
INCREMENTAL PARTIAL PARSER OF UNRESTRICTED
NATURAL LANGUAGE SENTENCES

Antonio Molina, Ferran Pla, Lidia Moreno, Natividad Prieto

Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

{ amolina, fpla, lmoreno, nprieto} @dsic.upv.es

Abstract

One of the current focuses of research within natural language processing is the partial and

robust parsing of sentences written in natural language. Partial parsing could be used in di-

verse applications as data extraction, machine translation, dialogue systems, etc. His main

attractiveness is that is able to handle unrestricted sentences, that contain lexical errors or

that present constructions not accepted by the defined grammar. Partial parsing is an alter-

native to the definition of wide coverage grammars whose definition is an expensive and

complex task and that present well-known problems such as overgeneration, undergenera-

tion and ambiguity. In this paper, we present a partial parser of unrestricted natural lan-

guage sentences APOLN (Analizador Parcial de Oraciones en Lenguaje Natural) which is

based on finite-state machines. APOLN is an incremental parser that permits the compil ing

and inheritance of feature structures between levels of processing. We present the results of

applying APOLN on an unrestricted Spanish corpus and we will use it in a speech dialogue

system.

1 INTRODUCTION

S. Abney defines partial parsing as follows "Partial parsing techniques aim to recover syn-

tactic information efficiently and reliably from unrestricted text by sacrificing the complete-

ness and depth of analysis". A partial parser presents the following characteristics [2], [14]:
� It uses robust parsing algorithms which permit the analysis of unrestricted texts. This

means that, independently from the structure of the sentence, the partial parser is able

to get an interpretation, although it is a partial interpretation.
� These robust parsing algorithms are more efficient than global parsing algorithms.
� A partial parser works with simpler grammars, which are usually defined with regular

patterns
� A parser has to use heuristics or procedures to combine the partial interpretations in or-

der to build a final interpretation, that is, in order to connect non-adjacent parsed con-

stituents. Achieving this could be necessary semantic information.
� A parser has to be completed with mechanisms that allow us to continue the analysis in

spite of non-understandable segments of words. e.g. by identifying phrase boundaries.

While the output of a global parser is a complete analysis tree, if the sentence is syntactically

correct, a partial parser postpones the attachment decisions between grammatical constituents

if it does not have enough information. In this case, the output is a forest of subtrees which are

not interleaved, that is, the trees do not share any nodes. Each tree represents a parsed frag-

ment of the input. Segments of words that have not been recognized appear between the sub-

trees.

Partial parsing has been used in several applications: syntactic parsing of unrestricted texts

[13], [6]; data extraction systems [20], [14]; machine translation [11]; acquisition of lexical

information for solving attachment ambiguity [10], [20]; speech recongnition systems [19],

[21], [4]; anaphora resolution [9]; text summarization, text categorization, etc.

2 PARTIAL PARSER OF UNRESTRICTED NATURAL L ANGUAGE
SENTENCES BASED ON FINITE-STATE MACHINES (APOLN)

APOLN is an incremental parser based on finite-state techniques that has been developed

following the ideas described in [1], [3], [7], [8]. APOLN allows for syntactic parsing of un-

restricted text. It is composed of several levels, a set of syntactic structures is recognized at

each level and the output produced by a level i is the input to the level i+1. A level is defined

by a set of patterns using regular expressions. Figure 1 shows the APOLN scheme.

POS
Tagger

Sentence
Tagged

Sentence Recognizer
(Level 1)

I1

In-1

Ordered Set of
Patterns

LEVEL
PROCESSING

RE Compiler

Ii

Ii-1

DFA 1
DFA i

DFA n

Recognizer
(Level i)

Recognizer
(Level n)

In:
Set of Partial
Interpretaions

Figure 1: APOLN scheme

The first step is the lexical tagging performed by the POS tagger that will be described briefly

in §2.1. The Tagged Sentence and an Ordered Set of Patterns which is divided into n levels

form the input to the Level Processing module. The input to the first processing level is a

Tagged Sentence, the input to a level i is the Interpretation produced by level i-1 (I i-1).

Each set of patterns of a specific level is compiled into a deterministic finite automaton

(DFA). When the Recognizer module is executed for a level i, it takes Ii-1 and the DFA i as in-

put. The output (Ii) represents the input in which the longest sequences of symbols that match

a pattern (longest match, [1]) have been identified using boundary markers and syntactic tags.

The final state reached determines the matched pattern.

2.1 POS Tagger description

A tagger can be considered as a translator that inputs strings from a certain language and out-

puts the corresponding sequence of lexical tags (grammatical categories). Generally, these

categories are taken from a set defined previously by linguistic criteria. When a word can be

assigned to different lexical categories, the disambiguation is solved by using the information

of the context in which this word appears.

The tagging process involves two knowledge sources: the language model, which describes

the possible (or probable) sequencing of the categories, and the lexical model which repre-

sents the relationships between the vocabulary of the application and the set of categories.

The language model is a stochastic regular grammar or finite-state automaton learnt automati-

cally from data using grammatical inference techniques; in particular, we have used the ECGI

algorithm, [16] [17] [18]. The model learnt generalizes the sequence of POS strings in the

training corpus. In order to increase the coverage of the ECGI model, it has been extended

and it has been smoothed by linear interpolation with a simple bigram model [15].

The lexical model has been estimated as usual from a supervised tagged corpus by computing

words, categories and words per category frequencies.

Finally, the tagging process is carried out by Dynamic Programming Decoding, taking as in-

put the output of the Morphological Analyser (MACO+) [5] that supplies for every word all

the possible lexical tags.

2.2 Input Patterns Description

Patterns represent the syntactic constituents that should be identified from the input sentence.

The symbols allowed for defining a pattern of level i are whatever lexical tags and whatever

pattern which are defined at a previous level. In this way, patterns are non-recursive which

allows for incremental parsing.

 We have used the usual operators for the definition of the patterns: concatenation, Kleene clo-

sure (*), positive closure (+), union (|), one or more cases (?), and parentheses. The set of

patterns defined is a set of regular definitions which are grouped by levels. Each level can be

defined by several patterns. Figure 2 shows the scheme for a certain level i, where pi,j is a

symbol that represents the j syntactic structure expressed at level i, and r i,j is the regular ex-

pression that defines the pattern using the indicated operators and the non-recursivity con-

straint.

Level i //comment
 pi,1 -> ri,1 //comment
 pi,2 -> ri,2 //comment

...
 pi,n -> ri,n //comment

Figure 2: Level definition scheme

Patterns can correspond to syntactic constituents such as noun phrases, adjective phrases, etc.

or can be used to identify specific occurrences such as dates, entities, specific expressions,

etc. which could be useful in data extraction systems.

Some of the patterns have been based on the modified concept of chunk [1]. In Spanish, a

head or phrase could present non-recursive postmodifiers. Therefore, we redefine the concept

of chunk as the core of “a non-recursive core of an intra-clausal constituent, extending from

the beginning of the constituent to its head, including post-head dependents that are not de-

fined recursively using this constituent” .

2.3 Input and output str ing for mat description

Input and output formats is bracketed text, which is similar to the format used for parsing

large corpora of text, e.g. Penn Treebank [12]. The input and the output of each level of proc-

essing is composed of a sequence of symbols s1 s2 ... sm, where each si can be a lexical tag, a

pattern defined at a previous level, or a boundary mark (beginning, [, or ending,], marks). A

pattern symbol always appears after an ending mark. So, if s1 s2 ... sm, is an input string, pi is a

pattern of level i, given that there exists a sequence of k symbols that matches pi from position

j, the output would be the sequence s1 s2 ...[sj sj+1...sj+k-1] pi... sm. Figure 3 represents a sen-

tence which has been parsed after two levels of processing

La TD [cr i s i s N C] NSN de SP [Mayo N P] N SN del S P 68 Z [pr oduci r á VMI] NSV
ci er t os A Q [c ambi os NC] N SN r el evant es AQ e n S P l os T D [c ent r os N C] N SN d e SP
[i nt eré s N C] N SN de S P l a TD [p ol í t i ca N C] N SN cul t ur al A Q . Fp

[La T D [cr i s i s NC] NSN] SN de SP [[Ma yo N P] NSN] SN del SP 68 Z [pr oduci rá
VMI] NSV [c i er t os A Q [cambi os NC] NSN r el evant es A Q] SN en S P [l os TD [
cent r os N C] N SN] SN de SP [[i nt er és N C] NSN] SN de S P [l a TD [p ol í t ic a NC
] N SN cu l t ur al A Q] SN . Fp

SN
� �

 TD? AQ* NSN AQ*

Nivel i

Nivel i+1

Pattern

Figure 3: Parsed sentence

2.4 Compiling and Inheriting Feature Structures

The morphosyntactic features are necessary to parse sentences correctly. For instance, premo-

difiers and noun phrase head must agree in gender and number, the subject must agree with

main verb, etc. Moreover, the use of morphosyntactic features can solve some parsing errors

which are caused by the application of the longest match heuristic.

2.4.1 Compil ing Feature Structures

One possible solution would be to use lexical tags that contain morphosyntactic informa-

tion.This supposes defining many patterns, one for each correct combination of features.

Our approach consists in including actions within the definition of the patterns, by means of a

new operator, called agreement operator. This means that the transition between two states of

the DFA is possible when the compatibili ty condition between two feature structures is true

(e.g. gender and number agreement). The current state stores the features associated to the last

read symbol. The transition would be possible if the stored features were compatible with the

features of the current symbol.

The agreement operator, noted by & , indicates the patterns in which the compatibili ty check

should be done. The operator & is used in this way: &p
� �
 r. For instance, &NSN � (NC |

NP)+ this means that NC (common noun) and NP (proper noun) constituents must agree to

form a NSN (noun head). We extend the DFA to include features and a compatibili ty check in

transitions. The extended DFA is a 5-tuple (��
, Q, (q0, r0), F, ��

), where

��
, is the alphabet (lexical tags and patterns symbol)

Q, is the set of states. Each state is the pair (qi,ri), where qi identifies the state and ri is

the associated Feature Structure.

(q0, r0) � Q, is the initial state containing an initial Feature Structure r0.

F 	 Q, is the set of f inal states and ��
 is the transition function that is defined as:

((qi,ri),s) = (qj, rme(ri,rasgo(s))) if compatible(ri, rasgo(s)): (qi, ri), (qj , rj) � Q, s � � ,

rasgo(s) returns the feature structure associated to symbol s.

rme(r i, r j) returns the most specific or restricting feature between ri and rj

compatible(r i,r j) check the compatibili ty between the features ri and rj.

The DFA compiled from &NSN � (NC | NP)+ is ({NC,NP}, {(q0, r0), (q1, r1)}, (q0, r0),
{(q1, r1)}, �) where

 is:

((q0,r0),NP) = (q1, rme(r0,rasgo(NP))) if compatible(r0,rasgo(NP))

((q0,r0),NC) = (q1, rme(r0,rasgo(NC))) if compatible(r0,rasgo(NC))

((q1,r1),NP) = (q1, rme(r1,rasgo(NP))) if compatible(r1,rasgo(NP))

((q1,r1),NP) = (q1, rme(r1,rasgo(NC))) if compatible(r1,rasgo(NC))

This technique allows us to check morphosyntactic agreement using the feature information

contained in lexical tags. Moreover, it could be extended to others such as semantic features

to verify semantic compatibili ty between constituents.

2.4.2 Feature Inheritance

Patterns must inherit the features associated to their constituents. These features are necessary

at higher levels where the patterns become constituents of other patterns. In general, a pattern

inherits the features of its head, e.g. the pattern NSN � (NP | NC)+ will i nherit the features of

NC or NP. The inheritance operator, noted by $, indicates the symbol which the features are

inherited from, e.g. NSN � ($NP | $NC)+ .

3 RESULT S OF APPLY I NG APOLN TO UNRESTRICTED TEXT

The Spanish corpora used in this work were LEXESP and CPirápides [6]. A subset of

LEXESP has been used to learn the language model and the lexical model of the tagger. It

consists of 75 Kw manually tagged words. The tagset used is composed of 62 PAROLE tags

[12]. CPirápides has been used to test both the tagger and the partial parser. This is a very

simple corpus consisting of 5 Kw and an overall l exical ambiguity of 1.58 tags/word. We

have used this one because the tagging and the parsing have been manually supervised. So

we can compare easily the performance of our system. The syntactic structures identified in

CPirápides were Noun Phrase (SN), Verbal Heads (NSV), Prepositional Phrase (SPR), Ad-

jective Phrase (SADJ), Infinitive Heads (NSVI), Adverbial Phrase (SADV), Conjunctions and

Relative Pronouns (SUB). We have designed a set of three levels of patterns in order to rec-

ognize these structures, (see Figure 4).

Level 1

NSV -> PP?PP?(((VMI|VMS|VMC|VMM)(((VMN|VAN)(VMG|VMP)?)|

VMG)?)|((VAI|VAS|VAC|VAM)(VMP|VAP|VMG|VAG|VMN|VAN)*)|

(VMI|VMS|VMC|VMM|VAI|VAS|VAC|VAM)CS(VMN|VAN))

NSVI -> (VMN|VAN)

SUB -> (SP? CS)|(SP? TD? PR)

SN -> ((DD|DP|DT|DE|DI|D0|TD|TI|MC|MO)* ((RG? (AQ | VMP)+)? | Z? |

RG) (W|(NP|(NC (CC NC)*))+) (RG? (AQ | VMP)+)?)|(PP|PD|PX|PI|PT|P0)

Level 2

SPR -> SP (SN | NSVI)

SADJ -> RG? (AQ | VMP)

Level 3

SADV -> (SP RG) | (RG RG?)

Figure 4: Level Definition

In order to test the capabiliti es of the proposed approach we carried out the following experi-

ments. In the Experiment 1, we have considered as input a text without tagging errors (Super-

vised Tagging, ST) in order to evaluate only the performance of the syntactic parser. In the

Experiment 2, we have used APOLN taking as input the output of our tagger (Unsupervised

Tagging, UT). Table 3-1 summarizes the precision and the recall rates for each syntactic

structure studied in both experiments. We can see how the errors of the tagger (about 1.6%)

contribute to decrease the performance of the parser. The high error rates achieved for SADJ,

SPR and SN are because of the fact that the tagger confuses a common noun with an adjective

(70% of tagging errors are of this type). Moreover, the low precision achieved for SADV is

because negation has been interpreted as an adverbial phrase and CPirápides considers it as a

constituent of the verbal phrase. On the other hand, the speed of analysis depends on the

number of levels. Using the three levels defined in Figure 4, the parser achieves about 4700

words/second on a Pentium 120 Mz.

Corpus CPirápides NSV NSVI SN SUB SPR SADJ SADV

Precision (%) 98,6 100.0 99,9 100.0 100.0 100.0 62,5Experiment 1

ST + APOLN Recall (%) 98,3 100.0 99,0 94,7 98,7 66,7 95,2

Precision (%) 98,3 100.0 97,7 94,1 99,8 4,4 51,6Experiment 2

UT + APOLN Recall (%) 96,7 100.0 96,3 84,2 92,7 66,7 76,2

Table 3-1: Precision and recall

4 CONCLUSIONS AND FUTURE WORK

In this paper we have presented an incremental parser, APOLN, which is based on finite-state

machines. APOLN is able to identify syntactic structures in unrestricted text. These structures

can be defined by several levels of processing which gives flexibil ity to the parser: the user

could define their own levels easily. Our approach includes feature compilation and inheri-

tance. This characteristic has been proven with morphosyntactic features but could be ex-

tended to any kind of feature which is linked to the words of the input, for example, semantic

information.

The experiments performed on corpus CPirápides have given good results identifying phrases.

Also, in order to assess more conclusively the capabiliti es of the proposed approach, we are

working on a more complex corpus, LEXESP, and the preliminary results obtained are prom-

ising. On the other hand, we think that this parser could be useful in a dialogue speech system

that works with unrestricted and ill -formed sentences. In this sense, we are working on a se-

mantically restricted task to extract the meaning of the sentences by filli ng in of case-frames.

Moreover, we are developing a parsing system that allows us to completely parse an unre-

stricted corpus. The system use APOLN as first step of processing. The entire parsed corpus

could be useful as an information source for treating linguistic phenomena and for developing

inductive methods based on corpus.

5 ACKNOWLEDGEM ENTS

This paper has been supported by the Spanish CICYT project TIC97-0671-C02-01/02. We

would like to thank Horacio Rodríguez, Irene Castellón and Lluís Padró for his valuable ad-

vices and for allowing us to use LEXESP, CPirápides and the toolkit MACO+.

6 REFERENCES

[1] Abney, S. "Partial Parsing via Finite-State Cascades". In ESSLLI'96 Robust Parsing Workshop. 1996.

[2] Abney, S. "Tagging and Partial Parsing". Corpus-Based Methods in Language and Speech processing. S.

Young y G.Bloothooft Eds. Kluwer Academic Publishers 1997.

[3] Aït-Mokhtar, S. Chanod, J.P. "Incremental Finite-State Parsing". In Proc. of the Fifth Conference on Ap-

plied Natural Language Processing. Washington D.C., USA, 1997.

[4] Baggia, P., Rullent, C. "Partial Parsing as a Robust Parsing Strategy". Proc. of ICASSP'93.

[5] Carmona J., Cervell S., Màrquez, L., Martí, M.A., Padró, L., Placer, R., Rodríguez, H., Taulé, M., Turmo, J.

"An Environment for Morphosyntactic Processing of Unrestricted Spanish Text". In LREC'98, 1998.

[6] Castellón, I. Civit, M. Atserias, J. "Syntactic Parsing Of Unrestricted Spanish Text". In LREC'98, 1998.

[7] Chanod, J.P., Tapanainen, P. "A Robust Finite-State Parser for French". In ESSLLI'96 Robust Parsing

Workshop. 1996.

[8] Ejerhed, E.I. "Finding Clauses in Unrestricted Text by Finitary and Stochastic Methods". In Proc. of Second

Conference on Applied Natural Language Processing. ACL, 1988.

[9] Ferrández, A., Palomar, M., Moreno, L. "Anaphor Resolution In Unrestricted Texts With Partial Parsing".

Proc. of the 36TH Annual Meeting of the Association for Computational Linguistics. Montreal, 1998

[10] Hindle, D., Rooth, M. "Structural Ambiguity and lexical relations". Computational Linguistics nº 18, 1993.

[11] Light, M., "CHUMP: Partial Parsing and Underspecified Representations," In Proc. of the ECAI-96 Work-

shop: Corpus-Oriented Semantic Analysis, 1996.

[12] Martí M.A.,Rodríguez H.,Serrano J. “Declaración de categorías morfosintácticas” . Doc.ITEM nº2.UPC, UB.

[13] Marcus, M.P., Santorini, B. Marcinkiewicz, M.A.. "Building a Large Annotated Corpus of English: The

Penn Treebank", Computational Linguistics nº 19, 1993.

[14] McDonald, D. "An efficient Chart-based Algorithm for Partial-Parsing of Unrestricted Texts". Third Con-

ference on Applied Natural Language Processing, 1992.

[15] Pla, F. Prieto, N. "Using Grammatical Inference Methods for Automatic Part-of-Speech Tagging". In

LREC'98, 1998.

[16] Prieto N. & Vidal E. "Learning Language Models through the ECGI Method". Speech Communic., 11, 1992.

[17] Rulot H., Prieto N. & Vidal E. "Learning accurate finite-state structural models of words through the ECGI

algorithms". Proc. of International Conference on Acoustic and Speech Signal Processing, 1989.

[18] Rulot H., Vidal E. "Modelli ng (sub)string-length-based constraints through a Grammatical Inference

Method". In Pattern Recognition: Theory and Applications. Eds. Devijver & Kittler, Springer Verlag, 1987.

[19] Seneff S. "A Relaxation Method for Understanding Spontaneous Speech Utterances". En Proc. of Speech

and Natural Language Workshop. N.Y. 1992.

[20] Weischedel, R., Ayuso, D., Bobrow, R., Boisen, S., Ingria, R., Palmucci, J. "Partial Parsing: A Report on

Work in Progress". In Proc. DARPA Speech and Natural Language Workshop, 1991.

[21] Weischedel, R., Ayuso, D., Boisen, S., Fox, H., Ingria, R.,. "A New Approach to Text Understanding". In

Proc. of Speech and Natural Language Workshop. N.Y. 1992.

