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Abstract

In this paper we present a part-of-speech tagging system based
on a structural language model learnt automatically using
grammatical inference techniques, in particular the ECGI
algorithm. In order to test the capabiliti es of the proposed
approach, we carried out some experiments to evaluate the
quality of the language model and the tagging accuracy of the
system. These results are contrasted with the ones obtained
using a tagger based on bigrams. The corpus used is a subset of
the Spanish corpus LEXEP-I that consists of 84,286 words, a
vocabulary of 14,000 words and a set of lexical units of 64; the
average length of the sentences is about 28. The overall
accuracy rate using ECGI is slightly worst than those obtained
with bigrams. However, there are many developments that can
be included in our system and we believe that our approach can
be useful to get through this problem.

1. Part-Of-Speech Tagging Problem: An
Overview

Part-of-Speech tagging is a well -known disambiguation
problem in Natural Language. A tagger can be considered
as a translator that inputs strings from a certain language
and outputs the corresponding sequence of lexical
categories. Generally, these categories are taken from a
set defined previously.  When a word can be assigned to
different lexical categories disambiguation is solved by
using contextual information..
The tagging process involves two knowledge sources: the
language model, which describes the possible (or
probable) sequencing of the categories, and the lexical
information, which represents the relationships between
the vocabulary of the application and the set of categories.
The different approaches to resolve this problems can be
classified into two main classes (Samuelsson,1997)
depending on the tendencies followed for establishing the
language model: the linguistic approach, based on hand-
coded linguistic rules and the statistical approach,
derived from a corpora (labelled or non-labelled). Also,
other approximations that use hybrid methods are
proposed  (Voutilainen, 1997).
In the linguistic approach, an expert linguistic is needed
to formalise the restrictions of the language; this implies a
very high cost and it is very dependent on every particular
language. To solve this problem some supervised learning
methods were proposed (Brill , 1995). The main
advantage of previous approach is that the model is
constructed from a linguistic point of view and contains
many and complex kinds of knowledge.

In the statistical approach the language model can be
estimated from an unlabelled corpus (supervised
methods) (Church, 1988; Weischedel, 1993) or from a
non-labelled corpus (unsupervised methods) (Cutting et
al., 1992). In the first case the model is trained from the
relative observed frequencies. In the second one the
model is estimated using the Baum-Welch algorithm from
an initial model estimated using labelled corpora
(Merialdo, 1994). The advantages of the unsupervised
approach are the facilit y to build language models, the
flexibilit y of choice of categories and the easy of
application to other languages.
Although the comparison among different approaches is
diff icult due to the multiple factors that can be
considered: the language, the number of tags, the size of
the vocabulary, the ambiguity, the diff iculty of the test
set, etc., a detailed comparison is presented in (Franz,
1996). The best results reported there using statistical
language models have an accuracy between 95% and 97%
(depending on the different factors above mentioned). For
the linguistic approach the results are a bit better
(Samuelsson, 1997).

2. Language Modeling and Grammatical
Inference

As we have pointed out above, the tendencies for
establishing appropriate language models can be
dichotomised into two main categories. The first one
assumes that the given task is quite constrained, for this
reason an a-priori formal grammar can be supplied. This
grammar determines the possible or probable
concatenations of Linguistic Units (LU´s) for the
acceptable sentences of the task (Syntactic Language
Models). In the second group, the probable LU
concatenations are modelled through the probabiliti es
(frequencies) of occurrence of f ixed length sequences of
LU´s, which are often called N-grams (N-grams
Language Models). It is generally recognised that
Syntactic Models are able to represent language
constraints more naturally; however, these models are
usually diff icult to establish beforehand to account for
given "natural" task languages, and often result in models
too rigid to be useful in practical situations. N-grams
models, on the other hand, have the appeal of allowing
fully automatic training and being fairly tolerant to
linguistically relaxed constructs, but they can hardly
capture long-term relations between LU´s, resulting in
poor modelli ng of "natural" task language constraints.



A novel framework for Language Modelli ng based on the
use of Grammatical Inference (GI) Techniques was
introduced in (Prieto, 1992) which aims at overcoming
the main drawbacks of the above extremes, while
retaining their principal merits. That is, while it adheres to
the automatic trainabilit y feature that is inherent to N-
grams models, it mainly aims at obtaining structural or
syntactic representations of relations between the LU´s
considered, thus allowing for adequate modelli ng of long
term (as well as short term) language constraints.  This
structural learning capabilit y is based on the use of GI
techniques.
For a deep study of the applications and fundamentals of
GI, can be consulted (Gonzalez, 1978) (Fu, 1975) (Fu,
1982), (Angluin, 1983) (Miclet, 1990) (Vidal, 1993).
Some GI techniques that has been applied to language
modelli ng are resumed in (Prieto, 1995).
In this work we adopted the so called “Error Correcting
Grammatical Inference algorithm (ECGI)” to learn the
language model.

3. The ECGI Method
The ECGI algorithm (Rulot, 1987) (Rulot, 1989) can be
properly considered as a GI "heuristic". As such, it
directly incorporates certain task domain knowledge in its
inference procedure. In particular, it was specially
designed to achieve an "abstraction abilit y" which is
exhibited by the (concatenation of) local substructures of
the considered patterns, as well as by the lengths of these
substructures.
The ECGI algorithm constructs a Regular Grammar or its
corresponding Finite-State Acceptor in an incremental
way which considers the training strings one after the
other and with no repetitions. In our case, for the learning
of a particular POS language model, these strings are
assumed to be sequences of lexical categories. An
example of  this process is showed in Figure 1, where the
lexical categories used are the following:

A ADJECTIVE

J ARTICLE

N NOUN

PP PERSONAL PRONOUN

RP PREPOSITION

VV VERB PERSONAL FORM

W PROPER NOUN

Initially, a trivial Finite-State acceptor is built from the
first training string (figure 1-a). Then, for every new
string that cannot be recognised by the current acceptor,
the acceptor is updated by adding those states and
transitions that are required for the new string to be
accepted. In order to determine such states and
transitions, a standard error-correcting scheme is adopted,
and a dynamic programming (Viterbi-like) procedure is
used to find the best alignment of the input string with its
closest string in the language accepted by the current
acceptor. Once this Error Correcting Parsing (ECP) is
obtained, the current acceptor is updated so as to take
advantage of as much of this acceptor as possible; that is,
only the (sequences of) error transitions in the ECP lead
to the addition of new states and/or transitions (figure 1-
b-c-d). In the example can be observed that the automaton

obtained finally (figure 4-d) can be accept other correct
sentences unseen in the training set, for example “PP VV
N A”, “J N RP N VV RP W” , and so on.
The Grammars obtained in this way generally constitute
rather accurate structural descriptions of the training data
and, in fact, they can be directly used for recognition
purposes. However, in order to be really useful in
practical situations, these grammars need to be augmented
with appropriate statistical information. To this end,
probabiliti es of rules can be estimated from frequency
counts of their use in the parsing of the training strings.
Details of the stochastic extension of ECGI can be seen in
(Rulot, 1989). More detailed descriptions of ECGI, along
with several properties of the learnt models, can be seen
in (Rulot, 1987) (Vidal, 1988).

<s> J N VV N .

<s> J N VV N .

N RP

<s> J N VV N .

N RP

A A

<s> J N VV N .

N RP

A A

PP

RP W

(a) Sentence1: J N VV N .

(b) Sentence2: J N RP N VV N .

(c) Sentence3: J N AVV N A .

(d) Sentence4: PP VV RP W .

Figure 1. An example of f inite-state acceptor learnt by
ECGI.

4. A POS Tagger based on ECGI method
A tagging system can be described as a formal device that
inputs strings from a certain input language and outputs
the sequence of POS labels corresponding to each word in
the input, that is, a finite-state translator. An outline of the
tagger based on the proposed approach can be seen in the
Figure 2.
From every training pair (W,C) in which W is a sequence
of words and C is their corresponding POS tagging, the
string C is straightforwardly used for the learning of a
syntactic model for the POS Language Model. For this
purpose we use the ECGI algorithm previously described,



which learns a stochastic regular grammar or finite-state
automaton that appropriately generalizes the training
strings. On the other hand, every input pair (W,C) is used
for the learning of the appropriate Lexical Probabiliti es.
These lexical probabiliti es can be used in conjunction
with the corresponding structural language model in order
to tag (translate) any new incoming string under the set of
lexical and syntactic constrained captured in the learnt
models. Given the finite state nature of these models, this
translation process is carried out by Dynamic
Programming Decoding, closely related to the well
known Viterbi Algorithm (Forney, 1973).

ECGI
LM

C

BIGRAM
LM

ECGI-I

Dictionary

(W,C)

W � � * C � C*

Estimation of
BIGRAMS

CORPUS

C

Estimation of
ECGI

Estimation of
Lex. Prob.

TAGGER
Dynamic Programming

Decoding

Figure 2. Outline of the system proposed.

The coverage of the ECGI model can be increased by
linear interpolation it with a simple bigram model (ECGI-
I). In this way, we ensure that the tagger manages to
translate all the sentences, including those which exhibit
substructures that the ECGI algorithm can not be able to
infer in the automaton structure.
Although several methods can be used to achieve this
interpolation, we have extended the current automaton
with the transitions among all the states with the
corresponding bigram probabiliti es. Obviously, this
model is not constructed explicitly; instead, all these
transitions are considered on the fly during the translation
process. The interpolation factor is estimated as the rate
between the number of transitions with frequency one and
the total number of transitions of the ECGI automata.

5. Experimental Results
In order to test the capabiliti es of the proposed approach,
we conducted some experiments to evaluate the quality of
the language model and its tagging accuracy. These
results have been contrasted with the results obtained
using bigram language models.

5.1 Corpus and experiments definition
The corpus used is a subset of the Spanish Corpus
LEXEPI1. It consisted of approximately 2,900 annotated
sentences (84,286 words and a vocabulary of 14,000
words). This corpus is labelled with a set of 64 lexical
tags (Moreno-Torres, 1994). The average word ambiguity
is about 1.88. The distribution of words per category is
shown in Table 1.

Category Percentage of Words
Nouns 16%
Verbs 15%
Prepositions 13%
Punctuation 10%
Articles 8%
Adjectives 6%
Pronouns 6%
Conjunctions 6%
Adverbs 5%
Determinants 5%
Quantifiers 5%
Proper Nouns 2%
Others 3%

Table 1: Percentage of words for tags

 This corpus is used to estimate the lexical probabiliti es
and to learn the language models; also, obviously to test
the tagging systems. It is divided into two parts: 80% for
training and 20% for testing. In order to have a larger
quantity of test data, we applied a "leaving-k-out"
partitioning (Randys, 1990). We have defined five
partitions elected at random which provided an effective
test set of 82,778 words.
Moreover, another subset of LEXEXPI (1,200 sentences
and 33,000 words approximately) was used to tun the
model in order to estimate a model to predict the
probabiliti es of the unknown words in every category.

5.2 The learning of the language models
The bigrams language models (bigram probabiliti es) was
obtained by means of the SLM TOOLKIT (Clarkson, 1997)
from the sequences of categories in the training sets. The
probabilit y of the unseen events was estimated by backoff
technique. The ECGI models have been learned from the
same training sets, using software developed by our
research group. To construct the ECGI-I (ECGI language
model interpolated with BIGRAMS), the interpolation
factors have also been estimated from these training sets.
Table 2 summarises the main features of the language
models learned with all the sentences and with every
training partition defined. For the ECGI model, is showed
the number of states of the learnt automata. For the
BIGRAMS models is shown the number of bigrams
found in the training test and the Good Turing discount
factor used in the smoothing process. The interpolation
factor 

�
 estimated for the ECGI-I model was about 0.4 in

all the experiments.

                                                          
1 Project (APC 93-0122) carried out by the Universitat de
Barcelona, granted by the Spanish DGICYT.



5.3 Lexical probabilities
The lexical probabiliti es have been estimated by
computing the relative frequencies of every word per
category from the training annotated corpus. So, we have
a probabili stic dictionary with the words found in the
training set.
The lexical probabiliti es for the unknown words were
determined from the frequencies of these in every
category in an additional corpus. Then a process of re-
normalisation was applied to maintain the stochastic
consistency.

5.4 Results
In order to test the capabiliti es of the proposed approach
we carried out the following experiments. A set of what
we could call closed experiments (one for each partition),
in which the test set is a part of the training set, and a set
of for us open experiments, where the test set does not
participate in the training process of the language models.
In order to evaluate the quality of the language models,
independently of the number of unknown words, it has
been used the same dictionary in both classes of
experiments. So, these last experiments can be considered
as partially opened experiments.
Table 3 shows the results obtained in closed experiments
for every defined partition. The overall accuracy for
tagging using ECGI is slightly better than those obtained
using BIGRAMS (1% approximately), however the test
set perplexity is higher. This littl e improvement is due to
the fact that the ECGI model is able to represent long-
term dependencies, which are not captured by the bigram
model.
Table 4 shows the results of the open experiments. In this
case, those obtained with ECGI are slightly worse (above
0.6%). However, the use of greater amount of data would
improve the results. Also, a more robust interpolation way
should be used.
Finally we have conducted some other experiments to
evaluate the system’s behaviour with unknown words and
the results follows the same trend.

ECGI
Model

BIGRAM
Model

Model #Words
Train. Set

#States #Bigrams G.T.
Disc.

Part1 67,755 2276 1126 0.50
Part2 67,851 2221 1145 0.60
Part3 68,176 2278 1160 0.60
Part4 67,275 2285 1134 0.67
Part5 67,605 2251 1153 0.65
AVG 67,732 2262 1143 0.60
ALL 84,286 2412 1198 0.60

Table 2: The main features of the ECGI, BIGRAM and
ECGI-I language models constructed.

Error Rates
Test
Set

#Words
Test Set

BI ECGI

Test1 16,531 2.65 1.67
Test2 16,435 2.52 1.41
Test3 16,110 2.44 1.44
Test4 17,011 2.50 1.52
Test5 16,681 2.27 1.53
AVG 16,553 2.48 1.51

Table 3: Results of the closed experiments.

Error Rates
Test Set BI ECGI-I
Test1 3.01 3.78
Test2 2.82 3.63
Test3 2.67 3.12
Test4 2.72 3.11
Test5 2.40 3.20
AVG 2.72 3.36

Table 4:Results of the open experiments.

5. Discussion and conclusions
We believe that the proposed framework is a promising
approach to deal with the tagging problem.
Although the results obtained so far are preliminary and
lack statistical significance, show the viabilit y of the
proposed here approach.
Moreover, the preliminary results of the last section led us
to detect some weaknesses in the proposed technique. In
this sense we are now working on the improvement of the
smoothing method including a error model of substitution
of lexical tags based on bigrams probabiliti es. Besides,
the possibilit y of using other grammatical inference
techniques must be taken into account.
Furthermore, in a medium term we are going to
experiment with newly available corpora more adequate
for assessing the capabiliti es of the proposed approach.
We will also try with new lexical tags.
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