para ciertos valores de \(h \). En la práctica para este tipo de ecuaciones se utilizan los métodos multipaso implícitos. La ecuación en diferencias que se obtiene con estos métodos para \(y_{i+1} \) se puede resolver de forma sencilla para problemas lineales. En las ecuaciones diferenciales no lineales, para la obtención de \(y_{i+1} \) se utilizan técnicas numéricas que permiten la resolución de ecuaciones algebraicas no lineales, como el método del punto fijo o el método de Newton.

4.6.2. Métodos implícitos hacia atrás

Dada una ecuación diferencial ordinaria de primer orden, de la forma

\[\frac{dy}{dt} = f(t, y(t)) , \]

un método en diferencias hacia atrás (Backward) general de \(m \) pasos para la resolución de esta ecuación, consiste en una ecuación en diferencias de la forma

\[y_{i+1} + \alpha_1 y_i + \alpha_2 y_{i-1} + \cdots + \alpha_m y_{i-m} = h \beta_0 f \left(t_{i+1}; y_{i+1} \right) , \quad (4.10) \]

donde \(\beta_0 > 0 \), y \(\alpha_1, \ldots, \alpha_m \) se eligen de forma que se minimice el error de truncamiento. En la Tabla 4.1 se muestran posibles elecciones de los parámetros del método en diferencias hacia atrás para distintos valores de \(m \).

Con esta elección de los parámetros, los métodos Backward obtenidos son estables. Los métodos hacia atrás son métodos implícitos, y su utilización para la integración de un sistema de ecuaciones diferenciales implica la necesidad de resolver un sistema de ecuaciones lineales en cada paso de integración, pero es imposible construir un método explícito que funcione bien para el tratamiento de problemas con rigidez.
Tabla 4.1: Coeficientes del los métodos hacia atrás

<table>
<thead>
<tr>
<th></th>
<th>β_0</th>
<th>α_1</th>
<th>α_2</th>
<th>α_3</th>
<th>α_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$\frac{2}{3}$</td>
<td>$-\frac{4}{3}$</td>
<td>$\frac{1}{3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$\frac{11}{25}$</td>
<td>$-\frac{18}{25}$</td>
<td>$\frac{11}{25}$</td>
<td>$-\frac{11}{25}$</td>
<td>$\frac{3}{25}$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{11}{25}$</td>
<td>$-\frac{18}{25}$</td>
<td>$\frac{11}{25}$</td>
<td>$-\frac{11}{25}$</td>
<td>$\frac{3}{25}$</td>
</tr>
</tbody>
</table>

4.7. Ejercicios

1. Mediante el método de Euler:

 a) Hallar $y(0,4)$ si

 $$y' = \frac{y - x}{y + x}$$

 para la condición inicial $y(0) = 1$, y el paso $h = 0,1$.

 b) Hallar $y(0,4)$ si $y' = x + y$, para la condición inicial $y(0) = 1$, y el paso $h = 0,1$.

2. Un proyectil de masa $m = 0,11$ kg que ha sido disparado verticalmente hacia arriba con una velocidad inicial de $v(0) = 8$ m/s se ve frenado por la acción de la fuerza de la gravedad $F_g = mg$ y la resistencia del aire $F_r = -kv|v|$, donde $g = -9,8$ m/s2, y $k = 0,002$ kg/m. La ecuación diferencial del movimiento es

 $$mv' = mg - kv|v|.$$

 Utilizando el método de Euler, determina la velocidad del cuerpo a los 0,1, 0,2, , 1,0 s. Determina, con la precisión de una décima de segundo el instante en el que el cuerpo se detiene.

3. Mediante los métodos de Runge y de Runge-Kutta de dos pasos, hallar el valor aproximado $y(0,6)$, de la función y definida mediante la ecuación diferencial $y' = x^2 + y^2$, con el valor inicial $y(0) = 0$ y el paso $h = 0,2$.

 Solución: Runge: $y(0,4) \approx 0,072$, Runge-Kutta 2 pasos $y(0,4) \approx 0,076$.

4. Mediante el método de Runge-Kutta 4 pasos:

 a) Hallar $y(2)$ si $x^2y' - xy = 1$ para la condición inicial $y(1) = 0$, y el paso $h = 0,2$. Obtener la solución analítica exacta de la ecuación diferencial y comparar los resultados.

85
Solución: \(y(2) \approx 0.752 \). La solución exacta se obtiene a partir de la función \(y(x) = \frac{x^2 - 1}{2x} \).

b) Hallar \(y(1) \) si \(4y' = y^2 + 4x^2 \) para la condición inicial \(y(0) = -1 \), y el paso \(h = 0.1 \).

Solución: \(y(1) \approx -0.495 \).

5. Aprovechando las tres primeras iteraciones realizadas, mediante Runge-Kutta 4 pasos, obtener las mismas aproximaciones buscadas en los apartados (a) y (b) del problema anterior, aplicando el método de Adams \(m = 3 \). Comparar los resultados.
Capítulo 5

Métodos Numéricos para problemas de contorno

En este capítulo mostraremos distintos métodos numéricos para la aproximación de problemas de contorno. Mientras que en los problemas de valores iniciales las condiciones que determinan la solución del problema se imponen en un mismo punto (condiciones iniciales), en los problemas de contorno las condiciones se imponen en puntos separados.

Por ejemplo, para una ecuación diferencial ordinaria de segundo orden, un problema de contorno es un problema de la forma

\[y'' = f(x, y, y') \quad a \leq x \leq b, \]

con las condiciones

\[y(a) = \alpha, \quad y(b) = \beta. \]

Para obtener soluciones aproximadas de este tipo de problemas veremos esencialmente dos enfoques, uno basado en aproximar las derivadas de las funciones mediante diferencias finitas y, otro enfoque, basado en una reformulación integral del problema.

5.1. Diferencias finitas

Supongamos que se quiere obtener una solución aproximada de un problema de la forma

\[y'' = p(x)y' + q(x)y + r(x) \quad a \leq x \leq b, \quad y(a) = \alpha, \quad y(b) = \beta. \]
El primer paso consistirá en dividir el intervalo \([a, b]\) en \(N + 1\) subintervalos del mismo tamaño cuyos extremos son los nodos

\[x_i = a + i\Delta x, \quad i = 0, 1, \ldots, N + 1, \]

siendo \(\Delta x = (b - a)/(N + 1)\).

En los nodos interiores se ha de cumplir

\[y''(x_i) = p(x_i) y'(x_i) + q(x_i) y(x_i) + r(x_i), \quad (5.1) \]

con \(i = 1, 2, \ldots, N\).

Se han de obtener aproximaciones de los valores \(y'(x_i)\) e \(y''(x_i)\). Para ello, se hace uso del desarrollo de Taylor

\[y(x_{i+1}) = y(x_i + \Delta x) = y(x_i) + \Delta x y'(x_i) + \frac{\Delta x^2}{2} y''(x_i) + \frac{\Delta x^3}{6} y'''(x_i) + O(\Delta x^4). \]

Además

\[y(x_{i-1}) = y(x_i - \Delta x) = y(x_i) - \Delta x y'(x_i) + \frac{\Delta x^2}{2} y''(x_i) - \frac{\Delta x^3}{6} y'''(x_i) + O(\Delta x^4). \]

De estas ecuaciones se puede despejar

\[y''(x_i) = \frac{1}{\Delta x^2} (y(x_{i-1}) - 2y(x_i) + y(x_{i+1})) + O(\Delta x^2), \quad (5.2) \]

y

\[y'(x_i) = \frac{1}{2\Delta x} (y(x_{i+1}) - y(x_{i-1})) + O(\Delta x^2). \quad (5.3) \]

Sustituyendo las aproximaciones \((5.3)\) y \((5.2)\) en \((5.1)\) obtenemos en los nodos \(i = 1, \ldots, N\), las ecuaciones

\[\frac{y_{i-1} - 2y_i + y_{i+1}}{\Delta x^2} = p(x_i) \frac{y_{i+1} - y_{i-1}}{2\Delta x} + q(x_i) y_i + r(x_i). \quad (5.4) \]

Este sistema de ecuaciones se completa con las condiciones de contorno

\[y_0 = \alpha, \quad y_{N+1} = \beta. \quad (5.5) \]

Las ecuaciones \((5.4)\) se pueden expresar en forma matricial de la forma

\[Ay = b, \]

88
donde A es la matriz tridiagonal

$$
A = \begin{bmatrix}
2 + \Delta x^2 q(x_1) & -1 + \frac{\Delta x}{2} p(x_1) & 0 & \cdots & 0 \\
-1 - \frac{\Delta x}{2} p(x_2) & 2 + \Delta x^2 q(x_2) & -1 + \frac{\Delta x}{2} p(x_2) & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & -1 - \frac{\Delta x}{2} p(x_{N-1}) & 2 + \Delta x^2 q(x_N)
\end{bmatrix},
$$

y los vectores

$$
y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{N-1} \\ y_N \end{bmatrix}, \quad b = \begin{bmatrix} -\Delta x^2 r(x_1) + (1 + \frac{\Delta x}{2} p(x_1)) \alpha \\ -\Delta x^2 r(x_2) \\ \vdots \\ -\Delta x^2 r(x_{N-1}) \\ -\Delta x^2 r(x_N) + (1 - \frac{\Delta x}{2} p(x_N)) \beta \end{bmatrix}.
$$

5.2. Diferencias finitas para problemas elípticos

Como ejemplo de problema elíptico vamos a considerar el problema de

El primer paso que realizaremos consistirá en discretizar el rectángulo $[0, l_1] \times [0, l_2]$ mediante un conjunto de nodos igualmente espaciados, como se muestra en la Figura 5.1

$$
x_i = i \Delta x, \quad i = 0, 1, 2, \ldots, N + 1, \\
y_j = j \Delta y, \quad j = 0, 1, 2, \ldots, M + 1.
$$

Utilizando una aproximación similar a la de (5.2), para las derivadas

$$
\frac{\partial^2 u}{\partial x^2} (u_i, u_j) \approx \frac{u_{i-1j} - 2u_{ij} + u_{i+1j}}{\Delta x^2}, \\
\frac{\partial^2 u}{\partial y^2} (u_i, u_j) \approx \frac{u_{ij-1} - 2u_{ij} + u_{ij+1}}{\Delta y^2},
$$
donde \(u_{ij} = u(x_i, y_j) \). De este modo, se tiene que la ecuación (5.6) se puede aproximar de la forma

\[
\frac{1}{\Delta x^2} (u_{i-1,j} - 2u_{ij} + u_{i+1,j}) + \frac{1}{\Delta y^2} (u_{ij-1} - 2u_{ij} + u_{ij+1}) = -f_{ij}.
\] (5.8)

Para poder escribir las ecuaciones resultantes para \(i = 1, \ldots, N, j = 1, \ldots, M \), se han de ordenar los nodos del mallado de algún modo. Una posibilidad es utilizar el orden dado por

\[l = i + N(j - 1). \]

Cuando se escriben las ecuaciones para \(i = 1, \ldots, N, j = 1, \ldots, M \), y se tienen en cuenta las condiciones de contorno (5.7), se obtiene un sistema de ecuaciones de la forma

\[Au = f, \]

donde \(A \) tiene una estructura en banda similar a la de la Figura 5.2.

5.3. Diferencias finitas para problemas parabólicos

Como ejemplo de problema de contorno parabólico consideraremos la ecuación del calor o ecuación de la difusión dependiente del tiempo que con-
Figura 5.2: Matriz asociada a la ecuación de Poisson.

Se considera tiene la forma
\[
\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \quad (5.9)
\]
Supondremos que se satisfacen unas condiciones de contorno en los extremos de dominio y que la distribución espacial de la \(u \) en el instante inicial es conocida.

El primer paso para obtener una aproximación numérica para resolver esta ecuación es discretizar el tiempo y el espacio en intervalos igualmente espaciados, \(t = n \Delta t, \quad n = 0, 1, 2, \ldots \), y \(x = x_0 + i \Delta x, \quad i = 0, 1, \ldots, N_x + 1 \).

Se toma una aproximación para la derivada temporal de la forma
\[
\frac{\partial u}{\partial t} \approx \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t} + O(\Delta t).
\]

Para la derivada espacial se toma
\[
\frac{\partial^2 u}{\partial x^2} \approx \frac{u(x - \Delta x, t) - 2u(x, t) + u(x + \Delta x, t)}{\Delta x^2} + O(\Delta x^2).
\]
Se suele utilizar la notación \(u(n \Delta t, x_0 + i \Delta x) = u_i^n \), y se escribe la aproximación de la ecuación \((5.9)\) como
\[
\frac{u_i^{n+1} - u_i^n}{\Delta t} = \alpha \frac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{\Delta x^2},
\]
La ecuación es:

\[u_{i}^{n+1} = u_{i}^{n} + r \left(u_{i-1}^{n} - 2u_{i}^{n} + u_{i+1}^{n} \right) , \quad r = \frac{\alpha \Delta t}{\Delta x^2} . \]

El método obtenido es un método explícito, ya que los valores de \(u_{i}^{n+1} \) se pueden calcular directamente sabiendo los valores de \(u_{i}^{n} \).

Para garantizar la estabilidad del esquema explícito, se puede ver que es necesario que se cumpla la condición

\[0 < \frac{\alpha \Delta t}{\Delta x^2} < 0.5 , \]

que se conoce como la condición de Courant, y que limita la longitud del paso temporal que es necesario elegir una vez se ha elegido un paso espacial.

Para evitar problemas de estabilidad, se puede evaluar la derivada segunda espacial en el instante \((n + 1)\Delta t \), en vez de hacerlo en el instante \(n\Delta t \), obteniendo de este modo la aproximación

\[\frac{u_{i}^{n+1} - u_{i}^{n}}{\Delta t} = \alpha \frac{u_{i-1}^{n+1} - 2u_{i}^{n+1} + u_{i+1}^{n+1}}{\Delta x^2} , \]

o sea,

\[-ru_{i-1}^{n+1} + (1 + 2r)u_{i}^{n+1} - ru_{i+1}^{n+1} = u_{i}^{n} , \]

que es un método implícito, ya que si hacemos variar \(i = 1, \ldots, N_{x} \), para cada paso de tiempo, se ha de resolver un sistema de ecuaciones de la forma

\[
\begin{pmatrix}
(1 + 2r) & -r \\
-r & (1 + 2r) & -r \\
& \ddots & \ddots & \ddots \\
& & -r & (1 + 2r) & -r \\
& & & -r & (1 + 2r)
\end{pmatrix}
\begin{pmatrix}
u_{1}^{n+1} \\
u_{2}^{n+1} \\
\vdots \\
u_{N_{x}}^{n+1}
\end{pmatrix}
= \begin{pmatrix}
u_{1}^{n} + ru_{0}^{n+1} \\
u_{2}^{n} \\
\vdots \\
u_{N_{x}}^{n} + ru_{N_{x}+1}^{n+1}
\end{pmatrix}.
\]

Otro método que se puede obtener que no tiene problemas de estabilidad y es más preciso que el método implícito, es el método de Crank-Nicolson, que viene dado por la ecuación

\[\frac{u_{i}^{n+1} - u_{i}^{n}}{\Delta t} = \frac{\alpha}{2} \left(\frac{u_{i-1}^{n} - 2u_{i}^{n} + u_{i+1}^{n}}{\Delta x^2} + \frac{u_{i-1}^{n+1} - 2u_{i}^{n+1} + u_{i+1}^{n+1}}{\Delta x^2} \right) . \]
5.4. Diferencias finitas para problemas hiperbólicos

Como ejemplo de un problema de contorno hiperbólico consideraremos la ecuación de ondas, o sea, un problema de la forma
\[c^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}, \quad 0 \leq x \leq l, \quad t \geq 0, \] (5.10)
con las condiciones de contorno
\[u(0,t) = u(l,t) = 0, \]
y las condiciones iniciales
\[u(x,0) = f(x), \quad \frac{\partial u}{\partial t}(x,0) = g(x), \quad 0 \leq x \leq l. \]

Si el mallado espacial viene dado por los nodos \(0 = x_0, x_1, \ldots x_{N_x+1} = l, \) podemos utilizar las aproximaciones
\[\frac{\partial^2 u}{\partial x^2}(x_i, t_n) \approx \frac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{\Delta x^2}, \]
y
\[\frac{\partial^2 u}{\partial t^2}(x_i, t_n) \approx \frac{u_{i-1}^{n} - 2u_{i}^{n} + u_{i+1}^{n+1}}{\Delta t^2}, \]
se llega a una aproximación de la ecuación (5.10) de la forma
\[c^2 \frac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{\Delta x^2} = \frac{u_{i-1}^{n-1} - 2u_{i}^{n-1} + u_{i+1}^{n+1}}{\Delta t^2}, \]
que se puede reescribir como
\[u_{i+1}^{n+1} = 2u_i^n \left(1 - \frac{c^2 \Delta t^2}{\Delta x^2} \right) + (u_{i-1}^n + u_{i+1}^n) \left(\frac{c^2 \Delta t^2}{\Delta x^2} \right) - u_{i-1}^{n-1}. \]
para \(i = 1, \ldots N_x. \)

Los valores para \(n = 0 \) se obtienen de la condición inicial, pero también son necesarios los valores para \(n = 1. \) Una posibilidad consiste en usar la condición
\[\frac{\partial u}{\partial t}(x,0) = g(x), \quad 0 \leq x \leq l, \]
sustituyendo
\[\frac{\partial u}{\partial t}(x,0) \approx \frac{u_i^1 - u_i^0}{\Delta t} = g(x_i) , \]
o sea,
\[u_i^1 = u_i^0 + \Delta t g(x_i) , \quad i = 1, \ldots, N . \]

Una aproximación de mayor orden se puede obtener si se tiene en cuenta que
\[u(x_i,t) = u(x_i,0) + \Delta t \frac{\partial u}{\partial t}(x_i,0) + \frac{(\Delta t)^2}{2} \frac{\partial^2 u}{\partial t^2}(x_i,0) + O(\Delta t^3) . \]

Si existe \(f'' \), podemos usar la ecuación de ondas y escribir
\[\frac{\partial^2 u}{\partial t^2}(x_i,0) = c^2 \frac{\partial^2 u}{\partial x^2}(x_i,0) = c^2 f''(x_i) , \]
con lo que se tiene
\[u_i^1 = u_i^0 + \Delta t g(x_i) + \frac{c^2 (\Delta t)^2}{2} f''(x_i) . \]

5.5. Ecuación de convección-difusión

Supongamos ahora, que se quiere resolver un problema estacionario de la forma
\[-au'' + bu' = 0 , \quad 0 < x < l , \]
\[u(0) = 0 , \quad u(l) = 1 . \]

Para obtener la solución analítica de este problema introducimos \(u' = y \) con lo que queda la ecuación
\[y' = \frac{b}{a} y , \]
con lo que
\[y = K \exp \left(\frac{b}{a} x \right) , \]
y, por tanto,
\[u = K_1 \exp \left(\frac{b}{a} x \right) + K_2 . \]
Imponiendo las condiciones de contorno se tiene

\[u(x) = \frac{1 - e^{Rx}}{1 - e^R}, \quad (5.11) \]

donde \(R \) es el número de Péclet, definido como

\[R = \frac{bl}{a}. \]

Para obtener una aproximación por diferencias finitas, primero obtenemos una aproximación \(O(\Delta x^2) \) de \(u'(x) \),

\[u'(x) \approx \frac{u(x + \Delta x) - u(x - \Delta x)}{2\Delta x} + O(\Delta x^2). \quad (5.12) \]

Utilizando (5.12) y una aproximación del mismo orden para la derivada segunda, se tiene la relación

\[b \frac{u_{i+1} - u_{i-1}}{2\Delta x} - a \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} = 0, \quad (5.13) \]

que, definiendo

\[c = \frac{R\Delta x}{2l}, \]

se reescribe como

\[-(1 - c)u_{i+1} + 2u_i - (1 + c)u_{i-1} = 0. \quad (5.14) \]

Ésta es una ecuación en diferencias que se suele resolver probando una solución de la forma \(u_i = r^i \),

\[-(1 - c)r^{i+1} + 2r^i - (1 + c)r^{i-1} = 0, \]

esto es,

\[r^{i-1} (-(1 - c)r^2 + 2r - (1 - c)) = 0, \]

luego \(r \) tendrá que cumplir que

\[(1 - c)r^2 - 2r + (1 + c) = 0. \]

Las soluciones de esta ecuación son

\[r_1 = 1, \quad r_2 = \frac{1 + c}{1 - c}. \]
La solución general de la (5.14) será de la forma

\[u_i = \alpha + \beta \left(\frac{1 + c}{1 - c} \right)^i, \]

como \(u_0 = 0 \), \(\beta = -\alpha \) y como \(u_{n+1} = 1 \), se cumplirá

\[\alpha = \frac{1}{1 - r_{n+1}^2}, \]

así, la solución es de la forma

\[u_i = \frac{1 - r_i^2}{1 - r_{n+1}^2}. \]

Cuando \(c > 1 \), \((\Delta x > \frac{2}{R}) \) entonces \(r_2 < 0 \), y la solución \(u_i \) oscila. Esto contrasta con el comportamiento de la solución analítica (5.11), que es creciente.

Para resolver este problema hay que utilizar esquemas de primer orden, que tengan en cuenta el signo de la velocidad \(b \). Si \(b > 0 \), la derivada primera se aproxima como

\[u'_i \approx \frac{u_i - u_{i-1}}{\Delta x}, \]

obteniendo una ecuación de la forma

\[b \frac{u_i - u_{i-1}}{\Delta x} - a \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} = 0. \] \tag{5.15} \]

Si \(b < 0 \), la derivada primera se aproxima como

\[u'_i \approx \frac{u_{i+1} - u_i}{\Delta x}, \]

obteniendo una ecuación de la forma

\[b \frac{u_{i+1} - u_i}{\Delta x} - a \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} = 0. \] \tag{5.16} \]

Estas dos posibilidades se escriben de una forma compacta como

\[b \left(\frac{1}{2} \left(1 - \frac{b}{|b|} \right) \frac{1}{\Delta x} (u_{i+1} - u_i) + \frac{1}{2} \left(1 + \frac{b}{|b|} \right) \frac{1}{\Delta x} (u_i - u_{i-1}) \right) \]

\[-a \frac{1}{\Delta x^2} (u_{i-1} - 2u_i + u_{i+1}) = 0. \]

Este esquema se conoce como un esquema ‘up-wind’ de primer orden para la ecuación de convección-difusión.
5.6. Técnicas variacionales

Hemos visto que el método de las diferencias finitas consiste, esencialmente, en sustituir el valor de las derivadas de la función en un punto por un cociente incremental obteniendo de este modo una ecuación en diferencias, cuya solución nos da la solución aproximada del problema.

Ahora expondremos el método de Rayleigh-Ritz, que es una técnica variacional que trata el problema desde otro punto de vista. En primer lugar, se reformula el problema de contorno, como el problema de encontrar, dentro de un conjunto de funciones suficientemente derivables que verifican las condiciones de contorno, la función que minimiza cierta integral. La solución de este nuevo problema nos dará una aproximación al problema original.

Para exponer cómo funciona el método de Rayleigh-Ritz, consideremos el problema de contorno asociado a la deformación de una viga, que es de la forma

\[- \frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + q(x)y = f(x) , \quad 0 \leq x \leq 1 , \tag{5.17}\]

con las condiciones de contorno \(y(0) = y(1) = 0 \).

Se puede ver que la solución de la ecuación (5.17) es la función que minimiza una cierta integral entre todas las funciones del conjunto \(C^2_0[0,1] \), definido por

\[C^2_0[0,1] = \{ u \in C^2[0,1] / u(0) = u(1) = 0 \} . \]

Así, una función \(y \in C^2_0[0,1] \) es la solución del problema de la viga (5.17) si, y sólo si, \(y \) es la única función que minimiza la integral

\[I(u) = \int_0^1 \left(p(x) (u'(x))^2 + q(x) (u(x))^2 - 2f(x)u(x) \right) dx . \tag{5.18} \]

Para resolver el problema de encontrar una función \(y \) que minimice la integral (5.18), se eligen ciertas funciones básicas, \(\phi_1, \phi_2, \ldots, \phi_n \), que sean linealmente independientes y que verifiquen

\[\phi_i(0) = \phi_i(1) = 0 , \quad i = 1, 2, \ldots, n . \]

Suponemos que

\[u = \sum_{i=1}^{n} c_i \phi_i(x) , \]
y tratamos de obtener las constantes c_1, c_2, \ldots, c_n, que hacen mínima la integral

$$I \left(\sum_{i=1}^{n} c_i \phi_i(x) \right) = \int_{0}^{1} \left(p(x) \left(\sum_{i=1}^{n} c_i \phi_i(x) \right)^2 + q(x) \left(\sum_{i=1}^{n} c_i \phi_i(x) \right)^2 - 2f(x) \sum_{i=1}^{n} c_i \phi_i(x) \right) dx .$$

Para que se alcance un mínimo se han de satisfacer las ecuaciones normales

$$\frac{\partial I}{\partial c_j} = 0 , \quad j = 1, \ldots, n .$$

Derivando, se obtienen las ecuaciones

$$\sum_{i=1}^{n} \left(\int_{0}^{1} \left(p(x) \phi_i'(x) \phi_j'(x) + q(x) \phi_i(x) \phi_j(x) \right) dx \right) c_i - \int_{0}^{1} f(x) \phi_j(x) dx = 0 ,$$

para $j = 1, 2, \ldots, n$. Estas ecuaciones dan lugar a un sistema de ecuaciones lineales

$$Ac = b ,$$

donde A es una matriz simétrica cuyos elementos son de la forma

$$a_{ij} = \int_{0}^{1} \left(p(x) \phi_i'(x) \phi_j'(x) + q(x) \phi_i(x) \phi_j(x) \right) dx ,$$

y las coordenadas del vector b son

$$b_i = \int_{0}^{1} f(x) \phi_i(x) dx .$$

La solución de este sistema nos da los coeficientes c_i que permiten reconstruir la solución aproximada.

Para obtener una solución aproximada hace falta elegir unas funciones base ϕ_i determinadas. Una posibilidad es tomar como funciones básicas polinomios lineales a trozos. Para construir estas funciones comenzamos tomando una partición del intervalo $[0, 1]$ cuyos nodos x_0, x_1, \ldots, x_n, satisfacen

$$0 = x_0 \leq x_1 \leq \cdots \leq x_{n+1} = 1 .$$
Tomando $\Delta x_i = x_{i+1} - x_i$, se definen las funciones básicas

$$\phi_i(x) = \begin{cases} 0 & \text{si } 0 \leq x \leq x_{i-1}, \\ \frac{1}{\Delta x_i} (x - x_{i-1}) & \text{si } x_{i-1} \leq x \leq x_i, \\ \frac{1}{\Delta x_i} (x_{i+1} - x) & \text{si } x_i \leq x \leq x_{i+1}, \\ 0 & \text{si } x_{i+1} \leq x \leq 1, \end{cases}$$

para $i = 1, 2, \ldots, n$. Derivando, se tiene

$$\phi'_i(x) = \begin{cases} 0 & \text{si } 0 < x < x_{i-1}, \\ \frac{1}{\Delta x_i} & \text{si } x_{i-1} < x < x_i, \\ -\frac{1}{\Delta x_i} & \text{si } x_i < x < x_{i+1}, \\ 0 & \text{si } x_{i+1} < x < 1, \end{cases}$$

para $i = 1, 2, \ldots, n$. Como ϕ_i y ϕ'_i son no nulas en (x_{i-1}, x_{i+1}), los elementos de la matriz A no nulos son

$$a_{ii} = \int_0^1 p(x) (\phi'_i(x))^2 + q(x) (\phi_i(x))^2 \, dx$$

$$= \int_{x_{i-1}}^{x_i} \frac{1}{\Delta x_i}^2 p(x) \, dx + \int_{x_i}^{x_{i+1}} \left(-\frac{1}{\Delta x_i}\right)^2 p(x) \, dx$$

$$+ \int_{x_{i-1}}^{x_i} \frac{1}{\Delta x_i}^2 (x - x_{i-1})^2 q(x) \, dx + \int_{x_i}^{x_{i+1}} \left(\frac{1}{\Delta x_i}\right)^2 (x_{i+1} - x)^2 q(x) \, dx,$$

para $i = 1, 2, \ldots, n$.

$$a_{i+1 i} = \int_0^1 p(x) (\phi'_i(x)\phi'_{i+1}) + q(x) (\phi_i(x)\phi_{i+1}(x)) \, dx$$

$$= \int_{x_i}^{x_{i+1}} \frac{1}{\Delta x_i}^2 p(x) \, dx + \int_{x_i}^{x_{i+1}} \left(\frac{1}{\Delta x_i}\right)^2 (x_{i+1} - x) (x - x_i) q(x) \, dx,$$

para $i = 1, 2, \ldots, n - 1$; y

$$a_{i-1 i} = \int_0^1 p(x) (\phi'_i(x)\phi'_{i-1}) + q(x) (\phi_i(x)\phi_{i-1}(x)) \, dx$$

$$= \int_{x_{i-1}}^{x_i} \frac{1}{\Delta x_i}^2 p(x) \, dx + \int_{x_{i-1}}^{x_i} \left(\frac{1}{\Delta x_{i-1}}\right)^2 (x_i - x) (x - x_{i-1}) q(x) \, dx,$$

para $i = 2, \ldots, n$. Los elementos del vector b son,

$$b_i = \int_0^1 f(x) \phi_i(x) \, dx$$

$$= \int_{x_{i-1}}^{x_i} \frac{1}{\Delta x_{i-1}} (x - x_{i-1}) f(x) \, dx + \int_{x_i}^{x_{i+1}} \frac{1}{\Delta x_i} (x_{i+1} - x) f(x) \, dx,$$
Para implementar el método se deben evaluar las integrales

\[Q_{1i} = \left(\frac{1}{\Delta x_i} \right) \int_{x_i}^{x_{i+1}} (x_{i+1} - x)(x - x_i) q(x) \, dx, \quad i = 1, 2, \ldots, n - 1, \]

\[Q_{2i} = \left(\frac{1}{\Delta x_{i-1}} \right) \int_{x_{i-1}}^{x_i} (x - x_{i-1})^2 q(x) \, dx, \quad i = 1, 2, \ldots, n, \]

\[Q_{3i} = \left(\frac{1}{\Delta x_i} \right) \int_{x_i}^{x_{i+1}} (x_{i+1} - x)^2 q(x) \, dx, \quad i = 1, 2, \ldots, n, \]

\[Q_{4i} = \left(\frac{1}{\Delta x_{i-1}} \right) \int_{x_{i-1}}^{x_i} p(x) \, dx, \quad i = 1, 2, \ldots, n + 1, \]

\[Q_{5i} = \left(\frac{1}{\Delta x_{i-1}} \right) \int_{x_{i-1}}^{x_i} (x - x_{i-1}) f(x) \, dx, \quad i = 1, 2, \ldots, n, \]

\[Q_{6i} = \left(\frac{1}{\Delta x_i} \right) \int_{x_i}^{x_{i+1}} (x_{i+1} - x) f(x) \, dx, \quad i = 1, 2, \ldots, n. \]

Una vez calculadas las integrales se tiene que

\[a_{ii} = Q_{4i} + Q_{4i+1} + Q_{2i} + Q_{3i}, \]

\[a_{ii+1} = Q_{4i} + Q_{1i}, \]

\[a_{ii-1} = -Q_{4i} + Q_{1i-1} \]

\[y \]

\[b_i = Q_{5i} + Q_{6i}. \]

5.7. Introducción a los elementos finitos

El método de los elementos finitos es similar al método de Rayleigh-Ritz. Para mostrar cómo funciona este método consideremos el problema bidimensional

\[\frac{\partial}{\partial x} \left(p(x,y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(q(x,y) \frac{\partial u}{\partial y} \right) + r(x,y) u = f(x,y), \quad (5.19) \]

con \((x, y) \in D\), siendo \(D\) una región plana cuya frontera es \(S = S_1 \cup S_2\).

Sobre \(S_1\) se impone una condición de contorno de la forma

\[u(x, y) = g(x, y), \quad (x, y) \in S_1. \]

Sobre \(S_2\) se impone una condición de contorno de la forma

\[p(x,y) \frac{\partial u}{\partial x} n_1 + q(x,y) \frac{\partial u}{\partial y} n_2 + g_1(x, y) u = g_2(x, y), \quad (x, y) \in S_2, \]
donde el vector \(\vec{n}_1 = (n_1, n_2) \) es un vector que en cada punto es normal a la curva \(S_2 \).

Supongamos que \(p, q, r \) y \(f \) son funciones continuas en \(D \cup S \), que \(p \) y \(q \) admiten derivadas parciales continuas y que \(g_1 \) y \(g_2 \) son continuas en \(S_2 \). Supongamos además que \(p(x, y) > 0, q(x, y) > 0, r(x, y) \leq 0 \) y que \(g_1(x, y) \geq 0 \). Entonces la solución del problema (5.19) es la única función que minimiza la integral

\[
I(w) = \iint_D \left(\frac{1}{2} p(x, y) \left(\frac{\partial w}{\partial x} \right)^2 + q(x, y) \left(\frac{\partial w}{\partial y} \right)^2 - r(x, y) w^2 \right) + f(x, y) w \right) \, dxdy \\
+ \int_{S_2} \left(-g_2(x, y)w + \frac{1}{2} g_1(x, y)w^2 \right) \, dS ,
\]

sobre todas las funciones \(w = w(x, y) \) que satisfacen \(w(x, y) = g(x, y) \) para \((x, y) \in S_1 \).

Para obtener el mínimo de (5.20), el primer paso que se sigue es dividir la región \(D \) en un número finito de secciones o elementos regulares, que pueden ser rectángulos o triángulos (véase la figura 5.3)

Figura 5.3: Mallado de la región \(D \).

Las funciones base que se utilizan para aproximar la función que minimiza (5.20) se suelen utilizar polinomios a trozos.

Supondremos que la región \(D \) se ha dividido en elementos triangulares, cuyos vértices se llaman nodos. El método busca una aproximación de la forma

\[
\phi(x, y) = \sum_{i=1}^{m} \gamma_i \phi_i(x, y) ,
\]
donde \(\phi_i \) son polinomios lineales a trozos y \(\gamma_i \) son constantes. Algunas de las constantes, \(\gamma_{n+1}, \gamma_{n+2}, \ldots, \gamma_m \) se usan para garantizar que se cumpla la condición de contorno

\[
\phi(x, y) = g(x, y), \quad (x, y) \in S_1,
\]

mientras que las otras constantes \(\gamma_1, \gamma_2, \ldots, \gamma_n \) se utilizan para minimizar la integral

\[
I \left(\sum_{i=1}^{m} \gamma_i \phi_i(x, y) \right) = \\
\int \int_D \left(\frac{1}{2} \left(p(x, y) \left(\sum_{i=1}^{m} \gamma_i \frac{\partial \phi_i}{\partial x} \right) \right)^2 + q(x, y) \left(\sum_{i=1}^{m} \gamma_i \frac{\partial \phi_i}{\partial y} \right)^2 \\
- r(x, y) \left(\sum_{i=1}^{m} \gamma_i \phi_i \right)^2 \right) + f(x, y) \sum_{i=1}^{m} \gamma_i \phi_i \, dxdy \\
+ \int_{S_2} \left(-g_2(x, y) \sum_{i=1}^{m} \gamma_i \phi_i + \frac{1}{2} g_1(x, y) \left(\sum_{i=1}^{m} \gamma_i \phi_i \right)^2 \right) dS.
\]

Para obtener el mínimo se plantean las ecuaciones normales

\[
\frac{\partial I}{\partial \gamma_j} = 0, \quad j = 1, 2, \ldots, n.
\]

Estas ecuaciones de expresan como el sistema de ecuaciones lineales

\[
Ac = b,
\]

(5.21)

donde \(c = (\gamma_1, \gamma_2, \ldots, \gamma_n)^T \), \(A \) es una matriz cuyos elementos son

\[
a_{ij} = \int \int_D \left(p(x, y) \frac{\partial \phi_i}{\partial x} \frac{\partial \phi_j}{\partial x} + q(x, y) \frac{\partial \phi_i}{\partial y} \frac{\partial \phi_j}{\partial y} \\
- r(x, y) \phi_i \phi_j \right) dxdy + \int_{S_2} g_1(x, y) \phi_i \phi_j dS,
\]

y el vector \(b \) tiene los elementos

\[
b_i = \int \int_D f(x, y) \phi_i dxdy + \int_{S_2} g_2(x, y) \phi_i dS - \sum_{k=n+1}^{m} a_{ik} \gamma_k.
\]
La elección de las funciones básicas es importante para obtener una matriz con buenas propiedades a la hora de resolver el sistema (5.21). Veremos una posibilidad basada en polinomios lineales a trozos definidos sobre triángulos.

Comenzamos dividiendo la región \(D \) en triángulos \(T_i \), y se escoge una ordenación de los triángulos de la malla que se genera y otra ordenación para los vértices o nodos, \(E_1, E_2, \ldots, E_m \). Un ejemplo típico se muestra en la figura 5.4.

Figura 5.4: Ordenación del mallado.

Si \(E_1, E_2, \ldots, E_m \) son los nodos de la malla, a cada nodo \(E_k \) se le asocia una función \(\phi_k \), que es lineal en cada triángulo y vale 1 en \(E_k \) y 0 en los demás nodos.

Para construir estas funciones \(\phi_k \), se procede como sigue. Se fija un triángulo \(T_i \) y se elige una ordenación para sus vértices, como se muestra en la figura 5.5, y se construyen los polinomios lineales.
\[N_1^{(i)}(x, y) = a_1^{(i)} x + b_1^{(i)} y + c_1^{(i)}, \]
\[N_2^{(i)}(x, y) = a_2^{(i)} x + b_2^{(i)} y + c_2^{(i)}, \]
\[N_3^{(i)}(x, y) = a_3^{(i)} x + b_3^{(i)} y + c_3^{(i)}, \]
de forma que satisfaga
\[\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \begin{bmatrix} a_1^{(i)} \\ b_1^{(i)} \\ c_1^{(i)} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \]
\[\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \begin{bmatrix} a_2^{(i)} \\ b_2^{(i)} \\ c_2^{(i)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \]
y
\[\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \begin{bmatrix} a_3^{(i)} \\ b_3^{(i)} \\ c_3^{(i)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}. \]

A continuación, se ve qué nodos están en la frontera \(S_1 \). Si estos nodos son, por ejemplo, \(E_{n+1}, \ldots, E_m \), se determinan los valores de \(\gamma_{n+1}, \ldots, \gamma_m \), de forma que en estos nodos se satisfaga la condición de contorno
\[\phi(x, y) = g(x, y). \]

Una vez se han determinado estas constantes, hay que evaluar las integrales dobles y las integrales curvilíneas.

Las integrales dobles de los elementos de matriz \(a_{ij} \) se decomponen
\[a_{ij} = \iint_D G(\phi_i, \phi_j) \, dx \, dy = \sum_{l \in I} \iint_{T_l} G(\phi_i, \phi_j) \, dx \, dy, \]
donde \(I \) es el conjunto de triángulos donde \(\phi_i \) y \(\phi_j \) toman valores no nulos.

Para evaluar las integrales dobles sobre un triángulo se suele usar una fórmula de cuadratura que aproxima el valor de estas integrales. Una posibilidad es la siguiente. Sean \((x_4, y_4), (x_5, y_5), (x_6, y_6) \) los puntos medios del
triángulo T, y (x_7, y_7) el baricentro, o sea,

\[
x_4 = \frac{1}{2} (x_1 + x_2), \quad y_4 = \frac{1}{2} (y_1 + y_2),
\]
\[
x_5 = \frac{1}{2} (x_1 + x_3), \quad y_5 = \frac{1}{2} (y_1 + y_3),
\]
\[
x_6 = \frac{1}{2} (x_2 + x_3), \quad y_6 = \frac{1}{2} (y_2 + y_3),
\]
\[
x_7 = \frac{1}{2} (x_1 + x_2 + x_3), \quad y_7 = \frac{1}{2} (y_1 + y_2 + y_3).
\]

Entonces se puede aproximar

\[
\int_T F(x, y) \, dxdy \approx \frac{1}{2} |\Delta| \left(\frac{1}{20} F(x_1, y_1) + F(x_2, y_2) + F(x_3, y_3) \right. \\
\left. + \frac{2}{15} (F(x_4, y_4) + F(x_5, y_5) + F(x_6, y_6)) + \frac{9}{20} \right),
\]

donde $|\Delta|$ es el área del triángulo, que se puede calcular como

\[
|\Delta| = \left| \det \begin{pmatrix}
1 & x_1 & y_1 \\
1 & x_2 & y_2 \\
1 & x_3 & y_3
\end{pmatrix} \right|.
\]

Por último, se han de calcular las integrales curvilíneas sobre los segmentos que unen los nodos situados en S_2. Para ello, por ejemplo, se usa una parametrización del segmento l_1, que une (x_1, y_1) con (x_2, y_2), de la forma $x = x(t), \quad y = y(t)$ con $x(t_1) = x_1, \quad y(t_1) = y_1, \quad x(t_2) = x_2$ y $y(t_2) = y_2$, y se usa la expresión

\[
\int_{l_1} H(x, y) dS = \int_{t_1}^{t_2} H(x(t), y(t)) \sqrt{(x'(t))^2 + (y'(t))^2} \, dt.
\]

Con estos elementos ya es posible calcular los elementos de matriz a_{ij} y los elementos b_i del término independiente del sistema (5.21), cuya solución permite aproximar la solución del problema inicial.

Hay otras posibilidades para la construcción de las funciones ϕ_k, que dan lugar a distintos métodos de elementos finitos para resolver el problema (5.19).
Capítulo 6

Teoría de curvas

En este capítulo trataremos de formalizar el concepto de curva de forma que englobe la idea intuitiva de curva, y se puedan estudiar alguna de sus propiedades. Trataremos primero con curvas planas y posteriormente con curvas en el espacio.

6.1. Curvas planas

Dada un sistema de coordenadas cartesianas, un punto p del plano \mathbb{R}^2 se puede identificar con sus coordenadas $p = (x, y)$.

Supongamos que el punto p se mueve en el plano. En cada instante de tiempo t se tiene una posición $\vec{\alpha}(t) = (x(t), y(t))$, donde t varía en un cierto intervalo $I \in \mathbb{R}$. Normalmente, el punto p describirá una traza continua, esto es, las funciones $x(t)$ e $y(t)$ serán funciones continuas.

Definición 6.1 Se llama curva plana parametrizada a la aplicación

$$\vec{\alpha} : I \subset \mathbb{R} \rightarrow \mathbb{R}^2$$

$$t \rightarrow \vec{\alpha}(t) = (x(t), y(t))$$

A la imagen $\vec{\alpha}(I)$ se le llama traza de la curva.

Definición 6.2 Si I es un intervalo abierto de \mathbb{R}, una curva $\vec{\alpha} : t \in \mathbb{R} \rightarrow (x(t), y(t))$ se dice que es diferenciable, si las funciones $x(t)$ e $y(t)$ admiten derivadas de cualquier orden en todos los puntos $t \in I$. Si el intervalo I no es abierto, se dirá que $\vec{\alpha} : I \rightarrow \mathbb{R}^2$ es diferenciable, si existe una aplicación
diferenciable $\vec{a}: \tilde{I} \to \mathbb{R}^2$ donde \tilde{I} es un intervalo abierto de \mathbb{R} tal que $I \subset \tilde{I}$ y además $\vec{a}(t) = \vec{a}(t)$, $\forall t \in I$.

6.1.1. Vector velocidad

Si $\vec{a}: I \to \mathbb{R}^2$ es una curva diferenciable, y $t_0 \in I$, se llama vector velocidad de \vec{a} en t_0 al vector tangente a la curva en t_0

$$\vec{a}'(t_0) = (x'(t_0), y'(t_0)) .$$

Este vector representa la velocidad instantánea del punto p en t_0.

El vector normal a la curva en t_0 es

$$\vec{n}(t_0) = (-y'(t_0), x'(t_0)) .$$

6.1.2. Curvas regulares

Un punto $\vec{a}(t_0)$ de una curva diferenciable $\vec{a}: I \to \mathbb{R}^2$ se llama regular si $\vec{a}'(t_0) \neq \vec{0}$. La curva se dice que es regular si todos sus puntos son regulares.

6.1.3. Rectas tangente y normal en un punto

Para una curva diferenciable, en un punto regular se pueden definir dos rectas:

1. La recta tangente:

$$\frac{x-x(t_0)}{x'(t_0)} = \frac{y-y(t_0)}{y'(t_0)} .$$

2. La recta normal:

$$\frac{x-x(t_0)}{-y'(t_0)} = \frac{y-y(t_0)}{x'(t_0)} .$$

6.1.4. Reparametrizaciones

Si consideramos las siguientes curvas

$$\vec{\alpha}(t) = (cos(t), sen(t)) ,$$

$$\vec{\beta}(t) = (cos(-t), sen(-t)) ,$$

$$\vec{\gamma}(t) = (cos(2t), sen(2t)) ,$$
todas estas curvas tienen la misma traza, y cambia el modo en que se recorre
la circunferencia.

Si \(\vec{\alpha} : I \rightarrow \mathbb{R}^2 \), es una curva diferenciable y \(t : s \in J \rightarrow t(s) \in I \) es una
aplicación invertible y diferenciable, entonces la aplicación \(\vec{\beta} = \vec{\alpha} \circ t \) es una
curva diferenciable y

\[
\vec{\beta}'(s) = t'(s)\vec{\alpha}'(t(s)).
\]

La aplicación \(t(s) \) se denomina cambio de parámetro que permite pasar
de \(\vec{\alpha} \) a \(\vec{\beta} \).

6.1.5. Curvas en implícitas

Las trayectorias de las curvas se pueden describir también de forma im-
plícita. Así, por ejemplo, una circunferencia de centro \((0,0)\) y radio 1, es el
lugar geométrico de los puntos que satisfacen

\[
x^2 + y^2 = 1.
\]

Hay curvas que se pueden parametrizar como el conjunto de ceros de una
función \(F : D \in \mathbb{R}^2 \rightarrow \mathbb{R} \),

\[
C = \{(x,y) \in D/ \ F(x,y) = 0 \}.
\]

Bajo ciertas hipótesis sobre la función \(F \) se puede garantizar la existencia
de curvas parametrizadas, cuyas trayectorias describen el conjunto de ceros
de \(F \).

Cuando \(F : D \rightarrow \mathbb{R} \) es una función diferenciable en un punto \((x_0,y_0)\),
diremos que este punto es singular si

\[
\frac{\partial F}{\partial x}(x_0,y_0) = \frac{\partial F}{\partial y}(x_0,y_0) = 0.
\]

Si \((x_0,y_0)\) no es singular se llama regular.

Si \(F : D \rightarrow \mathbb{R} \) es una función diferenciable y \((x_0,y_0)\) es regular, entonces
el vector gradiente

\[
\nabla F(x_0,y_0) = \left(\frac{\partial F}{\partial x}(x_0,y_0), \frac{\partial F}{\partial y}(x_0,y_0) \right)
\]

es distinto del \((0,0)\) y su dirección es normal a la curva en el \((x_0,y_0)\).
Para ver esto consideramos la curva regular $\vec{\alpha}: t \to (x(t), y(t))$ con $F(\vec{\alpha}(t)) = 0$. Usando la Regla de la Cadena

$$\frac{dF}{dt} = \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} = 0,$$

esto es,

$$\nabla F \vec{\alpha}' = 0.$$

Con lo que se tiene que el gradiente de F es normal a la curva.

6.1.6. Longitud de una curva

A una curva parametrizada, en general, se le puede asociar un número positivo que es su longitud.

Si la curva corresponde con un segmento de recta, $\vec{\alpha}: [a, b] \to \mathbb{R}^2$, $\vec{\alpha}(t) = (x_1 + tv_1, x_2 + tv_2)$, la longitud será

$$l(\vec{\alpha}) = \|\vec{\alpha}(b) - \vec{\alpha}(a)\|.$$

Para una curva $\vec{\alpha}: [a, b] \to \mathbb{R}^2$, se considera la familia de todas las particiones de $[a, b]$, $a = t_0 \leq t_1 \cdots \leq t_r = b$, entonces, la longitud de la curva, si existe, es el límite

$$l(\vec{\alpha}) = \lim_{\max(\Delta t_i) \to 0} \left(\sum_{i=0}^{r-1} \|\vec{\alpha}(t_{i+1}) - \vec{\alpha}(t_i)\| \right),$$

siendo $\Delta t_i = t_{i+1} - t_i$. Si este límite existe, se dice que la curva es rectifiable.

Supongamos que se tiene una parametrización de una curva diferenciable $\vec{\alpha}(t) = (x(t), y(t))$, entonces, si $\Delta x_i = x(t_{i+1}) - x(t_i)$, $\Delta y_i = y(t_{i+1}) - y(t_i)$,

$$l(\vec{\alpha}) = \lim_{\Delta t \to 0} \sum_{i=0}^{r-1} \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}$$

$$= \lim_{\Delta t \to 0} \sum_{i=0}^{r-1} \sqrt{\left(\frac{\Delta x_i}{\Delta t} \right)^2 + \left(\frac{\Delta y_i}{\Delta t} \right)^2} \Delta t \quad \text{(6.1)}$$

$$= \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$$

$$= \int_a^b \left\| \frac{d\vec{\alpha}(t)}{dt} \right\| \, dt. \quad \text{(6.2)}$$
Utilizando el teorema del cambio de variable para las integrales definidas se puede ver que la longitud de una curva no depende de la parametrización elegida, sólo depende de la traza.

Ejemplo 6.1 Utilizando el resultado (6.2) podemos obtener la longitud de una circunferencia de centro \((0, 0)\) y radio \(r\). Si utilizamos la parametrización

\[
\vec{a}(t) = (r \cos(t), r \sen(t)) \quad t \in [0, 2\pi],
\]

se tiene

\[
l(\vec{a}) = \int_{0}^{2\pi} \sqrt{(-r \sen(t))^2 + (r \cos(t))^2} \, dt = 2\pi r.
\]

6.1.7. Parámetro longitud de arco

Definición 6.3 Diremos que una curva parametrizada \(\vec{a}(t)\), está parametrizada por la longitud del arco si \(\left\| \frac{\vec{a}}{ds} (s) \right\| = 1\) para todo \(s\).

Se cumple que si una curva está parametrizada por su longitud de arco es una curva regular.

Si \(\vec{a} : [a, b] \to \mathbb{R}^2\), entonces la longitud del segmento de curva \(l = s + c\) donde \(c\) es una constante.

En general es difícil encontrar una parametrización de una curva en términos de su longitud de arco. No obstante, este concepto es útil desde un punto de vista teórico.

6.1.8. Diedro de Frenet

Si \(\vec{a} : I \to \mathbb{R}^2\) una curva regular, se llama vector tangente unitario a

\[
\vec{T}(t) = \frac{\vec{a}'(t)}{\|\vec{a}'(t)\|} = \frac{1}{\sqrt{x'(t)^2 + y'(t)^2}} \left(x'(t), y'(t) \right), \quad (6.3)
\]

y el vector normal unitario a

\[
\vec{N}(t) = \frac{\vec{n}_a(t)}{\|\vec{n}_a(t)\|} = \frac{1}{\sqrt{x'(t)^2 + y'(t)^2}} \left(-y'(t), x'(t) \right) . \quad (6.4)
\]

A los vectores \(\vec{T}\) y \(\vec{N}\) se les llama diedro de Frenet de la curva. Si la curva \(\vec{a}\) está parametrizada por su longitud de arco \(\vec{T}(s) = \vec{a}'(s), \vec{N}(s) = \vec{n}_a(s)\).
6.1.9. Curvatura

Supongamos que se tiene una curva parametrizada por su longitud de arco \(\alpha(s) \), entonces \(\vec{T}(s) \) es un vector unitario, o sea, si denotamos por \(\langle \vec{a}, \vec{b} \rangle \) el producto escalar de los vectores \(\vec{a} \) y \(\vec{b} \), se ha de cumplir \(\langle \vec{T}(s), \vec{T}(s) \rangle = 1 \).

Derivando, \(2 \langle \vec{T}'(s), \vec{T}(s) \rangle = 0 \). Por tanto,
\[
\vec{T}'(s) = \kappa(s) \vec{N}(s).
\]

Al número real \(\kappa(s) \), se le denomina curvatura orientada de la curva plana \(\alpha \).
A \(|\kappa(s)| \) se le llama curvatura de la curva \(\alpha \) en el punto \(\alpha(s) \). Al vector \(\vec{T}'(s) \) se la llama vector curvatura, y se cumple
\[
|\kappa(s)| = \|\vec{T}'(s)\|.
\]

Veremos que para los vectores de Frenet se cumple la siguiente propiedad
\[
\left(\begin{array}{c} \vec{T}'(s) \\ \vec{N}'(s) \end{array} \right) = \left(\begin{array}{cc} 0 & \kappa \\ -\kappa & 0 \end{array} \right) \left(\begin{array}{c} \vec{T}(s) \\ \vec{N}(s) \end{array} \right).
\]

De la definición se tiene la igualdad
\[
\vec{T}' = \kappa \vec{N}.
\]

Por otra parte, como \(\vec{N} \) es unitario
\[
\langle \vec{N}', \vec{N} \rangle = 0.
\]

Además
\[
\langle \vec{T}, \vec{N} \rangle = 0,
\]
\[
0 = \langle \vec{T}', \vec{N} \rangle + \langle \vec{T}, \vec{N}' \rangle = \kappa \langle \vec{N}, \vec{N} \rangle + \langle \vec{T}, \vec{N}' \rangle.
\]

Como \(\vec{T} \) y \(\vec{N} \) forman una base ortonormal de \(\mathbb{R}^2 \), se cumple
\[
\vec{N}' = -\kappa \vec{T}.
\]

Supongamos que se tiene una curva parametrizada, \(\alpha(t) = (x(t), y(t)) \).
Para calcular su curvatura tenemos en cuenta que
\[
\kappa(s) = \left\langle \frac{dT}{ds}, \vec{N}(s) \right\rangle,
\]

111
además tenemos en cuenta que la longitud de arco cumple

\[s(t) = \int_{t_0}^{t} \sqrt{x'(\tilde{t})^2 + y'(\tilde{t})^2} \, d\tilde{t} , \]

y que

\[\frac{dT}{ds} = \frac{d\tilde{T}}{dt} \frac{dt}{ds} = \frac{d\tilde{T}}{dt} \frac{\frac{dx}{dt}}{\sqrt{x'^2 + y'^2}} , \]

Como

\[\tilde{T}(t) = \left(\frac{x'}{\sqrt{x'^2 + y'^2}}, \frac{y'}{\sqrt{x'^2 + y'^2}} \right) , \]

tenemos que

\[\tilde{T}'(t) = \left(\frac{x''}{\sqrt{x'^2 + y'^2}} - \frac{x' (x''x' + y'y'')}{(x'^2 + y'^2)^{3/2}}, \frac{y''}{\sqrt{x'^2 + y'^2}} - \frac{y' (x'x'' + y'y'')}{(x'^2 + y'^2)^{3/2}} \right) . \]

Además

\[\tilde{N}(t) = \left(-\frac{y'}{\sqrt{x'^2 + y'^2}} , \frac{x'}{\sqrt{x'^2 + y'^2}} \right) , \]

y, por tanto, la curvatura orientada es

\[\kappa(s) = \left\langle \frac{dT}{ds}, \tilde{N} \right\rangle = \frac{1}{\sqrt{x'^2 + y'^2}} \left\langle \frac{d\tilde{T}}{dt}, \tilde{N} \right\rangle = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{3/2}} . \quad (6.5) \]

y podemos escribir la curvatura

\[|\kappa(t)| = \frac{||\alpha' \wedge \alpha''||}{||\alpha'||^3} . \]

Usando la expresión (6.5) es fácil comprobar que la curvatura de una recta es cero en todos sus puntos y que la curvatura de una circunferencia de radio \(r \) es constante y vale \(\frac{1}{r} \).

6.2. Curvas en el espacio

De forma análoga al caso de las curvas planas, una curva en el espacio viene definida por una aplicación

\[\alpha : I \subset \mathbb{R} \rightarrow \mathbb{R}^3 \]

\[t \rightarrow \alpha(t) = (x(t), y(t), z(t)) \]
La curva será diferenciable si las funciones \(x(t), y(t), \) y \(z(t) \) son derivables. En este caso, el vector velocidad es
\[
\vec{v}(t) = (x'(t), y'(t), z'(t)) ,
\]
y la aceleración
\[
\vec{a}(t) = (x''(t), y''(t), z''(t)) .
\]
Se dice que la curva es regular en \(I \) si \(\vec{a}'(t) \neq 0, t \in I \). Asimismo, se dice que la curva es birregular en \(I \) si los vectores \(\{\vec{a}'(t), \vec{a}''(t)\} \) son linealmente independientes para todo \(t \in I \).

Como en las curvas planas, la longitud de arco de una curva \(\vec{a}: I = [a, b] \rightarrow \mathbb{R}^3 \), se calcula como
\[
l(\vec{a}) = \int_a^b \| \vec{a}'(t) \| \, dt = \int_a^b \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} \, dt ,
\]
y, en general, la longitud de arco se puede utilizar para dar la parametrización de una curva.

6.2.1. Tridero de Frenet

Supongamos que
\[
\vec{a}: I \rightarrow \mathbb{R}^3
\]
\[
s \rightarrow \vec{a}(s)
\]
es una curva parametrizada por su longitud de arco, \(s \).

El vector tangente unitario es
\[
\vec{T}(s) = \vec{a}'(s) ,
\]
ya que \(\| \vec{a}'(s) \| = 1 \).

Si la curva es birregular, la envoltura lineal de \(\vec{a}' \) y \(\vec{a}'' \) tiene dimensión 2 y se conoce como el plano osculador de la curva.

El vector normal unitario es
\[
\vec{N}(s) = \frac{1}{\kappa(s)} \vec{T}'(s) = \frac{1}{\kappa(s)} \vec{a}''(s) ,
\]
y la función curvatura cumple \(|\kappa(s)| = \| \vec{a}''(s) \| \).

Se define el vector binormal de \(\vec{a} \) en \(s \), como
\[
\vec{B}(s) = \vec{T}(s) \wedge \vec{N}(s) .
\]
Al triedro de vectores \((\vec{T}, \vec{N}, \vec{B}) \), se le llama *triedro de Frenet* de la curva.

Dado que dos vectores linealmente independientes y un punto definen un plano, se tiene que:

- Al plano definido por el punto de la curva \(\vec{a}(s) \) y los vectores \(\{\vec{T}(s), \vec{N}(s)\} \)
 se llama *plano osculador*.

- Al plano definido por el punto de la curva \(\vec{a}(s) \) y los vectores \(\{\vec{N}(s), \vec{B}(s)\} \)
 se llama *plano normal*.

- Al plano definido por el punto de la curva \(\vec{a}(s) \) y los vectores \(\{\vec{T}(s), \vec{B}(s)\} \)
 se llama *plano rectificante*.

Supongamos que \(\vec{a}(s) \) es una curva parametrizada por su longitud de arco y \((\vec{T}, \vec{N}, \vec{B}) \) su triedro de Frenet. Como el triedro de Frenet forma una base de \(\mathbb{R}^3 \), cualquier función vectorial, \(\vec{X} \), se expresa de la forma

\[
\vec{X} = \langle \vec{X}, \vec{T} \rangle \vec{T} + \langle \vec{X}, \vec{N} \rangle \vec{N} + \langle \vec{X}, \vec{B} \rangle \vec{B} .
\]

En particular,

\[
\vec{T}' = \langle \vec{T}', \vec{T} \rangle \vec{T} + \langle \vec{T}', \vec{N} \rangle \vec{N} + \langle \vec{T}', \vec{B} \rangle \vec{B} .
\]

Como \(\langle \vec{T}', \vec{T} \rangle = 0 \), y \(\vec{T}' \) es proporcional a \(\vec{N} \), se tiene que \(\langle \vec{T}', \vec{B} \rangle = 0 \), y

\[
\vec{T}' = \langle \vec{T}', \vec{N} \rangle \vec{N} = \kappa \vec{N} .
\]

Por otra parte,

\[
\vec{N}' = \langle \vec{N}', \vec{T} \rangle \vec{T} + \langle \vec{N}', \vec{N} \rangle \vec{N} + \langle \vec{N}', \vec{B} \rangle \vec{B} .
\]

Como antes, \(\langle \vec{N}', \vec{N} \rangle = 0 \) y , por tanto,

\[
\vec{N}' = \langle \vec{N}', \vec{T} \rangle \vec{T} + \langle \vec{N}', \vec{B} \rangle \vec{B} .
\]

Se cumple que \(\langle \vec{T}, \vec{N} \rangle = 0 \) y, derivando,

\[
\langle \vec{T}', \vec{N} \rangle + \langle \vec{T}, \vec{N}' \rangle = 0 .
\]

114
Así,
\[
\langle \vec{N}', \vec{T} \rangle = -\langle \vec{T}', \vec{N} \rangle = -\kappa .
\]

Se define la función de torsión como
\[
\tau(s) = \langle \vec{N}', \vec{B} \rangle ,
\]
con lo que se tiene
\[
\vec{N}' = -\kappa \vec{T} + \tau \vec{B} .
\]

Usando la definición del vector binormal y derivando, se tiene
\[
\vec{B}' = \left(\vec{T} \wedge \vec{N} \right)' = \vec{T}' \wedge \vec{N} + \vec{T} \wedge \vec{N}'
= \kappa \vec{N} \wedge \vec{N} + \vec{T} \wedge \left(-\kappa \vec{T} + \tau \vec{B} \right) = \tau \vec{T} \wedge \vec{B} .
\]

Haciendo uso de la propiedad del producto vectorial, para tres vectores \(A, \vec{B}, y \vec{C} \),
\[
\left(\vec{A} \wedge \vec{B} \right) \wedge \vec{C} = \langle \vec{A}, \vec{C} \rangle \vec{B} - \langle \vec{B}, \vec{C} \rangle \vec{A} ,
\]
se tiene que
\[
\vec{T} \wedge \vec{B} = \vec{T} \wedge \left(\vec{T} \wedge \vec{N} \right) = -\langle \vec{T}, \vec{T} \rangle \vec{N} + \langle \vec{N}, \vec{T} \rangle \vec{T} = -\vec{N} ,
\]
con lo que
\[
\vec{B}' = -\tau \vec{N} .
\]

De este modo, las fórmulas de Frenet para curvas en el espacio se escriben
\[
\begin{pmatrix}
\vec{T}'(s) \\
\vec{N}'(s) \\
\vec{B}'(s)
\end{pmatrix}
= \begin{pmatrix}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{pmatrix}
\begin{pmatrix}
\vec{T}(s) \\
\vec{N}(s) \\
\vec{B}(s)
\end{pmatrix} .
\]

En general, es difícil parametrizar una curva en función de su longitud de arco, por lo que es interesante obtener las expresiones anteriores para una parametrización general de la curva, \(\vec{a}(t) = (x(t), y(t), z(t)) \).

Se tiene que
\[
\frac{dT}{dt} = \frac{dT}{ds} \frac{ds}{dt} = \| \vec{a}'(t) \| \frac{dT}{ds} = \| \vec{a}'(t) \| \kappa \vec{N}(t) ,
\]
115
por otra parte,

$$\frac{d\vec{N}}{dt} = \frac{d\vec{N}}{ds} \frac{ds}{dt} = \|\alpha'(t)\| \left(-\kappa \vec{T}(t) + \tau \vec{B} \right),$$

y

$$\frac{d\vec{B}}{dt} = \frac{d\vec{B}}{ds} \frac{ds}{dt} = \|\alpha'(t)\| \left(-\tau \vec{N} \right).$$

El vector tangente unitario es

$$\vec{T} = \alpha'(s) = \frac{d\alpha}{dt} \frac{1}{ds},$$

con lo que

$$\frac{d\alpha}{dt} = \|\alpha'(t)\| \vec{T} = \sqrt{x'^2(t) + y'^2(t) + z'^2(t)} \vec{T}.$$

Si partimos de

$$\vec{T}(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|},$$

usando (6.9) se tiene que

$$\vec{T}^\prime(t) = \frac{\alpha''(t)}{\|\alpha'(t)\|} + \left(\frac{1}{\|\alpha'(t)\|} \right)' \vec{T},$$

y, por tanto,

$$\kappa \vec{N}(t) = \frac{\alpha''}{\|\alpha'(t)\|^2} + \frac{1}{\|\alpha'(t)\|^2} \left(\frac{1}{\|\alpha'(t)\|} \right)' \vec{T}. $$

De la definición del vector binormal obtenemos

$$\kappa \vec{B}(t) = \vec{T} \lor \kappa \vec{N} = \frac{\bar{\alpha'}}{\|\bar{\alpha'}\|^2} \lor \left(\frac{\bar{\alpha''}}{\|\bar{\alpha'}\|^2} + \left(\frac{1}{\|\bar{\alpha'}\|} \right)' \bar{\alpha}' \right)$$

$$= \frac{\bar{\alpha'} \lor \bar{\alpha''}}{\|\bar{\alpha'}\|^3}.$$

Como \vec{B} es unitario

$$\vec{B} = \frac{\kappa \vec{B}}{\|\kappa \vec{B}\|} = \frac{\bar{\alpha'} \lor \bar{\alpha''}}{\|\bar{\alpha'} \lor \bar{\alpha''}\|}. \quad (6.10)$$

Por otro lado,

$$|\kappa| = \frac{\|\kappa \vec{B}\|}{\|\bar{\alpha'} \lor \bar{\alpha''}\|} = \frac{\|\bar{\alpha'} \lor \bar{\alpha''}\|}{\|\bar{\alpha'}\|^3}. \quad (6.11)$$
Para calcular la expresión del vector \vec{N}, usamos la definición del vector binormal,

$$\vec{B} = \vec{T} \wedge \vec{N},$$
y la propiedad (6.7), con lo que

$$\vec{N} = \vec{B} \wedge \vec{T} = \frac{\vec{\alpha}' \wedge \vec{\alpha}''}{\|\vec{\alpha}' \wedge \vec{\alpha}''\|} \wedge \frac{\vec{\alpha}'}{\|\vec{\alpha}'\|} = \frac{-1}{\|\vec{\alpha}'\| \|\vec{\alpha}' \wedge \vec{\alpha}''\|} \left(\langle \vec{\alpha}', \vec{\alpha}'' \rangle \vec{\alpha}' - \|\vec{\alpha}'\|^2 \vec{\alpha}'' \right).$$

La torsión cumple

$$\tau = -\frac{1}{\|\vec{\alpha}'\|} \left(d\vec{B} dt \cdot \vec{N} \right).$$

Como

$$\frac{d\vec{B}}{dt} = \left(\frac{\vec{\alpha}' \wedge \vec{\alpha}''}{\|\vec{\alpha}' \wedge \vec{\alpha}''\|} \right)' = \frac{1}{\|\vec{\alpha}' \wedge \vec{\alpha}''\|} \left(\langle \vec{\alpha}', \vec{\alpha}'' \rangle \vec{\alpha}' - \|\vec{\alpha}'\|^2 \vec{\alpha}'' \right),$$
y

$$\vec{N} = \frac{-1}{\|\vec{\alpha}'\| \|\vec{\alpha}' \wedge \vec{\alpha}''\|} \left(\langle \vec{\alpha}', \vec{\alpha}'' \rangle \vec{\alpha}' - \|\vec{\alpha}'\|^2 \vec{\alpha}'' \right),$$

se tiene que

$$\tau = \frac{-1}{\|\vec{\alpha}''\| \|\vec{\alpha}' \wedge \vec{\alpha}''\|} \left(\langle \vec{\alpha}', \vec{\alpha}'' \rangle \vec{\alpha}' - \|\vec{\alpha}'\|^2 \vec{\alpha}'' \right)$$

$$+ \langle \vec{\alpha}', \vec{\alpha}'' \rangle \left(\frac{1}{\|\vec{\alpha}' \wedge \vec{\alpha}''\|} \right)' \frac{1}{\|\vec{\alpha}'\| \|\vec{\alpha}' \wedge \vec{\alpha}''\|} \left(\|\vec{\alpha}'\|^2 \vec{\alpha}'' - \langle \vec{\alpha}', \vec{\alpha}'' \rangle \vec{\alpha}' \right)$$

$$= \frac{-1}{\|\vec{\alpha}''\|^2 \|\vec{\alpha}' \wedge \vec{\alpha}''\|^2} \left(\|\vec{\alpha}'\|^2 \vec{\alpha}' \wedge \vec{\alpha}'' \right)$$

$$= \frac{-1}{\|\vec{\alpha}' \wedge \vec{\alpha}''\|^2}. $$

Ejemplo 6.2 Una hélice circular se parametriza en función de su longitud de arco, s, como

$$\vec{\alpha}(s) = \left(a \cos \left(\frac{s}{\sqrt{a^2 + b^2}} \right), a \sin \left(\frac{s}{\sqrt{a^2 + b^2}} \right), b \frac{s}{\sqrt{a^2 + b^2}} \right).$$

Utilizando esta parametrización obtener los elementos del triédro de Frenet.
Solución: Se hace uso de que

\[\vec{T}(s) = \alpha'(s) . \]

Se tiene que

\[
\begin{align*}
 x'(s) &= -\frac{a}{\sqrt{a^2 + b^2}} \text{sen}\left(\frac{s}{\sqrt{a^2 + b^2}}\right), \\
 y'(s) &= \frac{a}{\sqrt{a^2 + b^2}} \text{cos}\left(\frac{s}{\sqrt{a^2 + b^2}}\right), \\
 z'(s) &= \frac{b}{\sqrt{a^2 + b^2}}
\end{align*}
\]

y, por tanto,

\[
\vec{T} = \frac{1}{\sqrt{a^2 + b^2}} \left(-a \text{sen}\left(\frac{s}{\sqrt{a^2 + b^2}}\right), a \cos\left(\frac{s}{\sqrt{a^2 + b^2}}\right), b\right).
\]

Para obtener el vector normal, \(\vec{N} \), se utiliza la expresión

\[\vec{T}'(s) = \kappa \vec{N} , \]

con lo que la curvatura

\[|\kappa(s)| = \left\| \vec{T}'(s) \right\| . \]

Se tiene que

\[
\vec{T}'(s) = \frac{a}{a^2 + b^2} \left(- \cos\left(\frac{s}{\sqrt{a^2 + b^2}}\right), - \text{sen}\left(\frac{s}{\sqrt{a^2 + b^2}}\right), 0\right),
\]

con lo que la curvatura es

\[|\kappa(s)| = \frac{a}{a^2 + b^2} \]

y un vector normal

\[
\vec{N}(s) = \frac{\vec{T}'(s)}{\left\| \vec{T}'(s) \right\|} = \left(- \cos\left(\frac{s}{\sqrt{a^2 + b^2}}\right), - \text{sen}\left(\frac{s}{\sqrt{a^2 + b^2}}\right), 0\right).
\]

Para el cálculo del vector binormal, \(\vec{B} \), se usa la definición

\[\vec{B}(s) = \vec{T}(s) \wedge \vec{N}(s) . \]
Realizando el cálculo se tiene
\[\vec{B}(s) = \left(\frac{b}{\sqrt{a^2 + b^2}} \frac{\sin \left(\frac{s}{\sqrt{a^2 + b^2}} \right)}{\cos \left(\frac{s}{\sqrt{a^2 + b^2}} \right)} , - \frac{b}{\sqrt{a^2 + b^2}} \frac{\cos \left(\frac{s}{\sqrt{a^2 + b^2}} \right)}{\sin \left(\frac{s}{\sqrt{a^2 + b^2}} \right)} , \frac{a}{\sqrt{a^2 + b^2}} \right). \]

Como se cumple que
\[\vec{B}'(s) = -\tau(s)\vec{N}(s) , \]
y se tiene que
\[\vec{B}'(s) = \frac{b}{a^2 + b^2} \left(\cos \left(\frac{s}{\sqrt{a^2 + b^2}} \right) , \sin \left(\frac{s}{\sqrt{a^2 + b^2}} \right) , 0 \right) , \]
la torsión es
\[\tau(s) = \frac{b}{a^2 + b^2} . \]

Se ha obtenido que la hélice circular es una curva con curvatura y torsión constantes.

Veremos el siguiente resultado, sin demostración.

Teorema 6.1 Sean \(\kappa(s) \) y \(\tau(s) \) funciones reales y continuas definidas en un intervalo \(I = [0, a] \), entonces existe una curva \(\vec{\alpha}(s) \) con \(s \in I \), tal que \(s \) es su longitud de arco, y las funciones curvatura y torsión de la curva \(\vec{\alpha}(s) \), coinciden con las funciones \(\kappa(s) \) y \(\tau(s) \).

A partir de este resultado se tiene que una curva queda definida unívocamente por sus funciones curvatura y torsión. Veamos cómo se pueden utilizar las fórmulas de Frenet para construir una parametrización de la curva si se conocen su curvatura y su torsión.

Partimos de una curva plana parametrizada por su longitud de arco
\[\vec{\alpha}(s) = (x(s), y(s)) . \]

El vector tangente es
\[\vec{T}(s) = \vec{\alpha}'(s) = (x'(s), y'(s)) , \]
como es un vector unitario, se expresa
\[\vec{T}(s) = (\cos (\varphi(s)), \sin (\varphi(s))) . \]
Derivando
\[\vec{T}'(s) = (-\varphi'(s) \sin(\varphi(s)), \varphi'(s) \cos(\varphi(s))) . \]

La curvatura cumple
\[|\kappa(s)| = ||\vec{T}'(s)|| = |\varphi'(s)| . \]

Si \(\kappa(s) \) y \(\varphi'(s) \) tienen el mismo signo, (si no, hay que introducir un signo menos)
\[\kappa(s) = \frac{d\varphi}{ds} \rightarrow \int_{s_0}^{s} d\varphi = \int_{s_0}^{\tilde{s}} \kappa(\tilde{s}) \, d\tilde{s} , \]
con lo que
\[\varphi(s) = \varphi(s_0) + \int_{s_0}^{s} \kappa(\tilde{s}) \, d\tilde{s} . \]

Para obtener la parametrización de la curva se usa que
\[(x'(s), y'(s)) = (\cos(\varphi(s)), \sin(\varphi(s))) , \]
con lo que
\[x'(s) = \cos(\varphi(s)) \rightarrow x(s) = x(s_0) + \int_{s_0}^{s} \cos(\varphi(\tilde{s})) \, d\tilde{s} , \]
\[y'(s) = \sin(\varphi(s)) \rightarrow y(s) = y(s_0) + \int_{s_0}^{s} \sin(\varphi(\tilde{s})) \, d\tilde{s} . \]

Si en vez de tomar la longitud de arco como parámetro tomamos el ángulo, podemos proceder como sigue. Se parte de
\[\kappa = \frac{d\varphi}{ds} . \]

Separando variables e integrando se tiene
\[s - s_0 = \int_{\varphi_0}^{\varphi} \frac{d\varphi}{\kappa(\varphi)} . \]

Se utilizan ahora las ecuaciones
\[(x'(s), y'(s)) = (\cos(\varphi), \sin(\varphi)) , \]
y la Regla de la Cadena
\[\frac{dx}{ds} = \frac{dx}{d\varphi} \frac{d\varphi}{ds} = \frac{dx}{d\varphi} \frac{1}{d\varphi d\varphi} , \]
\[\frac{dy}{ds} = \frac{dy}{d\varphi} \frac{d\varphi}{ds} = \frac{dy}{d\varphi} \frac{1}{d\varphi d\varphi} , \]

120
obtenemos,

\[x(\varphi) = x(\varphi_0) + \int_{\varphi_0}^{\varphi} s'(\tilde{\varphi}) \cos(\tilde{\varphi}) \, d\tilde{\varphi} = \int_{\varphi_0}^{\varphi} \frac{1}{\kappa(s(\tilde{\varphi}))} \cos(\tilde{\varphi}) \, d\tilde{\varphi}, \]

\[y(\varphi) = y(\varphi_0) + \int_{\varphi_0}^{\varphi} s'(\tilde{\varphi}) \sin(\tilde{\varphi}) \, d\tilde{\varphi} = \int_{\varphi_0}^{\varphi} \frac{1}{\kappa(s(\tilde{\varphi}))} \sin(\tilde{\varphi}) \, d\tilde{\varphi}. \]

Ejemplo 6.3 Obtener una parametrización de una curva plana cuyas funciones de curvatura y torsión son

\[\kappa(s) = \frac{1}{s}, \quad \tau(s) = 0. \]

Solución: Si suponemos que \(\kappa(s) \) y \(\varphi'(s) \) tienen el mismo signo, se cumple

\[\kappa(s) = \frac{d\varphi}{ds} = \frac{1}{s}, \]

e integrando, se tiene

\[\varphi - \varphi_0 = \ln(s) - \ln(s_0), \]

o sea,

\[s = s_0 e^{\varphi - \varphi_0}, \]

con lo que

\[\kappa(s) = \frac{1}{s_0} e^{\varphi_0 - \varphi}, \]

y la curva satisface

\[\frac{dx}{d\varphi} = s'(\varphi) \cos(\varphi), \]

\[\frac{dy}{d\varphi} = s'(\varphi) \sin(\varphi), \]

121
e integrando,

\[
x(\varphi) = x(\varphi_0) + \int_{\varphi_0}^{\varphi} s_0 e^{\tilde{\varphi} - \varphi_0} \cos(\tilde{\varphi}) \, d\tilde{\varphi}
\]
\[
= x(\varphi_0) + s_0 \left[e^{\tilde{\varphi} - \varphi_0} \left(\cos(\varphi) + \sin(\varphi) \right) \right]_{\varphi_0}^{\varphi},
\]
\[
y(\varphi) = y(\varphi_0) + \int_{\varphi_0}^{\varphi} s_0 e^{\tilde{\varphi} - \varphi_0} \sin(\tilde{\varphi}) \, d\tilde{\varphi}
\]
\[
= y(\varphi_0) + s_0 \left[e^{\tilde{\varphi} - \varphi_0} \left(\sin(\varphi) - \cos(\varphi) \right) \right]_{\varphi_0}^{\varphi}.
\]

Otro ejemplo para una curva en el espacio es el siguiente.

Ejemplo 6.4 Obtener unas ecuaciones paramétricas para la hélice circular que tiene \(\kappa = 2 \) y \(\tau = 1 \) y pasa por el punto

\[
P = \vec{a}(0) = \left(-\frac{\sqrt{2}}{5}, \frac{\sqrt{2}}{5}, 0 \right), \quad (6.12)
\]
y tiene por triado de Frenet para \(s = 0 \) los vectores

\[
\vec{T}(0) = \left(\vec{T}_1(0), \vec{T}_2(0), \vec{T}_3(0) \right) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0 \right),
\]
\[
\vec{N}(0) = \left(\vec{N}_1(0), \vec{N}_2(0), \vec{N}_3(0) \right) = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0 \right),
\]
\[
\vec{B}(0) = \left(\vec{B}_1(0), \vec{B}_2(0), \vec{B}_3(0) \right) = (0, 0, -1), \quad (6.13)
\]

Solución: Tenemos en cuenta que para cualquier punto el triado de Frenet satsface que

\[
T_i'(s) = \kappa N_i,
\]
\[
N_i'(s) = -\kappa T_i + \tau B_i,
\]
\[
B_i'(s) = -\tau N_i, \quad i = 1, 2, 3,
\]
o sea,

\[
T_i'(s) = 2N_i,
\]
\[
N_i'(s) = -2T_i + B_i,
\]
\[
B_i'(s) = -N_i, \quad i = 1, 2, 3. \quad (6.14)
\]
Para resolver el sistema (6.14), calculamos los valores y vectores propios de la matriz

\[A = \begin{pmatrix} 0 & 2 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}. \]

Los autovalores son

\[\lambda = 0, \lambda = \pm i\sqrt{5}, \]

y los correspondientes autovectores son

\[\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 2 \\ i\sqrt{5} \\ -1 \end{pmatrix}, \quad \vec{v}_3 = \begin{pmatrix} 2 \\ -i\sqrt{5} \\ -1 \end{pmatrix}. \]

La solución del sistema es de la forma

\[\begin{pmatrix} T_i \\ N_i \\ B_i \end{pmatrix} = C_{1i} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + C_{2i} e^{i\sqrt{5}s} \begin{pmatrix} 2 \\ i\sqrt{5} \\ -1 \end{pmatrix} + C_{3i} e^{-i\sqrt{5}s} \begin{pmatrix} 2 \\ -i\sqrt{5} \\ -1 \end{pmatrix}. \]

Imponiendo las condiciones iniciales (6.13), y operando se llega al resultado

\[\begin{pmatrix} T_1(s) \\ N_1(s) \\ B_1(s) \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{10} + \frac{4\sqrt{2}}{10} \cos \left(\sqrt{5} s\right) + \frac{2\sqrt{10}}{10} \sen \left(\sqrt{5} \right. s) \\ -\frac{2\sqrt{10}}{10} \sen \left(\sqrt{5} s\right) + \frac{\sqrt{50}}{10} \cos \left(\sqrt{5} \right. s) \\ \frac{2\sqrt{2}}{10} - \frac{2\sqrt{2}}{10} \cos \left(\sqrt{5} s\right) - \frac{\sqrt{50}}{10} \sen \left(\sqrt{5} \right. s) \end{pmatrix}, \]

\[\begin{pmatrix} T_2(s) \\ N_2(s) \\ B_2(s) \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{10} + \frac{4\sqrt{2}}{10} \cos \left(\sqrt{5} s\right) - \frac{2\sqrt{10}}{10} \sen \left(\sqrt{5} s\right) \\ -\frac{2\sqrt{10}}{10} \sen \left(\sqrt{5} s\right) - \frac{\sqrt{50}}{10} \cos \left(\sqrt{5} s\right) \\ \frac{2\sqrt{2}}{10} - \frac{2\sqrt{2}}{10} \cos \left(\sqrt{5} s\right) + \frac{\sqrt{50}}{10} \sen \left(\sqrt{5} s\right) \end{pmatrix}, \]

\[\begin{pmatrix} T_3(s) \\ N_3(s) \\ B_3(s) \end{pmatrix} = \begin{pmatrix} -\frac{2}{5} + \frac{3}{5} \cos \left(\sqrt{5} s\right) \\ -\frac{\sqrt{5}}{5} \sen \left(\sqrt{5} s\right) \\ -\frac{4}{5} - \frac{4}{5} \cos \left(\sqrt{5} s\right) \end{pmatrix}. \]

Para obtener las ecuaciones paramétricas de la curva, se usa que

\[\bar{T}(s) = \frac{d\vec{\alpha}}{ds}, \]

123
esto es,

\[
x'(s) = \frac{\sqrt{2}}{10} + 4\frac{\sqrt{2}}{10}\cos\left(\sqrt{5}s\right) + \frac{2\sqrt{10}}{10}\cos\left(\frac{\sqrt{5}}{5}s\right),
\]
\[
y'(s) = \frac{\sqrt{2}}{10} + 4\frac{\sqrt{2}}{10}\cos\left(\sqrt{5}s\right) - \frac{2\sqrt{10}}{10}\cos\left(\frac{\sqrt{5}}{5}s\right),
\]
\[
z'(s) = -\frac{2}{5} + 2\frac{2}{5}\cos\left(\sqrt{5}s\right).
\]

Integrando e imponiendo la condición inicial (6.12), se tiene

\[
x(s) = \frac{\sqrt{2}}{10}s + 4\frac{\sqrt{2}}{10}\cos\left(\sqrt{5}s\right) - \frac{2\sqrt{10}}{10}\cos\left(\frac{\sqrt{5}}{5}s\right),
\]
\[
y(s) = \frac{\sqrt{2}}{10}s + 4\frac{\sqrt{2}}{10}\cos\left(\sqrt{5}s\right) + \frac{2\sqrt{10}}{10}\cos\left(\frac{\sqrt{5}}{5}s\right),
\]
\[
z(s) = -\frac{2}{5}s + 2\frac{2}{5}\cos\left(\sqrt{5}s\right).
\]

6.3. Ejercicios

1. Obtener la función curvatura como función de la longitud de arco, \(\kappa(s)\), para la catenaria de ecuación

\[
(x(t), y(t)) = \left(a \cosh\left(\frac{t}{a}\right), t\right).
\]

Solución: Se utiliza que

\[
\kappa(t) = \frac{||\vec{\alpha}' \wedge \vec{\alpha}''||}{||\vec{\alpha}''||},
\]

operando,

\[
\kappa(t) = \frac{1}{a \cosh^2\left(\frac{t}{a}\right)}.
\]

Por otro lado,

\[
s = \int_0^t \|\vec{\alpha}'(\tilde{t})\|\,d\tilde{t} = \int_0^t \cosh\left(\frac{\tilde{t}}{a}\right)\,d\tilde{t} = a \senh\left(\frac{t}{a}\right).
\]

Así,

\[
s^2 + a^2 = a^2 + a^2 \senh^2\left(\frac{t}{a}\right) = a^2 \cosh^2\left(\frac{t}{a}\right),
\]

124
2. Hallar las ecuaciones de la recta tangente y el plano normal a la curva
 \[\vec{a}(t) = (1 + t, -t^2, (1 + t^3)) \]
en \(t = 1 \).

Solución: Un vector tangente a la curva en \(t = 1 \) es
 \[\vec{a}'(1) = (1, -2, 3) \]
así, la recta tangente a la curva tiene por ecuaciones paramétricas
 \[x(t) = 2 + t, \quad y(t) = -1 - 2t, \quad z(t) = 2 + 3t. \]

Por otra parte, el plano normal cumple
 \[(x - 2, y + 1, z - 2) (1, -2, 3) = 0, \]
o sea,
 \[x - 2y + 3z = 10. \]

3. Hallar la función de curvatura de la curva
 \[\vec{a}(t) = \left(t, \frac{1}{2} t^2, \frac{1}{3} t^3 \right). \]

Solución: Para calcular la curvatura se hace uso de
 \[|\kappa(t)| = \frac{\|\vec{a}' \wedge \vec{a}''\|}{\|\vec{a}'\|^3}, \]
como
 \[\vec{a}'(t) = (1, t, t^2), \quad \vec{a}''(t) = (0, 1, 2t), \]
 \[\vec{a}'(t) \wedge \vec{a}''(t) = (t^2, -2t, 1), \]
se tiene
 \[|\kappa(t)| = \frac{\sqrt{t^4 + 4t^2 + 1}}{(1 + t^2 + t^4)^{3/2}}. \]
4. Sea $\vec{B}(t) = (\cos^2(t), \sen(t) \cos(t), \sen(t))$. Encontrar la curva cuya torsión es constante y vale $\tau = 1$ y cuyo vector binormal es \vec{B}.

Solución: Si s es la longitud de arco, se tiene

$$\frac{ds}{dt} = \|\vec{\alpha}'(t)\|,$$

con lo que

$$\vec{B}'(t) = \frac{d\vec{B}}{ds} \frac{ds}{dt} = \|\vec{\alpha}'(t)\| \vec{B}'(s) = \|\vec{\alpha}'(t)\| (-\tau N).$$

Por otra parte,

$$\vec{\alpha}'(t) = \|\vec{\alpha}'(t)\| \vec{T}(t),$$

como $\vec{B} = \vec{T} \land \vec{N}$, y

$$\vec{B} \land \vec{N} = (\vec{T} \land \vec{N}) \land \vec{N} = -\vec{T},$$

se tiene

$$\vec{\alpha}'(t) = \|\vec{\alpha}'(t)\| \vec{N} \land \vec{B} = -\vec{B}'(t) \land \vec{B}$$

$$= (\sen^3(t), -\cos(t) \left(1 + \sen^2(t)\right) \cos^2(t)).$$

Integrando

$$\vec{\alpha}(t) = \left(\frac{\cos^3(t)}{3} - \cos(t), \frac{\sen^3(t)}{3} + \sen(t), \frac{2t + \sen(2t)}{4}\right).$$

5. La astroide es la curva

$$x(\theta) = \cos^3(\theta), \quad y(\theta) = \sen^3(\theta), \quad \theta \in [0, 2\pi],$$

Calcular su curvatura.

6. Parametrizar la espiral logarítmica

$$\vec{\alpha}(t) = (e^t \cos(t), e^t \sen(t)),$$

en función de su longitud de arco. Calcular su curvatura.

7. Demostrar que si se tiene una curva parametrizada en coordenadas polares

$$r = r(\theta),$$

su curvatura viene dada por

$$\kappa = \frac{r^2 + 2rr' - rr''}{(r^2 + r'^2)^{3/2}}.$$
8. Dada la curva
\[\vec{\alpha}(t) = (1 + t, -t^2, 1 + t^3), \]
obtener las ecuaciones de la recta tangente y el plano normal a la curva en \(t = 1 \). Calcular la curvatura y la torsión en dicho punto.

9. Dada la curva
\[\vec{\alpha}(t) = (3t - t^3, 3\sqrt{t}, 3t + t^3), \]
obtener el triédro de Frenet de la curva.

10. Dada la curva de \(\mathbb{R}^3 \)
\[C = \left\{ (x, y, z) \in \mathbb{R}^3 \mid y = x^2, z = \frac{2}{3}x^3 \right\}, \]
obtener
\(a) \) El triédro de Frenet para un punto de la curva.
\(b) \) La curvatura y la torsión.

11. Demostrar que la curvatura de una parábola
\[y = a (x - x_0)^2 + y_0, \]
es máxima en el vértice \((x_0, y_0)\).

12. Hallar el triédro de Frenet y las ecuaciones de los planos osculador, normal y rectificador de la curva
\[\vec{\alpha}(t) = (\cos(t) + t \sin(t), \sin(t) - t \cos(t), 2), \]
en el punto \(t = \frac{\pi}{4} \).

13. Dada la curva de Viviani
\[\vec{\alpha} : [0, 4\pi] \rightarrow \mathbb{R}^3 \quad t \rightarrow (1 + \cos(t), \sin(t), 2 \sin\left(\frac{t}{2}\right)) . \]
Demostrar que
\[|\kappa(t)| = \frac{\sqrt{13 + 3\cos(t)}}{\left(3 + \cos(t)\right)^{\frac{3}{2}}}, \quad \tau(t) = \frac{6 \cos\left(\frac{t}{2}\right)}{13 + 3\cos(t)}. \]
14. Obtener la curva que cumple
\[
\kappa(s) = \frac{1}{\sqrt{2as}} , \quad \tau(s) = 0 .
\]

15. Dada la elipse de ecuación
\[
x = a \cos(t) , \quad y = b \sin(t) , \quad a \neq b , \quad t \in [0, 2\pi] .
\]
Encontrar la curvatura máxima y mínima.

16. Dada la curva de \(\mathbb{R}^3\),
\[
\vec{\alpha}(t) = (3t - t^3, 3t^2, 3t + t^3)
\]
\(a\) Determinar el triángulo de Frenet.
\(b\) Determinar la curvatura y la torsión.
\(c\) Calcular la ecuación de la recta tangente a la curva en \(t = 3\).
\(d\) Calcular los puntos de corte con el plano \(x + y + z = 0\).
\(e\) Obtener la longitud de la curva entre esos puntos.
\(f\) Calcular el plano normal a la curva en \(t = 1\).

17. Obtener el triángulo de Frenet, la función de curvatura y de torsión de la curva
\[
\vec{\alpha}(t) = (3t - t^3, 3t^2, 3t + t^3) .
\]

18. Si se introduce el vector de Darboux
\[
\vec{D} = \tau \vec{T} + \kappa \vec{B} ,
\]
probar que las ecuaciones de Frenet se expresan como
\[
\vec{T}'(s) = \vec{D}(s) \wedge \vec{T}(s) , \quad \vec{N}'(s) = \vec{D}(s) \wedge \vec{N}(s) , \quad \vec{B}'(s) = \vec{D}(s) \wedge \vec{B}(s) .
\]

19. La espiral de Cornu cumple que
\[
\kappa(s) = \frac{c}{s^2} , \quad \tau = 0 .
\]
Obtener una parametrización de esta curva.
Capítulo 7

Teoría de superficies

7.1. Definición y conceptos básicos

El concepto de superficie es un poco más complicado que el de curva. Iremos introduciendo una serie de conceptos previos para poder dar una definición satisfactoria de superficie.

Definición 7.1 Una superficie parametrizada es una aplicación diferenciable

\[\vec{x} : U \subset \mathbb{R}^2 \rightarrow \mathbb{R}^3. \]

La traza de la superficie es el conjunto imagen \(\vec{x}(U) \).

Veamos algún ejemplo.

Ejemplo 7.1

- La aplicación
 \[\vec{x}(u,v) = P_0 + u\vec{v}_1 + v\vec{v}_2, \]
 es una superficie parametrizada cuya traza es el plano que pasa por el punto \(P_0 \) y tiene como vectores directores \(\vec{v}_1 \) y \(\vec{v}_2 \).

- Si \(U = \{(u,v) \in \mathbb{R}^2/ u^2 + v^2 < 1\} \), la aplicación
 \[\vec{x}(u,v) = \left(u, v, \sqrt{1-u^2-v^2}\right), \]
 es una superficie parametrizada cuya traza es el hemisferio norte de una esfera centrada en el origen con radio 1.
De forma análoga al caso de las curvas que en cada punto tienen definido un vector tangente, en las superficies interesará definir en cada punto un plano tangente.

Definicion 7.2 Una superficie parametrizada,

\[
\vec{x} : U \subset \mathbb{R}^2 \rightarrow \mathbb{R}^3 \quad (u,v) \rightarrow \vec{x}(u,v) = (x(u,v), y(u,v), z(u,v))
\]

se dice que es regular en un punto \((u_0,v_0)\), (a veces se dirá que es regular en \(\vec{x}(u_0,v_0)\)) si la matriz derivada

\[
D\vec{x}(u_0,v_0) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{vmatrix} (u_0,v_0)
\]

tiene rango 2.

Con la definición de superficie parametrizada regular aseguramos que en cada punto se pueda definir un plano tangente, pero esta definición no la cumplen, por ejemplo, las esferas. Es por esto que se introduce el concepto de superficie regular.

Definicion 7.3 Un subconjunto \(S \subset \mathbb{R}^3\), es una superficie regular si para todo punto \(p \in S\), existe un entorno \(V \subset \mathbb{R}^3\) y una aplicación

\[
\vec{x} : U \rightarrow V \cap S,
\]

tal que,

1. \(\vec{x}\) es diferenciable, esto es, si

\[
\vec{x}(u,v) = (x(u,v), y(u,v), z(u,v))
\]

las funciones \(x(u,v)\), \(y(u,v)\) y \(z(u,v)\), tienen derivadas parciales continuas de todos los órdenes.

2. La función \(\vec{x}\) admite inversa

\[
\vec{x}^{-1} : V \cap S \rightarrow U
\]

que es continua.

3. Para cada \(q \in U\), la matriz derivada \(D\vec{x}(q)\), tiene rango 2.
Cada una de las superficies parametrizadas que se utilizan para definir una superficie regular, se llama carta de la superficie. El conjunto de cartas necesarias para cubrir una superficie se llama atlas de la superficie.

Ejemplo 7.2 Dada la esfera de centro cero y radio 1,

\[S^2 = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = 1\}. \]

Sea

\[V_1^+ = \{(x, y, z) \in \mathbb{R}^3 / z > 0\} \]

y el conjunto

\[U = \{(u, v) \in \mathbb{R}^2 / u^2 + v^2 < 1\}, \]

la aplicación

\[\vec{x}_1^+: U \rightarrow V_1^+ \cap S^2 \]

\[(u, v) \rightarrow (u, v, \sqrt{1-u^2-v^2}) \]

es una superficie parametrizada invertible.

Cuando \(q \) es un punto del hemisferio sur de la esfera, se toma el conjunto

\[V_1^- = \{(x, y, z) \in \mathbb{R}^3 / z < 0\} \]

y la aplicación

\[\vec{x}_1^-: U \rightarrow V_1^- \cap S^2 \]

\[(u, v) \rightarrow (u, v, -\sqrt{1-u^2-v^2}) \]

también es una superficie parametrizada invertible.

Las trazas de las cartas \(\vec{x}_1^+ \) y \(\vec{x}_1^- \) cubren toda la esfera salvo el ecuador. Para cubrir el ecuador se consideran los conjuntos

\[V_2^+ = \{(x, y, z) \in \mathbb{R}^3 / y > 0(y < 0)\}, \quad V_3^+ = \{(x, y, z) \in \mathbb{R}^3 / x > 0(x < 0)\}, \]

y las aplicaciones

\[\vec{x}_2^+: U \rightarrow V_2^+ \cap S^2 \]

\[(u, v) \rightarrow (u, \pm\sqrt{1-u^2-v^2}, v) \]

y

\[\vec{x}_3^+: U \rightarrow V_3^+ \cap S^2 \]

\[(u, v) \rightarrow (\pm\sqrt{1-u^2-v^2}, u, v) \]

Así, las cartas \(\vec{x}_1^+ \), \(\vec{x}_2^+ \) y \(\vec{x}_3^+ \), constituyen un atlas de la esfera.
7.2. El plano tangente

Definición 7.4 Sea S una superficie regular y $p \in S$. Se define el plano tangente de la superficie S en el punto p, como el conjunto de todos los vectores velocidad en el punto p de todas las curvas en la superficie que pasen por p.

Esto es, $T_pS = \{ \alpha'(0) / \alpha : I \to S \text{ es una curva en la superficie } S, \text{ donde } 0 \in I, \alpha(0) = p \}$.

Ejemplo 7.3 La curva $\alpha(t) = (t, t, t^2)$ es una curva en la superficie regular $z = xy$. La curva pasa por el $(0, 0, 0)$ para $t = 0$, por tanto, $\alpha'(0) = (1, 1, 0)$ es un vector del plano tangente a la superficie en el punto $(0, 0, 0)$. Se puede ver que el conjunto de vectores velocidad de este tipo forman un plano que contiene el punto p.

Otra definición del plano tangente a una superficie regular que hace uso de las cartas consideradas para parametrizar una superficie es la siguiente.

Definición 7.5 El plano tangente en un punto $p = \vec{x}(u_0, v_0)$ de una superficie regular S es el plano que pasa por p y está generado por los vectores

$$\vec{x}_u (u_0, v_0) = \left(\frac{\partial x}{\partial u} (u_0, v_0), \frac{\partial y}{\partial u} (u_0, v_0), \frac{\partial z}{\partial u} (u_0, v_0) \right),$$

y

$$\vec{x}_v (u_0, v_0) = \left(\frac{\partial x}{\partial v} (u_0, v_0), \frac{\partial y}{\partial v} (u_0, v_0), \frac{\partial z}{\partial v} (u_0, v_0) \right).$$

A los vectores $\vec{x}_u (u_0, v_0)$ y $\vec{x}_v (u_0, v_0)$ se les llama base del plano tangente. Se puede ver que esta definición coincide con la que hemos presentado antes y que el plano tangente no depende de la carta utilizada para su construcción.

Ejemplo 7.4 Queremos construir el plano tangente a la esfera S^2 en el punto $p = (0, 1, 0)$.

Solución: Primero se elige una carta de S^2 que contenga al punto p. Una posibilidad es utilizar las coordenadas esféricas,

$$\vec{x}(\theta, \phi) = (\text{sen}(\theta) \cos(\varphi), \text{sen}(\theta) \text{sen}(\varphi), \text{cos}(\theta)),$$

con $\theta \in [-\pi/2, \pi/2]$ y $\varphi \in]0, 2\pi[$. El punto p corresponde a $\theta = \pi/2$ y $\varphi = \pi/2$.

132
Se tiene que
\[
\vec{x}_\theta = (\cos(\theta) \cos(\varphi), \cos(\theta) \sin(\varphi), -\sin(\theta)) ,
\]
\[
\vec{x}_\varphi = (-\sin(\theta) \sin(\varphi), \sin(\theta) \cos(\varphi), 0)
\]
y evaluándolos en el punto \(p = \left(\frac{\pi}{2}, \frac{\pi}{2} \right) \), se tiene
\[
\vec{x}_\theta = (0, 0, -1) , \quad \vec{x}_\varphi = (-1, 0, 0) ,
\]
y el plano tangente es \(y = 1 \).

A partir de una base del plano tangente a una superficie regular, \(S \), en un punto \(p \), se puede definir el vector normal unitario
\[
N^\vec{x} = \frac{\vec{x}_u \wedge \vec{x}_v}{\|\vec{x}_u \wedge \vec{x}_v\|} .
\]
que es un vector unitario normal al plano tangente de \(S \) en el punto \(p \).

Algunas superficies regulares pueden definirse como anti-imágenes de una función diferenciable
\[
f : \mathbb{R}^3 \to \mathbb{R} \\
(x, y, z) \to f(x, y, z) = k
\]
de este modo, la superficie será
\[
S = \{(x, y, z) \in \mathbb{R}^3 / f(x, y, z) = k\}
\]
o bien, \(S = f^{-1}(k) \). Se dice entonces que la superficie viene dada por sus ecuaciones implícitas.

Ejemplo 7.5 El plano
\[
\pi = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 1\}
\]
si se considera la función
\[
f(x, y, z) = x + y + z ,
\]
se puede expresar como el conjunto \(\pi = f^{-1}(1) \).
Si se tiene una superficie dada mediante sus ecuaciones implícitas,

\[S = \{ (x, y, z) \in \mathbb{R}^3 / f(x, y, z) = k \} \]

entonces, dado \(p = (x_0, y_0, z_0) \), el vector

\[\nabla f (x_0, y_0, z_0) = \left(\frac{\partial f}{\partial x} (x_0, y_0, z_0), \frac{\partial f}{\partial y} (x_0, y_0, z_0), \frac{\partial f}{\partial z} (x_0, y_0, z_0) \right), \]

es normal al plano tangente \(T_p S \). Para ver esto, se tiene en cuenta que dado \(p \in S \) y para cualquier vector \(\vec{v} \in T_p S \) existe una curva, \(\alpha(t) = (x(t), y(t), z(t)) \), de forma que \(\alpha(0) = p \) y \(\alpha'(0) = \vec{v} \). Como la curva está en la superficie, se satisface

\[f(\alpha(t)) = k. \]

Derivando respecto de \(t \) en el punto \(t = 0 \),

\[\frac{\partial f}{\partial x}(p) \frac{dx}{dt}(0) + \frac{\partial f}{\partial y}(p) \frac{dy}{dt}(0) + \frac{\partial f}{\partial z}(p) \frac{dz}{dt}(0) = 0, \]

que equivale a

\[\left(\nabla f(p), \vec{v} \right) = 0, \]

con lo que el vector gradiente de \(f \) es normal al plano tangente.

7.3. Primera forma fundamental

Definición 7.6 Sea \(S \) una superficie regular y sea \(p \in S \). La primera forma fundamental de \(S \) en \(p \), es la restricción al plano tangente \(T_p S \) del producto escalar Euclídeo de \(\mathbb{R}^3 \),

\[I_p : T_p S \times T_p S \rightarrow \mathbb{R} \]

\[(\vec{v}, \vec{w}) \rightarrow I_p(\vec{v}, \vec{w}) = \langle \vec{v}, \vec{w} \rangle. \]

Ya hemos visto que si \(\vec{x} : U \rightarrow S \), es una carta de la superficie \(S \), tal que \(\vec{x}(q) = p \), entonces los vectores \(\{ \vec{x}_u(q), \vec{x}_v(q) \} \) son una base de \(T_p S \). Así, dados dos vectores \(\vec{v} \) y \(\vec{w} \) de \(T_p S \) se tiene que

\[\vec{v} = a_1 \vec{x}_u(q) + b_1 \vec{x}_v(q), \]
\[\vec{w} = a_2 \vec{x}_u(q) + b_2 \vec{x}_v(q), \]

134
entonces
\[I_p((\vec{v}, \vec{w})) = a_1 a_2 \langle \vec{x}_u(q), \vec{x}_u(q) \rangle + a_1 b_2 \langle \vec{x}_u(q), \vec{x}_v(q) \rangle + b_1 a_2 \langle \vec{x}_v(q), \vec{x}_u(q) \rangle + b_1 b_2 \langle \vec{x}_v(q), \vec{x}_v(q) \rangle. \]

Se introduce la notación
\[E(q) = \langle \vec{x}_u(q), \vec{x}_u(q) \rangle, \]
\[F(q) = \langle \vec{x}_u(q), \vec{x}_v(q) \rangle = \langle \vec{x}_v(q), \vec{x}_u(q) \rangle, \]
\[G(q) = \langle \vec{x}_v(q), \vec{x}_v(q) \rangle, \]
con lo que se tiene
\[I_p = (\vec{v}, \vec{w}) = \begin{pmatrix} a_1 & b_1 \end{pmatrix} \begin{pmatrix} E(q) & F(q) \\ F(q) & G(q) \end{pmatrix} \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}, \]
que es la expresión matricial de la primera forma fundamental.

Las funciones \(E(q) \), \(F(q) \) y \(G(q) \) se llaman coeficientes de la primera forma fundamental. Los coeficientes \(E \) y \(G \) son positivos, por definición. Por otra parte, el determinante
\[\begin{vmatrix} E & F \\ F & G \end{vmatrix} = EG - F^2 = \langle \vec{x}_u(q), \vec{x}_u(q) \rangle \langle \vec{x}_v(q), \vec{x}_v(q) \rangle - \langle \vec{x}_u(q), \vec{x}_v(q) \rangle^2, \]
que haciendo uso de la propiedad vectorial
\[\langle A \wedge B, A \wedge B \rangle = \langle A, A \rangle \langle B, B \rangle - \langle A, B \rangle^2, \]
se expresa como
\[\begin{vmatrix} E & F \\ F & G \end{vmatrix} = \| \vec{x}_u \wedge \vec{x}_v \|^2 > 0. \]
Así pues, la primera forma fundamental se puede ver como una forma bilineal simétrica y definida positiva.

Ejemplo 7.6 Dada la superficie definida por la carta
\[\vec{x} = (u + v, u - v, uv), \]
sí calculamos los coeficientes de la primera forma fundamental, obtenemos
\[E = 2 + v^2, \quad F = 2uv, \quad G = 2 + u^2. \]
Si introducimos el cambio de coordenadas
\[
\theta = u + v, \quad \phi = u - v,
\]
la superficie se puede caracterizar por la carta
\[
\vec{x} = \left(\theta, \phi, \frac{1}{4} (\theta^2 - \phi^2) \right).
\]
Ahora los coeficientes de la Primera forma fundamental son
\[
E^* = 1 + \frac{1}{4} \theta^2, \quad F^* = -\frac{1}{4} \theta \phi, \quad G^* = 1 + \frac{1}{4} \phi^2.
\]

Para el punto \(p = (u, v) = (1, 1) \), se tiene que \(E = 3, F = 1 \) y \(G = 2 \). Pero para el mismo punto \(p = (\theta, \phi) = (2, 0) \) \(E^* = 2, F^* = 0, G^* = 1 \), con lo que tenemos que los valores de la Primera forma fundamental no son invariantes bajo cambios de coordenadas.

7.4. Longitud de curvas en superficies

Dada una curva
\[
\alpha : I \to S,
\]
siendo \(S \) una superficie regular, ya hemos visto que su longitud se puede calcular como
\[
l(\alpha) = \int_a^b \| \alpha'(t) \| \, dt.
\]

Otra forma de calcular esta longitud, consiste en suponer que \(\vec{x} : U \to S \) es una carta de la superficie tal que \(\alpha(I) \subset \vec{x}(U) \). Hacemos uso de la base asociada a la carta del plano tangente, \(\{\vec{x}_u, \vec{x}_v\} \), y que \(\alpha'(t) \) es un vector tangente a la superficie. Si \(\alpha(t) = \vec{x}(u(t), v(t)) \), derivando
\[
\alpha'(t) = \frac{\partial \vec{x}}{\partial u}(u, v)u'(t) + \frac{\partial \vec{x}}{\partial v}(u, v)v'(t).
\]
La norma
\[
\| \alpha'(t) \|^2 = \langle u' \vec{x}_u + v' \vec{x}_v, u' \vec{x}_u + v' \vec{x}_v \rangle = u'^2 E + 2u'v'F + v'^2 G.
\]
Así,
\[
l(\alpha) = \int_a^b \sqrt{u'^2 E + 2u'v'F + v'^2 G} \, dt.
\]
Ejemplo 7.7 Consideremos la esfera de centro cero y radio 1, y la carta que definen las coordenadas esféricas

\[
\vec{x}(\theta, \varphi) = (\cos(\theta) \cos(\varphi), \cos(\theta) \sin(\varphi), \sin(\theta)) ,
\]

\[
\vec{x}_\theta = (-\sin(\theta) \cos(\varphi), -\sin(\theta) \sin(\varphi), \cos(\theta)) ,
\]

\[
\vec{x}_\varphi = (-\cos(\theta) \sin(\varphi), -\cos(\theta) \cos(\varphi), 0) .
\]

De este modo, \(E = 1, G = \cos^2(\theta), F = 0 \). Si queremos calcular la longitud de un cuarto de meridiano dado por \(\theta = \theta, \varphi = \frac{\pi}{2} \), con \(\theta \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \), se tiene

\[
l = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\theta = \frac{\pi}{2} .
\]

7.5. Área de una superficie

Si se consideran regiones de una superficie regular que están definidas en la imagen de alguna carta, o sea, regiones \(R \) tales que \(\vec{x}(Q) = R \) con \(Q \subset U \).

Entonces, de forma análoga a cómo se estableció la fórmula de la longitud de arco de una curva, se puede obtener una fórmula para determinar el área de una región \(R \) de la superficie \(S \).

Para justificar la expresión del área, supondremos que el conjunto \(Q \) es el rectángulo \([a,b] \times [c,d] \). Se toma la partición definida por los puntos \(\{(u_i, v_j)\}_{i,j=0}^{n,m} \). Esta partición define un conjunto de paralelogramos \(\{R_{ij}\}_{i,j=0}^{n-1,m-1} \) de lados

\[
\vec{x}(u_{i+1}, v_j) - \vec{x}(u_i, v_j) , \quad \vec{x}(u_i, v_{j+1}) - \vec{x}(u_i, v_j) .
\]

Es conocido que el área de un paralelogramo de lados definidos por los vectores \(\vec{u} \) y \(\vec{v} \) viene dada por

\[
A = \|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin(\theta) ,
\]

siendo \(\theta \) el ángulo que forman los dos vectores.

Para cada rectángulo \(R_{ij} \), se tiene el área

\[
A(R_{ij}) = \| (\vec{x}(u_{i+1}, v_j) - \vec{x}(u_i, v_j)) \wedge (\vec{x}(u_i, v_{j+1}) - \vec{x}(u_i, v_j)) \| .
\]

La suma de las áreas de todos los rectángulos, en el límite en el que la partición del rectángulo \(Q \) sea muy fina, nos dará una aproximación del área de la región \(R \).
Utilizando el teorema del valor medio

\[\vec{x}(u_{i+1}, v_j) - \vec{x}(u_i, v_j) = \vec{x}_u (u_i, v_j) (u_{i+1} - u_i) , \]

\[\vec{x}(u_i, v_{j+1}) - \vec{x}(u_i, v_j) = \vec{x}_v (u_i, v_j) (v_{j+1} - v_j) , \]

donde \(u_i^0 \in [u_i, u_{i+1}) , \ v_j^0 \in [v_j, v_{j+1}[. \) Así, el área de \(R \) es aproximadamente

\[A(R) \approx \sum_{i,j=0}^{n-1,m-1} \| \vec{x}_u (u_i, v_j) \wedge \vec{x}_v (u_i, v_j^0) \| (u_{i+1} - u_i) (v_{j+1} - v_j) . \]

Tomando el límite cuando la partición de \(Q \) es muy fina y usando las propiedades de las integrales definidas, se tiene la expresión del área

\[A(R) = \iint_A \| \vec{x}_u (u, v) \wedge \vec{x}_v (u, v) \| \, du \, dv = \iint_A (EG - F^2)^{1/2} \, du \, dv . \]

Se puede ver que esta expresión es válida para conjuntos \(Q \) más generales que un rectángulo y que el valor del área es independiente de la carta \(\vec{x} \) elegida para parametrizar la región \(R \) de \(S \).

7.6. Orientabilidad de superficies

Dada una superficie regular \(S \) y una carta de \(S \),

\[\vec{x} : \quad U \to S \]
\[(\vec{x}, \vec{y}) \to S \]

Ya se ha visto que un vector unitario normal al plano tangente en cada punto es

\[N \vec{x} = \frac{\vec{x}_u \wedge \vec{x}_v}{\| \vec{x}_u \wedge \vec{x}_v \|} . \]

Supongamos ahora que se tiene otra carta de \(S \)

\[\vec{y} : \quad V \to S \]
\[(\vec{x}, \vec{y}) \to S \]

con un cambio entre las dos cartas

\[u = u (\vec{x}, \vec{y}) , \quad \tilde{u} = \tilde{u} (x, y) \]
\[v = v (\vec{x}, \vec{y}) , \quad \tilde{v} = \tilde{v} (x, y) \]
de forma que en \(U \cap V \) se satisface \(\vec{y}(\bar{u}, \bar{v}) = \vec{x}(u, v) \).

Si calculamos
\[
\frac{\partial \vec{y}}{\partial \bar{u}} = \frac{\partial \vec{y}}{\partial u}(u, v) \frac{\partial u}{\partial \bar{u}} + \frac{\partial \vec{y}}{\partial v}(\bar{u}, \bar{v}) \frac{\partial v}{\partial \bar{u}},
\]
\[
\frac{\partial \vec{y}}{\partial \bar{v}} = \frac{\partial \vec{y}}{\partial u}(u, v) \frac{\partial u}{\partial \bar{v}} + \frac{\partial \vec{y}}{\partial v}(\bar{u}, \bar{v}) \frac{\partial v}{\partial \bar{v}}.
\]

eando y agrupando términos se llega a que
\[
\frac{\partial \vec{y}}{\partial \bar{u}} \wedge \frac{\partial \vec{y}}{\partial \bar{v}} = \left(\frac{\partial u \partial v}{\partial \bar{u} \partial \bar{v}} - \frac{\partial u \partial v}{\partial \bar{v} \partial \bar{u}} \right) \left(\frac{\partial \vec{x}}{\partial u} \wedge \frac{\partial \vec{x}}{\partial v} \right).
\]

Así, el vector unitario normal asociado a la carta \(\vec{y} \), es
\[
N^y = \left| \frac{J(u, v)}{J(u, v)} \right|.
\]

Como el cociente
\[
\frac{J(u, v)}{J(u, v)} = \pm 1,
\]
diremos que las cartas \(\vec{x} \) e \(\vec{y} \) son compatibles si el cociente vale +1 y son incompatibles si el cociente vale -1.

Definición 7.7 Diremos que una superficie regular \(S \) es orientable si existe un atlas formado por cartas compatibles dos a dos. En este caso se dice que el atlas orienta la superficie. En otro caso se dice que la superficie no es orientable.

Esta definición, se puede ver que es equivalente a la siguiente definición.

Definición 7.8 Una superficie regular \(S \) es orientable si existe una aplicación continua \(\vec{N} : S \to \mathbb{R}^3 \) tal que para todo \(p \in S \) el vector \(\vec{N}(p) \perp T_p S \).
Un ejemplo típico de superficie no orientable es la banda de Möbius.

Se cumple que toda superficie regular cuyo atlas está constituido por una sola carta es orientable. Otra propiedad interesante es que toda superficie definida mediante sus ecuaciones implícitas, $S = f^{-1}$, es orientable, ya que
el campo vectorial \(\frac{\nabla f}{\| \nabla f \|} \) nos define una aplicación continua, que nos da un vector unitario normal a la superficie.

7.7. Curvatura normal y la Segunda forma fundamental

Dada una superficie regular \(S \) y sea \(\alpha : I \to S \) una curva sobre la superficie parametrizada por su longitud de arco, tal que \(\alpha(0) = p \).

Si consideramos \(\alpha \) como una curva de \(\mathbb{R}^3 \), se tiene

\[
T'(s) = \kappa(s)N(s).
\]

Por otra parte, si tenemos en cuenta que los vectores

\[
\{ T(s), N(\alpha(s)), T(s) \wedge N(\alpha(s)) \},
\]

donde \(N(\alpha(s)) \) es el vector unitario normal a la superficie en \(\alpha(s) \), forman una base de \(\mathbb{R}^3 \) y se puede escribir

\[
T'(s) = \langle T'(s), N(\alpha(s)) \rangle N(\alpha(s)) + \langle T'(s), T(s) \wedge N(\alpha(s)) \rangle T(s) \wedge N(\alpha(s)),
\]

ya que \(T'(s) \) es normal a \(T(s) \). Al primer factor \(\langle T'(s), N(\alpha(s)) \rangle \), se le llama curvatura normal de la curva \(\alpha \) y se denota por \(\kappa_n \). Al segundo factor \(\langle T'(s), T(s) \wedge N(\alpha(s)) \rangle \) se le llama curvatura geodésica.

Ejemplo 7.8 Consideremos el cilindro definido por \(x^2 + y^2 = 1 \) y una curva sobre el cilindro,

\[
\alpha(s) = \left(\cos \left(\frac{s}{\sqrt{2}} \right), \sin \left(\frac{s}{\sqrt{2}} \right), \frac{s}{\sqrt{2}} \right).
\]

Calcularemos la curvatura normal de \(\alpha(s) \) en el punto \(\alpha(0) = (1,0,0) \).

Solución: El vector normal al cilindro en cada punto es

\[
N(x, y, z) = (x, y, 0).
\]

Por otra parte,

\[
T(s) = \alpha'(s) = \frac{1}{\sqrt{2}} \left(-\sin \left(\frac{s}{\sqrt{2}} \right), \cos \left(\frac{s}{\sqrt{2}} \right), 1 \right),
\]

\[
T'(s) = \frac{1}{2} \left(-\cos \left(\frac{s}{\sqrt{2}} \right), -\sin \left(\frac{s}{\sqrt{2}} \right), 0 \right),
\]

141
y, por tanto,

\[
\kappa_n = \langle T'(s), N(\alpha(s)) \rangle = \\
= \left\langle \frac{1}{2} \left(-\cos \left(\frac{s}{\sqrt{2}} \right), -\sen \left(\frac{s}{\sqrt{2}} \right), 0 \right), \left(\cos \left(\frac{s}{\sqrt{2}} \right), \sen \left(\frac{s}{\sqrt{2}} \right), 0 \right) \right\rangle \\
= -\frac{1}{2} .
\]

Definición 7.9 Se a superfi cie regular y \(p \in S \), y sea \(\alpha(t) \) una curva sobre la superfi cie de forma que \(\alpha(0) = p \), \(\alpha'(0) = \vec{v} \). La aplicación de Weingarten se defi ne como

\[
W_p(\vec{v}) = -\frac{d}{dt}N(\alpha(t))(0) .
\]

Hemos visto que la curvatura normal cumple

\[
\kappa N(p) = \langle T'(0), N(\alpha(0)) \rangle N(\alpha(0)) \\
= \left(\frac{d}{ds} \langle T, N(\alpha(s)) \rangle(0) - \left\langle T(0), \frac{d}{ds}N(\alpha(s)) \right\rangle \right) N(p) \\
= \langle T(0), W_p(T(0)) \rangle N(p) .
\]

De este modo podemos escribir

\[
\kappa(\vec{v}) = \langle \vec{v}, W_p(\vec{v}) \rangle .
\]

Definición 7.10 Se defi ne la Segunda forma fundamental de una superfi cie regular \(S \) como la aplicación

\[
II_p : T_pS \to \mathbb{R} \\
\vec{v} \to \langle \vec{v}, W_p(\vec{v}) \rangle .
\]

Veamos cómo se expresa la Segunda forma fundamental una vez se elige una carta de la superfi cie. Si \(\vec{x} : U \to S \) es una carta de \(S \) tal que \(p = \vec{x}(q) \), se tiene que los vectores \(\{ \vec{x}_u(q), \vec{x}_v(q) \} \) son una base de \(T_pS \).

Si

\[
\vec{v} = a_1 \vec{x}_u(q) + b_1 \vec{x}_v(q) ,
\]

se tiene

\[
II_p(\vec{v}) = a_1a_1 \langle \vec{x}_u(q), W_p(\vec{x}_u(q)) \rangle + a_1b_1 \langle \vec{x}_u(q), W_p(\vec{x}_v(q)) \rangle \\
+ b_1a_1 \langle \vec{x}_v(q), W_p(\vec{x}_u(q)) \rangle + b_1b_1 \langle \vec{x}_v(q), W_p(\vec{x}_v(q)) \rangle .
\]
Ahora tenemos en cuenta que para la carta \(\vec{x} \) y \(q \) tal que \(\vec{x}(q) = p \), si consideramos el producto escalar

\[
\langle \vec{x}_v(q + (t, 0)), N(\vec{x}(q + (t, 0))) \rangle,
\]

por ser el producto de un vector tangente por otro normal en el mismo punto. Calculando la derivada en \(t = 0 \),

\[
0 = \left\langle \vec{x}_v(q), \frac{d}{dt}N(\vec{x}_u(q)) \right\rangle + \langle \vec{x}_{vu}(q) \rangle,
\]

con lo que se llega al resultado

\[
\langle \vec{x}_v(q), W_p(\vec{x}_u(q)) \rangle = \langle \vec{x}_{vu}(q), N(p) \rangle.
\]

De forma análoga se obtienen las siguientes igualdades

\[
\langle \vec{x}_u(q), W_p(\vec{x}_u(q)) \rangle = \langle \vec{x}_{uu}(q), N(p) \rangle,
\]

\[
\langle \vec{x}_v(q), W_p(\vec{x}_v(q)) \rangle = \langle \vec{x}_{vv}(q), N(p) \rangle,
\]

\[
\langle \vec{x}_u(q), W_p(\vec{x}_v(q)) \rangle = \langle \vec{x}_{uv}(q), N(p) \rangle.
\]

Se introduce la notación

\[
e(q) = \langle \vec{x}_u(q), W_p(\vec{x}_u(q)) \rangle = \langle \vec{x}_{uu}(q), N(p) \rangle,
\]

\[
f(q) = \langle \vec{x}_v(q), W_p(\vec{x}_v(q)) \rangle = \langle \vec{x}_{vv}(q), N(p) \rangle,
\]

\[
g(q) = \langle \vec{x}_v(q), W_p(\vec{x}_v(q)) \rangle = \langle \vec{x}_{uv}(q), N(p) \rangle,
\]

y la Segunda forma fundamental se expresa como

\[
II_p(\vec{v}) = \begin{pmatrix} a_1 & b_1 \end{pmatrix} \begin{pmatrix} e(q) & f(q) \\ f(q) & g(q) \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}.
\]

A las funciones \(e, f \) y \(g \) se les llama coeficientes de la Segunda forma fundamental.

Ejemplo 7.9 Se quieren calcular los coeficientes de la Segunda forma fundamental del cilindro de centro 0 y radio 1, utilizando la carta

\[
\vec{x}(u, v) = (\cos(u), \sin(u), v), \quad u \in [0, 2\pi[, \quad v \in \mathbb{R}.
\]
Leyendo el texto de la imagen, aquí está la transcripción en texto natural:

Solución: Se tiene que

\[
\begin{align*}
\vec{x}_u(u,v) &= (-\sin(u), \cos(u), 0), \\
\vec{x}_v(u,v) &= (0, 0, 1), \\
\vec{x}_{uu}(u,v) &= (-\cos(u), -\sin(u), 0), \\
\vec{x}_{uv}(u,v) &= (0, 0, 0), \\
\vec{x}_{vv}(u,v) &= (0, 0, 0), \\
N(u,v) &= \frac{\vec{x}_u \wedge \vec{x}_v}{\|\vec{x}_u \wedge \vec{x}_v\|} = (\cos(u), \sin(u), 0).
\end{align*}
\]

Luego $e = -1$, $f = g = 0$.

7.7.1. Cálculo de la curvatura normal

Sea S una superficie regular y $p \in S$, y sea una curva sobre la superficie, α. La curvatura normal se define como

\[
\kappa_n = \langle T'(s), N(\alpha(s)) \rangle.
\]

Se cumple que

\[
0 = \frac{d}{dt} \langle T, N \rangle = \left(\frac{dT}{dt}, N \right) + \left(T, \frac{dN}{dt} \right),
\]

así,

\[
\kappa_n = \frac{1}{\|\alpha'(t)\|} \left(\frac{dT}{dt}, N \right) = -\frac{1}{\|\alpha'(t)\|} \left(T, \frac{dN}{dt} \right).
\]

Como

\[
T = \frac{d\alpha}{ds} = \frac{d\alpha}{dt} \frac{1}{\|\alpha\|},
\]

se tiene

\[
\kappa_n = -\frac{1}{\|\alpha'(t)\|^2} \left(\frac{d\alpha}{dt}, \frac{dN}{dt} (\alpha(t)) \right).
\]

Si para S, se elige una carta $\vec{x}(u, v)$, la curva $\bar{\alpha}$ sobre la superficie se puede expresar como

\[
\bar{\alpha} = \vec{x}(u(t), v(t)),
\]

con lo que

\[
\begin{align*}
\frac{\bar{\alpha}}{dt} &= \vec{x}_u \frac{du}{dt} + \vec{x}_v \frac{dv}{dt}, \\
\frac{\bar{N}}{dt} &= N_u \frac{du}{dt} + N_v \frac{dv}{dt},
\end{align*}
\]
de este modo,
\[\kappa_n = -\frac{\langle \vec{x}_u \frac{du}{dt} + \vec{x}_v \frac{dv}{dt} \rangle \langle N_u \frac{du}{dt} + N_v \frac{dv}{dt} \rangle}{\langle \vec{x}_u \frac{du}{dt} + \vec{x}_v \frac{dv}{dt} \rangle \langle N_u \frac{du}{dt} + \vec{x}_v \frac{dv}{dt} \rangle} . \]

Como \(\vec{x}_u \) y \(N \) son perpendiculares,
\[0 = \frac{\partial}{\partial u} \langle \vec{x}_u, N \rangle = \langle \vec{x}_{uu}, N \rangle + \langle \vec{x}_u, N_u \rangle , \]
con lo que
\[\langle \vec{x}_{uu}, N \rangle = -\langle \vec{x}_u, N_u \rangle , \]
de igual forma, se prueba que
\[\langle \vec{x}_{uv}, N \rangle = -\langle \vec{x}_u, N_v \rangle = -\langle \vec{x}_v, N_u \rangle , \]
y podemos pues escribir
\[\kappa_n = \frac{e \left(\frac{du}{dt} \right)^2 + 2f \frac{du}{dt} \frac{dv}{dt} + g \left(\frac{dv}{dt} \right)^2}{E \left(\frac{du}{dt} \right)^2 + 2F \frac{du}{dt} \frac{dv}{dt} + G \left(\frac{dv}{dt} \right)^2} = \frac{I_p}{I_p} . \]

7.8. Curvatura de Gauss y curvatura media

Se tiene que \(\|N\|^2 = 1 \), por tanto, derivando
\[\frac{d}{dt} \langle N, N \rangle = 2 \langle N, \frac{dN}{dt} \rangle = 0 , \]
con lo que tenemos que \(\frac{dN}{dt} \) es ortogonal a \(N \), por ello, se puede considerar que \(\frac{dN}{dt} \in T_pS \), y podemos considerar la aplicación de Weingarten como una aplicación
\[W_p : T_pS \to T_pS , \]
así, una vez elegida una base en \(T_pS \), \(\{ \vec{x}_u(q), \vec{x}_v(q) \} \), se tiene
\[\begin{align*}
W_p (\vec{x}_u(q)) &= W_{11} \vec{x}_u(q) + W_{21} \vec{x}_v(q) , \\
W_p (\vec{x}_v(q)) &= W_{12} \vec{x}_u(q) + W_{22} \vec{x}_v(q) ,
\end{align*} \]
de forma que sobre un vector
\[\vec{v} = a_1 \vec{x}_u(q) + b_1 \vec{x}_v(q) , \]
actúa de la forma
\[\begin{pmatrix} a_1' \\ b_1' \end{pmatrix} = \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} . \]

145
Definición 7.11 Directemos que un vector unitario y tangente a una superficie regular S, en un punto p, \mathbf{u}, determina una dirección principal en $T_p S$, si la función de curvatura normal tiene un máximo o un mínimo. Se llaman curvaturas principales a los valores máximo y mínimo de las curvaturas normales.

Se puede ver que las curvaturas máxima y mínima se corresponden con los autovalores k_1 y k_2 de la matriz de la aplicación de Weingarten

$$W_p = \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix}.$$

Las direcciones principales se corresponden con la base orthonormal $\{u_1, u_2\}$ que diagonalizan la matriz W_p.

Interesa tener una medida de la curvatura que no dependa de la base elegida en el plano tangente. De este modo, se define la curvatura de Gauss como

$$K(p) = \det (W_p) = k_1 k_2.$$

Otra medida con estas características es la curvatura media

$$H(p) = \frac{1}{2} \text{traza} (W_p) = \frac{1}{2} (k_1 + k_2).$$

Hemos de tener en cuenta que, si hacemos uso de los coeficientes de la Primera forma fundamental, se puede escribir

$$e = \langle \bar{x}_u, W_p (\bar{x}_u) \rangle = W_{11} E + W_{21} F,$$
$$f = \langle \bar{x}_u, W_p (\bar{x}_v) \rangle = W_{11} E + W_{21} G,$$
$$g = \langle \bar{x}_v, W_p (\bar{x}_u) \rangle = W_{12} E + W_{22} G,$$

se cumple pues que

$$\begin{pmatrix} e & f \\ f & g \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix},$$

y, por tanto,

$$\begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} e & f \\ f & g \end{pmatrix}.$$
con lo que

\[W_{11} = \frac{eG - fF}{EG - F^2}, \quad W_{12} = \frac{fG - gF}{EG - F^2}, \]

\[W_{21} = \frac{fE - eF}{EG - F^2}, \quad W_{22} = \frac{gE - fF}{EG - F^2}, \]

y las curvaturas

\[K(p) = \frac{eg - f^2}{EG - F^2}, \quad H(p) = \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2}. \]

A partir de estas curvaturas se puede establecer una clasificación de los puntos \(p \) de una superficie

1) Se dice que \(p \) es elíptico si \(K(p) > 0 \).

2) Se dice que \(p \) es hiperbólico si \(K(p) > 0 \).

3) Se dice que \(p \) es parabólico si \(K(p) = 0 \) y \(H(p) \neq 0 \).

4) Se dice que \(p \) es plano si \(K(p) = H(p) = 0 \).

A parte de esta clasificación, se dice que \(p \) es un punto umbilical si \(k_1(p) = k_2(p) \).

7.9. Ejercicios

1. Hallar las ecuaciones del plano tangente y de la recta normal a la superficie representada por

\[\vec{x} = (u, v, u^2 - v^2) \] ,

en el punto \(p = (1, 1) \).

Solución: Se cumple que \(\vec{x}(p) = (1, 1, 0) \), y

\[\vec{x}_u = (1, 0, 2u) \quad \vec{x}_u(p) = (1, 0, 2) \]

\[\vec{x}_v = (0, 1, -2v) \quad \vec{x}_v(p) = (0, 1, -2) \]

Las ecuaciones del plano tangente son de la forma

\[\vec{x} = \vec{x}(p) + h\vec{x}_u(p) + k\vec{x}_v(p) \] .
o sea,
\[\vec{x} = (1 + h, 1 + k, 2h - 2k) , \]
o bien,
\[z = 2x - 2y . \]
Para calcular la recta normal, calculamos un vector normal a la superficie en el punto \(p \),
\[\vec{x}_u \wedge \vec{x}_v(p) = (-2, 2, 1) , \]
y la recta normal
\[\vec{E} = \vec{x}(p) + t (\vec{x}_u(p) \wedge \vec{x}_v(p)) , \]
esto es,
\[
\begin{align*}
x &= 1 - 2t , \\
y &= 1 + 2t , \\
z &= t .
\end{align*}
\]
2. Calcular la longitud de arco de la curva
\[
\begin{align*}
\theta &= \log \left(\cot \left(\frac{\pi}{4} - \frac{t}{2} \right) \right) , \\
\phi &= \frac{\pi}{2} - t , \quad 0 \leq t \leq \frac{\pi}{2} ,
\end{align*}
\]
sobre la esfera
\[\vec{x} = (\cos(\theta) \sen(\phi), \sen(\theta) \sen(\phi), \cos(\theta)) . \]
Solución: Se tiene
\[
\begin{align*}
\vec{x}_\theta &= (- \sen(\theta) \sen(\phi) \cos(\theta) \sen(\phi), 0) , \\
\vec{x}_\phi &= (\cos(\theta) \cos(\phi) \sen(\theta) \cos(\phi), - \sen(\phi)) .
\end{align*}
\]
Así, los coeficientes de la Primera forma fundamental son
\[E = \sen^2(\theta) , \quad F = 0 , \quad G = 1 . \]
La longitud de arco es
\[l = \int_{0}^{\pi} \sqrt{E \left(\frac{d\theta}{dt} \right)^2 + 2F \frac{d\theta}{dt} \frac{d\phi}{dt} + G \left(\frac{d\phi}{dt} \right)^2} \, dt . \]
Como
\[\frac{d\theta}{dt} = \frac{1}{\sin\left(\frac{\pi}{2} - t\right)}, \quad \frac{d\phi}{dt} = -1, \]
la longitud es
\[l = \int_{0}^{\pi} \sqrt{2} \, dt = \frac{\pi}{\sqrt{2}}. \]

3. Dada la superficie
\[\vec{x} = (u, v, u^2 - v^2), \]
obtener los coeficientes de la Segunda forma fundamental.

Solución: Se tiene que
\begin{align*}
\vec{x_u} &= (1, 0, 2u), \quad \vec{x_v} = (0, 1, -2v), \\
\vec{x_{uu}} &= (0, 0, 2), \quad \vec{x_{uv}} = 0, \quad \vec{x_{vv}} = (0, 0, -2), \\
N &= \frac{\vec{x_u} \wedge \vec{x_v}}{\|\vec{x_u} \wedge \vec{x_v}\|} = \frac{(-2u, 2v, 1)}{\sqrt{4u^2 + 4v^2 + 1}}.
\end{align*}

Los coeficientes son
\[E = \frac{2}{\sqrt{4u^2 + 4v^2 + 1}}, \quad F = 0, \quad G = -\frac{2}{\sqrt{4u^2 + 4v^2 + 1}}. \]

4. Probar que en los puntos de una superficie esférica de radio \(A \), la curvatura Gaussiana es \(K(p) = \frac{1}{a^2} \), y la curvatura media es \(\pm \frac{1}{a} \), dependiendo de la orientación que se considere.

5. Hallar la curvatura normal de la curva
\[u = t^2, \quad v = t, \]
de la superficie
\[\vec{x} = (u, v, u^2 + v^2), \]
en el punto \(t = 1 \).

6. Encontrar las curvaturas principales y las direcciones principales de la superficie regular
\[S = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 = z^2, \; z > 0\} \].
Capítulo 8

Ecuaciones de los fluidos

En este capítulo, a modo de ejemplo de un modelo realista descrito por un sistema de ecuaciones en derivadas parciales, obtendremos las ecuaciones que describen el movimiento de los fluidos.

Normalmente, en la técnica aparecen principalmente dos tipos de fluidos, el agua y el aire. Los fluidos están compuestos de moléculas que se encuentran en un estado de movimiento aleatorio. A nivel macroscópico los fluidos se tratan como un medio continuo y se caracterizan mediante propiedades medias como la presión, la velocidad, etc. asociadas a un volumen de control.

La técnica general para obtener las ecuaciones que describen el movimiento de un fluido es considerar un volumen de control pequeño, a través del cual se mueve el fluido. Estas ecuaciones se obtendrán al aplicar la conservación de la masa, la Segunda Ley de Newton y la conservación de la energía al volumen de control.

8.1. Ecuación de continuidad

Para un volumen de control \(V \), la conservación de la masa requiere que la variación de la masa respecto del tiempo dentro del volumen de control es igual al flujo másico que atraviesa la superficie del volumen de control (Figura 8.1).

Esto se expresa como

\[
\frac{\partial}{\partial t} \int_V \rho dV = - \int_S \rho \vec{v} \cdot \vec{n} dS ,
\]

donde \(\rho \) es la densidad del fluido y \(\vec{n} \) es el vector unitario normal, que define
la cara externa de S, y \vec{v} la velocidad del fluido.

Utilizando el Teorema de Gauss, se tiene

$$\int_V \left(\frac{\partial \rho}{\partial t} + \vec{\nabla} (\rho \vec{v}) \right) dV = 0 .$$

Como el volumen V es arbitrario, se tiene la ecuación de continuidad

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} (\rho \vec{v}) = 0 , \tag{8.1}$$

que se puede reescribir como

$$\frac{D\rho}{Dt} + \vec{\nabla} \vec{v} = 0 , \tag{8.2}$$

siendo la derivada material

$$\frac{D\rho}{Dt} = \frac{\partial \rho}{\partial t} + v_x \frac{\partial \rho}{\partial x} + v_y \frac{\partial \rho}{\partial y} + v_z \frac{\partial \rho}{\partial z} ,$$

y la divergencia

$$\vec{\nabla} \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} .$$

8.2. Ecuación del momento

La ecuación del momento se obtiene de aplicar la Segunda Ley de Newton al volumen de control V. Esto es, de imponer que la suma de fuerzas que
acúan sobre el volumen es igual a la variación del momento respecto del tiempo.

La variación del momento respecto del tiempo en el volumen V, viene dada por

$$
\int_V \frac{\partial \rho \vec{v}}{\partial t} \; dV + \int_S \rho (\vec{v} \vec{n}) \; dS .
$$

Utilizando el Teorema de Gauss, en componentes podemos escribir

$$
F_x = \int_V \frac{\partial}{\partial t} (\rho v_x) \; dV + \int_V (\vec{\nabla} (\rho v_x \vec{v}) \; dV ,
$$

$$
F_y = \int_V \frac{\partial}{\partial t} (\rho v_y) \; dV + \int_V (\vec{\nabla} (\rho v_y \vec{v}) \; dV ,
$$

$$
F_z = \int_V \frac{\partial}{\partial t} (\rho v_z) \; dV + \int_V (\vec{\nabla} (\rho v_z \vec{v}) \; dV .
$$

Se cumple para la componente x

$$
\frac{\partial}{\partial t} (\rho v_x) + \vec{\nabla} (\rho v_x \vec{v}) =
\rho \frac{\partial v_x}{\partial t} + v_x \left(\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v_x) + \frac{\partial}{\partial y} v_y + \frac{\partial}{\partial z} v_z + \rho \frac{\partial v_x}{\partial z} \right) +
\rho v_x \frac{\partial v_x}{\partial x} + \rho v_y \frac{\partial v_x}{\partial y} + \rho v_z \frac{\partial v_x}{\partial z} .
$$

Utilizando la ecuación de continuidad, queda

$$
\frac{\partial}{\partial t} (\rho v_x) + \vec{\nabla} (\rho v_x \vec{v}) =
\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) .
$$

Procediendo de igual forma con las otras componentes, se tiene la ecuación del momento

$$
\int_V \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \vec{\nabla}) \vec{v} \right) \; dV = \vec{F} . \tag{8.3}
$$

Si consideramos un fluido no viscoso, las únicas fuerzas que actúan sobre el volumen de control, son la fuerza de la gravedad y la fuerza que ejerce la presión, p, sobre la superficie del volumen de control, así

$$
\vec{F} = \int_V \rho \vec{g} \; dV - \int_S p \vec{n} \; dS = \int_V \left(\rho \vec{g} - \vec{\nabla} p \right) \; dV .
$$
y la ecuación del momento se escribe

$$\rho \frac{D \vec{v}}{Dt} = \rho \vec{g} - \nabla p . \quad (8.4)$$

Estas ecuaciones se conocen como las ecuaciones de Euler para fluido no viscoso. Si el sistema de referencia se elige de tal forma que la gravedad está dirigida en el sentido del eje z negativo, las ecuaciones de Euler en componentes quedan,

$$\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = - \frac{\partial p}{\partial x}$$

$$\rho \left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = - \frac{\partial p}{\partial y}$$

$$\rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = - \rho g - \frac{\partial p}{\partial z} . \quad (8.5)$$

Cuando se considera un fluido viscoso, es necesario introducir el tensor que da cuenta de las tensiones en el interior del fluido,

$$\tau = \begin{pmatrix}
\tau_{xx} & \tau_{xy} & \tau_{xz} \\
\tau_{yx} & \tau_{yy} & \tau_{yz} \\
\tau_{zx} & \tau_{zy} & \tau_{zz}
\end{pmatrix},$$
de forma que las fuerzas por unidad de volumen sobre el volumen de control quedan

$$f_x = \rho g_x - \frac{\partial p}{\partial x} + \frac{\tau_{xx}}{\partial x} + \frac{\tau_{yx}}{\partial y} + \frac{\tau_{zx}}{\partial z} ,$$

$$f_y = \rho g_y - \frac{\partial p}{\partial y} + \frac{\tau_{xy}}{\partial x} + \frac{\tau_{yy}}{\partial y} + \frac{\tau_{zy}}{\partial z} ,$$

$$f_z = \rho g_z - \frac{\partial p}{\partial z} + \frac{\tau_{xz}}{\partial x} + \frac{\tau_{yz}}{\partial y} + \frac{\tau_{zz}}{\partial z} . \quad (8.5)$$

Newton observó que el tensor de estrés en un fluido es proporcional a las derivadas parciales de las velocidades. Los fluidos que satisfacen esto se llaman fluidos Newtonianos, ejemplos de este tipo de fluidos son el aire y el agua. Un fluido no Newtoniano es, por ejemplo, la sangre.
Para los fluidos Newtonianos se cumple que

\[
\begin{align*}
\tau_{xx} &= \lambda \left(\nabla \cdot \mathbf{v} \right) + 2\mu \frac{\partial v_x}{\partial x}, \\
\tau_{yy} &= \lambda \left(\nabla \cdot \mathbf{v} \right) + 2\mu \frac{\partial v_y}{\partial y}, \\
\tau_{zz} &= \lambda \left(\nabla \cdot \mathbf{v} \right) + 2\mu \frac{\partial v_z}{\partial z}, \\
\tau_{xy} &= \tau_{yx} = \mu \left(\frac{\partial v_y}{\partial x} + \frac{\partial v_x}{\partial y} \right), \\
\tau_{xz} &= \tau_{zx} = \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right), \\
\tau_{yz} &= \tau_{zy} = \mu \left(\frac{\partial v_z}{\partial y} + \frac{\partial v_y}{\partial z} \right),
\end{align*}
\]

(8.6)

(8.7)

donde \(\mu \) es el coeficiente de viscosidad molecular y \(\lambda \) es el segundo coeficiente de viscosidad. Se hace la hipótesis que

\[
\lambda = -\frac{2}{3} \mu,
\]

y las ecuaciones resultantes se denominan las ecuaciones de Navier-Stokes para un fluido viscoso. Estas ecuaciones en componentes quedan

\[
\begin{align*}
\rho \frac{Dv_x}{Dt} &= \rho g_x - \frac{\partial p}{\partial x} - \frac{2}{3} \frac{\partial}{\partial x} \left(\nabla \cdot \mathbf{v} \right) + 2 \frac{\partial}{\partial x} \left(\mu \frac{\partial v_x}{\partial x} \right) \\
&\quad + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial v_y}{\partial x} + \frac{\partial v_x}{\partial y} \right) \right) + \frac{\partial}{\partial z} \left(\mu \left(\frac{\partial v_z}{\partial x} + \frac{\partial v_x}{\partial z} \right) \right), \\
\rho \frac{Dv_y}{Dt} &= \rho g_y - \frac{\partial p}{\partial y} - \frac{2}{3} \frac{\partial}{\partial y} \left(\nabla \cdot \mathbf{v} \right) + \frac{\partial}{\partial x} \left(\mu \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right) \right) \\
&\quad + 2 \frac{\partial}{\partial y} \left(\mu \frac{\partial v_y}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \left(\frac{\partial v_z}{\partial y} + \frac{\partial v_y}{\partial z} \right) \right), \\
\rho \frac{Dv_z}{Dt} &= \rho g_z - \frac{\partial p}{\partial z} - \frac{2}{3} \frac{\partial}{\partial z} \left(\nabla \cdot \mathbf{v} \right) + \frac{\partial}{\partial x} \left(\mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right) \right) \\
&\quad + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right) \right) + 2 \frac{\partial}{\partial z} \left(\mu \frac{\partial v_z}{\partial z} \right).
\end{align*}
\]

(8.8)
8.3. Ecuación de la energía

Para obtener la ecuación de la energía, se aplica la Primera Ley de la Termodinámica, al volumen de control del fluido, \(V \). De este modo, el cambio de energía en el volumen será igual al flujo neto de calor en el volumen más el trabajo realizado sobre el volumen por las fuerzas superficiales y las fuerzas internas en el volumen. Esquemáticamente, este balance se representa por

\[
A = B + C.
\]

Comencemos evaluando el término \(C \). La variación del trabajo ejercido sobre un cuerpo en movimiento con velocidad \(\vec{v} \) es de la forma

\[
\int_V \rho \vec{f} \vec{v} dV.
\]

Para las fuerzas de superficie, si sólo consideramos la dirección \(x \), la variación infinitesimal del trabajo sobre el volumen debido a las fuerzas de presión es

\[
\left(v_x p - \left(v_x p + \frac{\partial}{\partial x} (v_x p) \right) dx \right) dydz = -\frac{\partial}{\partial x} (v_x p) dx dydz.
\]

Para el trabajo realizado por el tensor de tensiones

\[
\left(\frac{v_x \tau_{xx}}{\partial x} + \frac{v_x \tau_{yx}}{\partial y} + \frac{v_x \tau_{zx}}{\partial z} \right) dx dydz.
\]

Considerando las fuerzas en las tres direcciones espaciales, la variación de trabajo sobre el volumen de control debido a las fuerzas internas y superficiales es

\[
C = -\left(\frac{\partial v_x p}{\partial x} + \frac{\partial v_y p}{\partial y} + \frac{\partial v_z p}{\partial z} \right) + \frac{\partial v_x \tau_{xx}}{\partial x} + \frac{\partial v_x \tau_{yx}}{\partial y} + \frac{\partial v_x \tau_{zx}}{\partial z} + \frac{\partial v_y \tau_{xy}}{\partial x} + \frac{\partial v_y \tau_{yy}}{\partial y} + \frac{\partial v_y \tau_{zy}}{\partial z} + \frac{\partial v_z \tau_{xz}}{\partial x} + \frac{\partial v_z \tau_{yz}}{\partial y} + \frac{\partial v_z \tau_{zz}}{\partial z} \right) dx dydz + \rho \vec{f} \vec{v} dx dydz.
\]

Veamos ahora el término correspondiente al flujo neto de calor en el volumen. El flujo neto de calor puede ser debido a: (1) calentamiento en el
volumen debido, por ejemplo, a absorción o emisión de radiación. (2) Flujo de calor a través de la superficie por gradientes de temperatura.

Se define \(\dot{q} \) como la tasa de generación de calor por unidad de masa y, de este modo, el calentamiento en el volumen es

\[
\rho \dot{q} \, dx \, dy \, dz.
\]

La tasa de calor que se transmite por conducción en la dirección \(x \) es \(\dot{q}_x \, dy \, dz \), donde \(\dot{q}_x \) es el calor transferido en la dirección \(x \) por unidad de tiempo y unidad de área (flujo de calor en la dirección \(x \)).

El balance de calor transferido es

\[
\left(\dot{q}_x - \left(\dot{q}_x + \frac{\partial \dot{q}_x}{\partial x} \right) \right) \, dy \, dz = -\frac{\partial \dot{q}_x}{\partial x} \, dx \, dy \, dz.
\]

Teniendo en cuenta las otras direcciones espaciales, el balance de calor por conducción en el volumen de control viene dado por

\[
- \left(\frac{\partial \dot{q}_x}{\partial x} + \frac{\partial \dot{q}_y}{\partial y} + \frac{\partial \dot{q}_z}{\partial z} \right) \, dx \, dy \, dz.
\]

Se utiliza la Ley de Fourier para la transferencia de calor

\[
\dot{q}_x = -k \frac{\partial T}{\partial x}, \hspace{1cm} \dot{q}_y = -k \frac{\partial T}{\partial y}, \hspace{1cm} \dot{q}_z = -k \frac{\partial T}{\partial z},
\]

siendo \(k \) la conductividad térmica del volumen. De este modo, el flujo neto de calor en el volumen de control es

\[
B = \left(\rho \dot{q} + \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) \right) \, dx \, dy \, dz.
\]

Por último, para ver la variación de la energía en el volumen de control, tenemos en cuenta dos contribuciones

1) La energía interna del sistema por unidad de masa, \(e \).

2) La energía cinética por unidad de masa, \(\frac{1}{2} \| \vec{v} \|^2 = \frac{1}{2} v^2 \).

De este modo, la variación de energía en el volumen de control es

\[
A = \rho \frac{D}{Dt} \left(e + \frac{v^2}{2} \right) \, dx \, dy \, dz
= \rho \left(\frac{\partial}{\partial t} \left(e + \frac{v^2}{2} \right) + v_x \frac{\partial}{\partial x} \left(e + \frac{v^2}{2} \right) + v_y \frac{\partial}{\partial y} \left(e + \frac{v^2}{2} \right) + v_z \frac{\partial}{\partial z} \left(e + \frac{v^2}{2} \right) \right) \, dx \, dy \, dz.
\]
Reuniendo estos términos, la ecuación de la energía se expresa como

\[
\rho \frac{D}{Dt} \left(e + \frac{v^2}{2} \right) = \rho \dot{q} + \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right)
\]

\[
- \frac{\partial}{\partial x} (v_x p) - \frac{\partial}{\partial y} (v_y p) - \frac{\partial}{\partial z} (v_z p)
\]

\[
+ \frac{\partial}{\partial x} (v_x \tau_{xx}) + \frac{\partial}{\partial y} (v_x \tau_{yx}) + \frac{\partial}{\partial z} (v_x \tau_{xz})
\]

\[
+ \frac{\partial}{\partial x} (v_y \tau_{xy}) + \frac{\partial}{\partial y} (v_y \tau_{yy}) + \frac{\partial}{\partial z} (v_y \tau_{yz})
\]

\[
+ \frac{\partial}{\partial x} (v_z \tau_{xz}) + \frac{\partial}{\partial y} (v_z \tau_{yz}) + \frac{\partial}{\partial z} (v_z \tau_{zz}) + \rho \vec{f} \cdot \vec{v} .
\]

(8.9)

De las ecuaciones del momen to (multiplicándolas por \(v_x \), \(v_y \) y \(v_z \), respectivamente) se tiene

\[
\rho \frac{D}{Dt} \left(\frac{v_x^2}{2} \right) = -v_x \frac{\partial p}{\partial x} + v_x \tau_{xx} + v_y \tau_{yx} + v_z \tau_{xz} + \rho v_x f_x ,
\]

\[
\rho \frac{D}{Dt} \left(\frac{v_y^2}{2} \right) = -v_y \frac{\partial p}{\partial y} + v_y \tau_{xy} + v_y \tau_{yy} + v_y \tau_{zy} + \rho v_y f_y ,
\]

\[
\rho \frac{D}{Dt} \left(\frac{v_z^2}{2} \right) = -v_z \frac{\partial p}{\partial z} + v_z \tau_{xz} + v_z \tau_{yz} + v_z \tau_{zz} + \rho v_z f_z .
\]

Sumando las ecuaciones

\[
\rho \frac{D}{Dt} \frac{v^2}{2} = -v_x \frac{\partial p}{\partial x} - v_y \frac{\partial p}{\partial y} - v_z \frac{\partial p}{\partial z} + v_x \tau_{xx} + v_y \tau_{yx} + v_z \tau_{xz} + v_y \tau_{yy} + v_z \tau_{yz} + v_z \tau_{zz} + \rho v_x f_x + \rho v_y f_y + \rho v_z f_z .
\]

(8.10)

(8.11)

Restando las ecuaciones (8.9) y (8.11), se obtiene que la ecuación de la energía se reescribe como

\[
\rho \frac{D e}{Dt} = \rho \dot{q} + \nabla \cdot \left(k \nabla T \right) - p \left(\nabla \cdot \vec{v} \right) +
\]

\[
+ \tau_{xx} \frac{\partial v_x}{\partial x} + \tau_{yx} \frac{\partial v_x}{\partial y} + \tau_{xz} \frac{\partial v_x}{\partial z}
\]

(8.12)

\[
+ \tau_{xy} \frac{\partial v_y}{\partial x} + \tau_{yy} \frac{\partial v_y}{\partial y} + \tau_{zy} \frac{\partial v_y}{\partial z}
\]

(8.13)

\[
+ \tau_{xz} \frac{\partial v_z}{\partial x} + \tau_{yz} \frac{\partial v_z}{\partial y} + \tau_{zz} \frac{\partial v_z}{\partial z} .
\]

(8.14)
Las ecuaciones de la masa, el momento y la energía son 5 ecuaciones que tienen como incógnitas \(\rho, p, v_x, v_y, v_z, e \) y \(T \). Hacen falta pues más relaciones entre las incógnitas.

Para los gases ideales (el aire puede considerarse un gas ideal) se suele introducir la ley de los gases ideales

\[p = \rho RT, \]

y la relación de estado

\[e = c_v T, \]

donde \(c_v \) es el calor específico a volumen constante. Con estas relaciones se completa el sistema de ecuaciones para describir los fluidos. Al sistema completo de ecuaciones para un fluido viscoso se les llama ecuaciones de Navier-Stokes, y si se considera un fluido no viscoso a estas ecuaciones se les conoce como ecuaciones de Euler. El conjunto de ecuaciones forma un sistema de ecuaciones no lineales en derivadas parciales que, en general, no admite soluciones en forma analítica y para su estudio harán falta las técnicas numéricas que se expondrán en el próximo capítulo.
Bibliografía

