
Journal of Machine Learning Research 2 (2002) 595-613 Submitted 9/01; Published 3/02

Shallow Parsing using Specialized HMMs

Antonio Molina amolina@dsic.upv.es

Ferran Pla fpla@dsic.upv.es

Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València
Camı́ de Vera s/n, 46020 València (Spain)

Editors: James Hammerton, Miles Osborne, Susan Armstrong and Walter Daelemans

Abstract

We present a unified technique to solve different shallow parsing tasks as a tagging
problem using a Hidden Markov Model-based approach (HMM). This technique consists of
the incorporation of the relevant information for each task into the models. To do this, the
training corpus is transformed to take into account this information. In this way, no change
is necessary for either the training or tagging process, so it allows for the use of a standard
HMM approach. Taking into account this information, we construct a Specialized HMM
which gives more complete contextual models. We have tested our system on chunking and
clause identification tasks using different specialization criteria. The results obtained are
in line with the results reported for most of the relevant state-of-the-art approaches.

Keywords: Shallow Parsing, Text Chunking, Clause Identification, Statistical Language
Modeling, Specialized HMMs.

1. Introduction

Shallow parsing has become an interesting alternative to full parsing. The main goal of
a shallow parser is to divide a text into segments which correspond to certain syntactic
units. Although the detailed information from a full parse is lost, shallow parsing can be
done on non-restricted texts in an efficient and reliable way. In addition, partial syntactical
information can help to solve many natural language processing tasks, such as information
extraction, text summarization, machine translation and spoken language understanding.

Shallow parsing involves several different tasks, such as text chunking, noun phrase
chunking or clause identification. Text chunking consists of dividing an input text into non-
overlapping segments. These segments are non-recursive, that is, they cannot include other
segments and are usually called chunks as defined by Abney (1991). Noun phrase chunking
(NP chunking) is a part of the text chunking task, which consists of detecting only noun
phrase chunks. The aim of the Clause identification task is to detect the start and the end
boundaries of each clause (sequence of words that contains a subject and a predicate) in a
sentence. For example, the sentence “You will start to see shows where viewers program the
program” would be chunked as follows:

c©2002 Antonio Molina and Ferran Pla.

Molina and Pla

(NP You) (VP will start to see) (NP shows) (ADVP where) (NP viewers)
(VP program) (NP the program) .1

The clauses in the sentence would be:

(S You will start to see shows (S where (S viewers program the program)) .)

Chunks and clause information in a sentence can also be represented by means of tags.
In Tjong Kim Sang et al. (2000), there are several equivalent chunk tag sets for representing
chunking. The IOB2 set, which was previously used by Ratnaparkhi (1998), uses three kinds
of tags: B-X for the first word of a chunk of type X; I-X for a non-initial word in an X chunk;
O for a word outside of any chunk. For clause identification, each word can be tagged with
the corresponding brackets if the word starts and/or ends a clause, or with a null tag if the
word is not the start or the end of a clause. The above example can be represented using
this notation as follows:

You B-NP (S*
’ll B-VP *
start I-VP *
to I-VP *
see I-VP *
shows B-NP *
where B-ADVP (S*
viewers B-NP (S*
program B-VP *
the B-NP *
program I-NP *S)S)
. O *S)

Earlier approaches to solving this problem consisted of parsers which are based on a
grammar of hand-coded rules. Abney (1996) developed the incremental partial parser CASS
based on finite state methods for detecting chunks and clauses. Aı̈t-Mokhtar and Chanod
(1997) also built an incremental architecture of finite-state transducers that identifies chunks
and detects subjects and objects. Voutilainen (1993) used a different formalism (constraint
grammars) to detect NPs.

In the literature, you can find different learning methods which have been applied to
perform shallow parsing: Transformation-based Learning, Memory-based Learning, Hidden
Markov Models, Maximum Entropy, Support Vector Machines, etc. The first works focused
mainly on NP detection. Ramshaw and Marcus (1995) used Transformation-based learning
and put forward a standard training and testing data set, that has later been used to
contrast other approaches. Memory-based learning was used by Daelemans et al. (1999)
and Argamon et al. (1998). The main reference for text chunking is the shared task for
CoNLL-20002 (Tjong Kim Sang and Buchholz, 2000). In Section 4, we will briefly review
the different approaches to text chunking presented in this shared task.

Learning approaches for clause identification have recently been developed. Orasan
(2000) applied memory-based learning techniques and corrected the output by applying

1. In the example NP is Noun Phrase, VP is Verbal Phrase, ADVP is Adverbial Phrase and S is a clause.
2. Chunking shared task is available at http://lcg-www.uia.ac.be/conll2000/chunking/

596

Shallow Parsing using Specialized HMMs

some rules. In the shared task for CoNLL-20013 (Tjong Kim Sang and Déjean, 2001) other
approaches were presented (Hidden Markov Models, Memory-based Learning, Boosting,
etc.)

In this paper, we present a unified technique to construct Specialized HMMs to be used
for solving shallow parsing tasks. First, in Section 2, we formalize shallow parsing as a
tagging problem and define the method for the specialization of the models. In Section 3,
we present the results of the application of our approach to text chunking. We test different
specialization criteria under the same experimental conditions of the CoNLL-2000 shared
task. We achieved state-of-the-art performance, as we show in Section 4. We also apply
this technique to solve the clause identification problem in Section 5. Finally, we present
some concluding remarks.

2. Shallow parsing as HMM-based tagging

We consider shallow parsing to be a tagging problem. From the statistical point of view,
tagging can be solved as a maximization problem.

Let O be a set of output tags and I the input vocabulary of the application. Given
an input sentence I = i1, . . . , iT , where ij ∈ I : ∀j, the process consists of finding the
sequence of states of maximum probability on the model. That is, the sequence of output
tags, O = o1, . . . , oT , where oj ∈ O : ∀j. This process can be formalized as follows:

Ô = argmax
O

P (O|I)

= argmax
O

(
P (O) · P (I|O)

P (I)

)
; O ∈ OT (1)

Due to the fact that this maximization process is independent of the input sequence,
and taking into account the Markov assumptions, the problem is reduced to solving the
following equation (for a second–order HMM):

arg max
o1...oT

 ∏

j:1...T

P (oj |oj−1, oj−2) · P (ij |oj)

 (2)

The parameters of equation 2 can be represented as a second-order HMM whose states
correspond to a tag pair. Contextual probabilities, P (oj |oj−1, oj−2), represent the transition
probabilities between states and P (ij |oj) represents the output probabilities.

This formalism has been widely used to efficiently solve part-of-speech (POS) tagging
in (Church, 1988, Merialdo, 1994, Brants, 2000), etc. In POS tagging, the input vocabulary
is composed of words and the output tags are POS or morphosyntactic tags. The segmen-
tation produced by some different shallow parsing tasks, such as text chunking or clause
identification, can be represented as a sequence of tags as we mentioned above. There-
fore, these problems can also be carried out in a way similar to POS tagging. However, to
successfully solve each task, it is necessary to deal with certain peculiarities.

On the one hand, you have to decide which available input information is really relevant
to the task. POS tagging considers only words in the input. In contrast, chunking can

3. Clause identification shared task is available at http://lcg-www.uia.ac.be/conll2001/clauses/

597

Molina and Pla

T fs−→ T̃

I O Ĩ Õ

You PRP B-NP PRP PRP·B-NP
will MD B-VP MD MD·B-VP
start VB I-VP VB VB·I-VP
to TO I-VP TO TO·I-VP
see VB I-VP VB VB·I-VP
shows NNS B-NP NNS NNS·B-NP
where WRB B-ADVP where·WRB where·WRB·B-ADVP
viewers NNS B-NP NNS NNS·B-NP
program VBP B-VP VBP VBP·B-VP
the DT B-NP DT DT·B-NP
program NN I-NP NN NN·I-NP
. . O . .·O

Figure 1: Example of the result of applying specialization on a sentence.

consider words and POS tags, and clause identification can take into account words, POS
tags and chunk tags. In this case, if all this input information is considered, the input
vocabulary of the application could become very large, and the model would be poorly
estimated.

On the other hand, the output tag set could be too generic to produce accurate models.
The contextual model can be enriched by considering a more fine-grained output tag set
by adding some kind of information to the output tags. For instance, in the chunking task
we have enriched the chunk tags by adding to them POS information and selected words
as we will show below. This aspect has also been tackled in POS tagging (Kim et al., 1999,
Lee et al., 2000, Pla and Molina, 2001), by lexicalizing the models, that is, by incorporating
words into the contextual model.

In this work, we propose a simple technique that permits us to encode the available
information into the model, without changing the learning or the tagging processes. This
method consists of modifying the original training data set in order to consider only the
relevant input information and to extend the output tags with additional information.

This transformation is the result of applying a specialization function fs on the original
training set T to produce a new one T̃ , that is:

fs : T ⊂ (I × O)∗ → T̃ ⊂ (Ĩ × Õ)∗

This function transforms every training tuple 〈ij , oj〉 to a new tuple 〈̃ij , õj〉, and thus the
original input and output sets to the new sets Ĩ and Õ, by concatenating the selected
information. This function has to be experimentally defined for each task, as we will discuss
in Section 3.

Figure 1 shows an example of the application of this function on a sample of the training
set used in the chunking task. In this example, we have considered POS tags and certain

598

Shallow Parsing using Specialized HMMs

selected words as relevant input information. The output tags have also been enriched
with this information. For example, the tuple 〈You·PRP, B-NP〉 is transformed to the new
tuple 〈PRP, PRP·B-NP〉, considering only POS information. On the other hand, the tuple
〈where·WRB, B-ADVP〉, considering also lexical information, is transformed to the new
tuple 〈where·WRB, where·WRB·B-ADVP〉.

From this new training set T̃ , we can learn the Specialized HMM by maximum likelihood
in the usual way. The tagging process is carried out by Dynamic Programming Decoding
using the Viterbi algorithm. This decoding process is not modified, you simply consider the
decisions taken into account in the specialization process. That is, to consider the relevant
information as input and to map the sequence of output tags (which belongs to Õ) to the
original output tags (which belongs to O). This can be carried out in a direct way.

3. Chunking evaluation

We present a set of experiments in order to evaluate the chunking approach proposed in this
work. We focus on the different specialization criteria considered to construct the specialized
HMM. As we mentioned above, one of the advantages of our approach is that no change is
needed for either the training or the decoding processes carried out when specialized HMMs
are used. To confirm this, all the experimental work was conducted using the TnT4 tagger
developed by Brants (2000) without making any modification to its source code.

TnT is a very efficient statistical POS tagger based on HMMs. To deal with sparse
problems, it uses linear interpolation as a smoothing technique to estimate the model. To
handle unknown words, it uses a probabilistic method based on the analysis of the suffix
of the words.5 All the following experiments were done with TnT’s default options using
second-order HMMs.

We used the data defined in the shared task of CoNLL-2000. The characteristics of this
task were described by Tjong Kim Sang and Buchholz (2000). It used the same Wall Street
Journal corpus sections defined by Ramshaw and Marcus (1995), that is, sections 15-18 for
training, and section 20 for testing. The set of chunks (NP, VP, ADVP, ADJP, PP, SBAR,
CONJP, PRT, INTJ, LST, UCP) was derived from the full parsing taking into account
certain assumptions and simplifications.6 The POS tagging was obtained using the Brill
tagger (Brill, 1995) without correcting the tagger output. We also compared our results to
those obtained by the other approaches that participated in the shared task (see Section 4).

As we stated in Section 2, two decisions must be made in order to define a specialization
function on the training set: which information from the available input is relevant and how
to refine the output tags.

These decisions were tested experimentally. We used a development set (which was
different from the test set) in order to select this information. We divided the original
training set into two partitions: 90% for training and 10% for tuning (development set).
To do that, we used nine consecutive sentences from the original training set for training

4. TnT is available at http://www.coli.uni-sb.de/thorsten/tnt
5. In our case, the suffix method is not the most suitable for handling unknown words because the input

vocabulary is reduced to POS tags or concatenations of POS tags and words. In all the experiments
performed, the vocabulary was always seen in the training set. Therefore, we did not consider necessary
to study this problem.

6. The script to derive the chunks is available at http://ilk.kub.nl/~sabine/chunklink/

599

Molina and Pla

and we used the tenth sentence for testing. We tested different combinations of input and
output information on the development set and we selected those that improved the results
obtained with no specialized training data set.

The baseline system, which we calledBASIC, considered training tuples such as 〈pi, chi〉,
that is, only POS tags (pi) were taken into account as input vocabulary, and no changes
were made in the chunk tag set (chi). This criterion gave a very poor performance, because
the output tag set was too generic to construct accurate models. Therefore, we defined a
specialization function fs in order to extend the output vocabulary as follows:

fs(〈wi · pi, chi〉) = 〈pi, pi · chi〉

This criterion, denoted as SP, makes training tuples 〈pi, pi · chi〉 in which only POS tags
are considered as input and the output tags are enriched with the POS tag associated with
the input words (wi).

Finally, the SP criterion was tested by adding lexical information in both the input and
the output. The problem was that adding all the words to the input and/or the output
produced very large models and no improvements were observed. For this reason, we tested
a selective lexicalization of the model. That is, only a set of certain relevant words (Ws)
were considered in the contextual language model. In this respect, we defined the following
specialization function:

fs−Lex(〈wi · pi, chi〉) =
{

〈wi · pi, wi · pi · chi〉 if wi ∈ Ws

〈pi, pi · chi〉 if wi /∈ Ws

The main problem of this lexicalization is to define the set of words Ws to be considered.
We defined some criteria in order to automatically extract the relevant words that improved
the performance on the development set. These criteria are summarized below.

• Lex-WCC selects the words from the training set that belong to closed categories.7

• Lex-WHF selects the words whose frequency in the training set was higher than a
certain threshold. In order to determine which threshold maximized the performance
of the model (that is, the best set of words to specialize the model), we tuned it on
the development partition with word sets of different sizes. The best performance was
obtained by selecting the words whose frequency was higher than 100.

• Lex-WTE selects the words whose chunk tagging error rate was higher than a certain
threshold. These words were extracted from the output provided by the tagger that
uses the SP model. The best threshold obtained corresponds to the words whose error
frequency was higher than 2 in the development set.

• Lex-WCH selects the words that belong to certain chunks such as SBAR, PP and
VP with high frequency in the training set.

• Lex-COM selects the words corresponding to a combination of Lex-WTE and Lex-
WCH criteria.

600

Shallow Parsing using Specialized HMMs

specialization criteria precision recall Fβ=1 |Õ| |Ws|
BASIC 84.16% 84.52% 84.34 22 0
SP 90.44% 89.96% 90.20 317 0
SP + Lex-WCC 91.99% 91.56% 91.77 830 154
SP + Lex-WHF 91.87% 92.14% 92.00 1,086 144
SP + Lex-WTE 92.22% 92.00% 92.11 592 38
SP + Lex-WCH 92.03% 92.25% 92.14 1,305 217
SP + Lex-COM 92.10% 92.35% 92.23 1,341 225

Table 1: Overall chunking results on the development data set using Specialized HMMs
with different specialization criteria.

Table 1 shows the results of the tuning process on the development data set measured
in terms of precision, recall and Fβ rate. In addition, it shows the size of the output tag
set (|Õ|) and the size of the selected word set (|Ws|). It can be observed that all the
specializations considered outperformed the BASIC model. Although each lexicalization
criterion used a different set of selected words with a size that ranked between 38 and
225 words, SP + Lex-WHF, SP + Lex-WTE and SP + Lex-WCH criteria achieved
similar results while SP + Lex-WCC criterion achieved somewhat worse results. We
obtained the best performance with the combination criterion SP + Lex-COM, with a
Fβ improvement of 9.4% with respect to the BASIC model. The improvement of the SP
model with respect to the BASIC model was about 7% and the use of lexicalization criteria
incremented Fβ about 2% with respect to the SP model.

We think that these statistical criteria can be improved by means of a linguistic study to
determine which words are really relevant to this disambiguation problem. The experiments
conducted have given us some clues about this, because we have observed that the effect
of some words on the overall result is not significant. For example, the SP + Lex-WTE
criterion which only provide a small set of 38 specialized words performed better than other
criteria.

Once the system was tested on the development data set, new models were learnt us-
ing the original training data set (sections 15-18) with the best specialization parameters
obtained in the tuning process. Next, the system was tested on a new unseen data set
(section 20). Table 2 shows that the system had a similar behaviour for both development
and test data sets. The best performance was also obtained by using the SP + Lex-COM
criterion, which suggests that a model that includes these specialization parameters could
be successfully applied to other unseen data.

The results for precision, recall and Fβ rate for all the chunks considered using the
SP + Lex-COM criterion are summarized in Table 3. These results outperformed the
Fβ rate of BASIC and SP for each chunk. The details of this improvement are shown
in Figure 2. The highest improvement was achieved for SBAR and PRT chunks. This is

7. The closed categories considered are: CC, DT, MD, POS, PP$, RP, TO, WDT, WP$, EX, IN, PDT,
PRP, WP, WRB.

601

Molina and Pla

specialization criteria precision recall Fβ=1 |Õ| |Ws|
BASIC 84.31% 84.35% 84.33 22 0
SP 89.58% 89.55% 89.57 320 0
SP + Lex-WCC 91.50% 91.51% 91.51 846 154
SP + Lex-WHF 91.30% 91.76% 91.53 1,105 144
SP + Lex-WTE 91.65% 91.82% 91.73 601 38
SP + Lex-WCH 91.74% 92.12% 91.93 1,339 217
SP + Lex-COM 91.96% 92.41% 92.19 1,381 225

Table 2: Overall chunking results on the shared task using Specialized HMMs with different
specialization criteria.

chunk precision recall Fβ=1

ADJP 71.19% 67.12% 69.10
ADVP 79.84% 79.10% 79.47
CONJP 38.46% 55.56% 45.45
INTJ 50.00% 50.00% 50.00
NP 92.30% 92.68% 92.49
PP 96.58% 97.40% 96.99
PRT 71.43% 75.47% 73.39
SBAR 85.50% 84.86% 85.18
VP 91.73% 92.81% 92.26
all 91.96% 92.41% 92.19

Table 3: Chunking results on the test set of the shared task using Specialized HMMs with
the SP + Lex-COM criterion.

because the set of selected words that we considered included words that usually appear in
these chunks.

Due to the fact that the number of parameters of the models increases, these models
will be better estimated if the training data set is larger. To confirm this, we conducted an
experiment increasing the size of the training data set. We chose training data from sections
00 to 19 of the WSJ corpus; the test data set was again section 20 and we used the same
word set of the shared task (|Ws| = 225) obtained using the SP + Lex-COM criterion
to specialize the model. Figure 3 shows that Fβ improves as the size of the training set
increases, achieving a Fβ rate of 93.25 with a training data set size of about 950,000 words
and 1,960 output tags.

In Table 4 the results for each chunk using this large training data set are summarized.
It can also be observed that all the Fβ rates outperformed the results achieved with the
small training data set. Although the overall Fβ improvement is only about 1%, the best

602

Shallow Parsing using Specialized HMMs

Figure 2: Improvement on Fβ rate for certain chunks on the shared task using Specialized
HMMs.

90

90.5

91

91.5

92

92.5

93

93.5

94

100 200 300 400 500 600 700 800 900 1000

F
be

ta

TRAINING WORDS x 1000

Fbeta

Figure 3: Evolution of the Fβ rate using training sets of different size.

improvements were achieved for those chunks that include selected words (6.8% for PRT,
7.9% for ADJP and 3.8% for SBAR).

Finally, we would like to note that the efficiency of the system is not reduced even if
|Õ| increases when specialized models are used. For the model learnt with the SP + Lex-
COM criterion the tagging speed holds around 30,000 words/second running on a Pentium

603

Molina and Pla

chunk precision recall Fβ=1

ADJP 78.54% 71.00% 74.58
ADVP 81.85% 79.68% 80.75
CONJP 40.00% 66.67% 50.00
INTJ 50.00% 50.00% 50.00
NP 93.52% 93.43% 93.48
PP 96.77% 97.73% 97.25
PRT 75.00% 82.08% 78.38
SBAR 88.70% 88.04% 88.37
VP 93.33% 93.73% 93.53
all 93.25% 93.24% 93.25

Table 4: Chunking results, on the test of the shared task with large training data set, using
Specialized HMMs with SP + Lex-COM criterion.

500 Mhz. Although we have not made a comparative study of the efficiency with other
approaches, we think that these performances are difficult to overcome by other systems.

4. Comparison with other chunking approaches

We compared our results with those systems that have presented results for the same train-
ing and test data used in the chunking shared task performed in CoNLL-2000. Each of
these systems uses a specific learning method and different kinds of information. Following,
we will briefly review each of these approaches. Finally, we compare the different kinds of
information used for the different learning methods. Other comparisons, such as an effi-
ciency comparison, cannot be done because the authors did not usually report it. Basically,
these systems can be divided into the following groups: Rule-based systems, Memory-based
systems, Statistical systems and Combined Systems.

Rule-based systems

The ALLiS system (Déjean, 2000) is based on theory refinement. It attempts to improve
a previously learnt grammar using “contextualization” and “lexicalization” operators. The
method only takes context into account if the confidence value for a certain POS tag is under
a certain threshold. It calculates the ratio between the number of occurrences of a POS tag
in a chunk and the number of occurrences of this POS tag in the training corpora. If this
ratio is higher than a certain threshold, then the corresponding chunk tag is assigned. If
not, it takes into account left and right context (“contextualization”) and the current word
(“lexicalization”).

The system presented by Johansson (2000) picks the most likely chunk tag for a given
context, assuming that a larger context (if it has been seen in the training data) overrides
the label proposed by a smaller context. It obtains the best results for 5-context, that is, a
context of the current POS tag, the two left POS tags and the two right POS tags.

604

Shallow Parsing using Specialized HMMs

Memory-based systems

Veenstra and Van den Bosch (2000) studied how the memory-based learning algorithm,
implemented in TiMBL software, performs with different settings. Memory-based learning
consists of storing the instances seen during learning in memory along with the correspond-
ing categories. A new instance can be classified in a category by computing the distance
between the new instance and the stored instances. The best results are obtained using IB1-
IG algorithm (Daelemans et al., 1997) and applying the modified value difference metric to
POS features.

Statistical systems

Osborne (2000) used Ratnaparkhi’s Maximum Entropy-based tagger (Ratnaparkhi, 1996)
to perform chunking. To do that, the input to the tagger is redefined to be a concatenation
(“configuration”) of the different contexts that are useful for chunking. It performs chunking
in two steps. First, it guesses a default chunk tag by applying a model which has been learnt
with configurations which consists of current POS tags and words. Second, it produces the
definitive chunk tags by applying a model learnt with configurations which also takes into
account the chunk tags previously guessed. Little improvement is achieved by incorporating
suffix and prefix information to the configurations.

The approach of Koeling (2000) also builds a ME model which takes into account several
individual features and complex features combining POS tags and chunk tags.

In our previous work (Pla et al., 2000b), we used a two level first-order HMM that per-
formed tagging and chunking at the same time. The model was also refined by lexicalization
to improve its performance.

Zhou, Su, and Tey (2000) incorporated contextual information into a bigram model by
means of defining structured tags as input. These tags are composed of the current word (if
it belongs to a certain category), the current POS tag, the previous POS tag, the descriptor
of the phrase category and a structural relation tag that indicates if two adjacent words
have the same parent. The model is refined by an error-learning technique that keeps only
the words whose error rate decreases when they are incorporated into the model. Finally,
a memory-based sequence learning is applied to incorporate chunk pattern probabilities
achieving slight improvement.

Combined systems

These systems combine the output of different classifiers in order to improve the chunking
performance.

Kudo and Matsumoto (2000) combined several Support Vector Machine classifiers.
SVMs are a very suitable learning approach for solving two-class pattern recognition prob-
lems. Basically, SVMs are binary classifiers that can guess whether an instance (a token)
belongs to a class or not. Pairwise classification is used to solve chunking (which is a multi-
class task). This consists of training a classifier for each pair of different chunk tags (for
K chunk tags, K*(K-1)/2 classifiers have to be learnt). The results of all the classifiers
are combined by a dynamic programming algorithm. Later Kudo and Matsumoto (2001)

605

Molina and Pla

System Method w wleft wright p pleft pright cleft Fβ

[KM01] SVM(Comb) x 2 2 x 2 2 2 93.91
[ZDJ01] Winnow x 2 2 x 2 2 2 93.51
[Hal00] WPDV(Comb) x 1-5 1-5 x 3-5 3 2 93.32
[LR01] Winnow 93.02
[TKS00] MBL(Comb) x 4 4 x 4 4 92.50
SP+Lex-COM HMM x 2 x 2 2 92.19
[ZST00] HMM + MBL x 1 x 1 1 92.12
[Dej00] Rule-based x x 1 1 92.09
[Koe00] ME x 1 1 x 3 2 3 91.97
[Osb00] ME x 2 2 x 2 2 2 91.94
[VB00] MBL x 5 3 x 5 3 91.54
[PMP00] HMM x 1 x 1 1 90.14
[Joh00] Rule-based x 0-3 0-3 87.23

Table 5: Fβ results of the different shallow parsing systems related and a comparison of the
information used by them in the learning process.

introduced a weighted voting technique that improved the results on the same training and
test data.

By majority voting, Tjong Kim Sang (2000) combined the results provided by five
different memory-based learning classifiers (one classifier for each different chunk represen-
tation, that is, IOB1, IOB2, IOE1, IOE2 and C+O). In all cases, the combined system
outperformed the individual systems. The system performs the task in two steps. First,
it identifies chunk boundaries and second, it assigns the chunk tag. In the first step it
considers POS and words as features and, in the second step, it adds the context of chunk
tags guessed in the first phase.

Van Halteren (2000) presented another combined system that uses a more sophisticated
combining technique called Weighted Probability Distribution Voting (WPDV). It combines
the output of five classifiers: a memory-based learning classifier and four different WPDV
classifiers. Due to the fact that output can present some systematic errors, these are also
corrected using a WPDV model for each kind of error.

Recently, other systems based on the Winnow algorithm have been applied to chunking
on the same data set. These systems learn different classifiers. Each predicts the start or
the end of a kind of chunk. The output of these classifiers is combined in order to chunk
the sentence satisfying some constraints such as non-overlapping constraints. The SNoW
architecture, which is based on the Winnow algorithm, is used by Li and Roth (2001).
The algorithm was modified by Zhang, Damerau, and Johnson (2001) to guarantee its
convergence for linearly non-separable data and was successfully applied to text chunking.

Comparison

In Table 5 we have summarized the features that each approach takes into account and
the Fβ result reported. The table indicates whether a model uses some of the following
features: the current word (w), current POS tag (p), the words to the left (wleft) and

606

Shallow Parsing using Specialized HMMs

to the right (wright), the POS tags to the left (pleft) and to the right (pright), and the
chunk tag (cleft) to the left. In addition, Osborne (2000) considers prefix and suffix word
information, and the current chunk; Koeling (2000) also incorporates complex features by
concatenating individual features; Zhou et al. (2000) include structural relations between
words, the descriptor of the phrase category, and takes into account only certain words;
Tjong Kim Sang (2000) also considers a context of two left and two right chunk tags
guessed in a first level. Zhang et al. (2001) also include second-order features, such as POS-
POS, chunk-chunk, word-POS and chunk-POS. Li and Roth (2001) do not report feature
information.

It can be seen that combined systems perform better than the individual systems (only
Winnow-based systems outperform some of the combined systems). There are six systems
that produce very similar results (between 91.5% and 92.2%). The results of our system
(Specialized HMMs) are slightly better than these individual classifiers. Only the Winnow-
based systems perform better than Specialized HMMs. One conclusion that we can draw
from Table 5 is that HMM approaches perform better than other systems and require
encoding less information. This shows the importance not only of the feature selection but
the importance of algorithm itself. It can be considered that the dynamic programming
decoding algorithm used by HMM systems to solve the maximization equation implicitly
takes into account information of the whole sentence.

We have found two approaches that use a technique similar to the one we describe in
this paper: the Osborne (2000) Maximum Entropy approach and the HMM used by Zhou,
Su, and Tey (2000). Like Specialized HMMs, both approaches consider structural tags or
concatenations as input to the system. The differences lie in the underlying model used and
the information which is taken into account in the input. Both approaches need to encode
more information than Specialized HMMs, but they do not achieve better results: Osborne
achieved a similar result (Fβ=91.94), but Zhou et al. obtained lower results (Fβ=89.57)
when error correcting and memory-based techniques were not applied. Moreover, Osborne
needed to learn two models that have to be applied sequentially: a first model that proposes
an initial chunk tag, and a second one that takes into account the information provided by
the first one.

Note that the performance of our preliminary system (Pla et al., 2000b) was very poor
because it used bigram models instead of trigram models. In addition, it only took words
as input in order to perform tagging and chunking at the same time, which decreased the
performance as we reported in (Pla et al., 2000a).

5. Clause identification

Clause identification can be carried out in a way similar to text chunking, using the spe-
cialization technique previously presented. As in text chunking, the success of the method
lies in the definition of the specialization function, that is, in an appropriate selection of
the input information and the output tag set.

All the following experiments were conducted under the same conditions defined at the
clause-splitting shared task of CoNLL-2001 (Tjong Kim Sang and Déjean, 2001). At this
shared task, clause detection was divided into three parts: clause start-boundary detection,
clause end-boundary detection and embedded clause detection. Here, we only report results

607

Molina and Pla

T fs−→ T̃

I O Ĩ Õ

You PRP B-NP (S* PRP·B-NP PRP·(S1*
will MD B-VP * MD·B-VP MD·*1
start VB I-VP * VB·I-VP VB·*1
to TO I-VP * TO·I-VP TO·*1
see VB I-VP * VB·I-VP VB·*1
shows NNS B-NP * NNS·B-NP NNS·*1
where WRB B-ADVP (S* WRB·B-ADVP WRB·(S2*
viewers NNS B-NP (S* NNS·B-NP NNS·(S3*
program VBP B-VP * VBP·B-VP VBP·*3
the DT B-NP * DT·B-NP DT·*3
program NN I-NP *S)S) NN·NN NN·*S3)S2)
. . O *S) .·O O·*1S)

Figure 4: Example of the result of applying specialization on a sample of the training set
used in clause-splitting.

on the third part of the task (the rest of the results can be consulted in (Molina and Pla,
2001)). This shared task defined sections 15-18 from the WSJ corpus as training data set,
section 20 as development set and section 21 as test set.

Clause-splitting can be seen as a step after chunking. Therefore, the available input
information consists of words, POS tags and chunk tags. The output information are the
clause tags. We performed clause-splitting in two phases: first, we found the best segmenta-
tion in clauses for the input sentence using a Specialized HMM; second, we corrected some
balancing inconsistencies observed in the output by applying some rules.

In this case, we considered that the relevant input information for clause-detection was
formed by POS tags and chunk tags. In order to produce more accurate models, the output
tags were enriched with the POS tag. To avoid incorrectly balanced clauses in the output,
we also added the number corresponding to the depth level of the clause in the sentence to
the output tags. Thus, the specialization function fs was defined as follows:

fs(〈wi · pi · chi, si〉) = 〈pi · chi, pi · s
′
i〉

where si is a clause tag and s
′
i is the enumerated clause tag (each bracket in the clause tag is

enumerated with the depth level of the corresponding clause). The effect of the application
of this function (SP criterion) on a sentence can be seen in Figure 4.

Due to the fact that models have to be smoothed to guarantee a complete coverage
of the language, this does not assure the correct balancing of the output. Therefore, we
applied the following correcting rules to repair the inconsistencies in the output:

1. If the clause segmentation presents more start than end boundaries, we add the end
boundaries that are needed to the last word in the sentence (just before the dot).

608

Shallow Parsing using Specialized HMMs

system precision recall Fβ=1

Carreras and Màrquez 84.82% 73.28% 78.63
SP+Lex-WHF 70.89% 65.57% 68.12
Tjong Kim Sang 76.91% 60.61% 67.79
SP 69.62% 64.17% 66.79
Patrick and Goyal 73.75% 60.00% 66.17
Déjean 72.56% 54.55% 62.77
Hammerton 55.81% 45.99% 50.42

Table 6: Clause-splitting results of the different systems presented in the shared task of
CoNLL-2001.

2. If the clause segmentation presents more end than start boundaries, we add the start
boundaries that are needed to the first word in the sentence.

3. If the sentence does not start with a start boundary or does not finish with an end
boundary, we add these start and end tags.

An alternative solution would be to incorporate these rules into the model, but to do
this it would be necessary to modify learning, decoding and smoothing processes, which is
far from this preliminary approach to clause-detection.

Finally, we also tested the different specialization criteria obtaining slight improvements.
The best results were achieved by incorporating some of the most frequent words into the
model (SP+Lex-WHF criterion). These results, which can be seen in Table 6, are in line
with those presented in the clause-splitting shared task of CoNLL-2001 by other systems
(Tjong Kim Sang and Déjean, 2001). Our system achieved a performance which was slightly
better than others based on boosting algorithms, neuronal networks, symbolic methods or
memory-based learning. The best system used Ada-Boost learning combined with decision
trees. In addition, the set of features was adapted to the task following linguistic criteria.

6. Concluding remarks

In this work, we have presented a technique that allows us to tackle different natural lan-
guage disambiguation tasks as tagging problems. In particular, we have addressed the
shallow parsing and the clause identification problems. Using this technique, the relevant
information for each task can be determined. Thus, a specific task can be performed using
a standard HMM-based tagger without modifying the learning and testing processes.

The results reported here show that the HMM approach performs in line with other
approaches that use more sophisticated learning methods when an appropriate definition
of the input and output vocabularies is provided. Moreover, this approach maintains the
efficiency of the system throughout both the learning and the testing phases.

The specialization methods proposed are independent of the corpus and the language
used. The lexicalization criteria presented provide sets of words that are very common, such
as words that belong to closed categories or words that appear frequently in the corpus.

609

Molina and Pla

These selected words can also appear in other English corpora and, therefore, the chunking
or clause identification problem could be successfully solved using this technique. Moreover,
the criteria presented here are independent of the language. This has been contrasted in
previous works for the POS tagging problem in English and Spanish corpora (Pla and
Molina, 2001, Pla et al., 2001). Unfortunately, these aspects could not been tested for
chunking and clause-detection due to the unavailability of other annotated corpora.

We think the method presented here can be improved in two aspects: the selection
of the features that have to be included in the input and output vocabularies for each
disambiguation task, and the selection of the words that really improve the performance
of the system. To do this, it would be necessary to take into account not only statistical
criteria, but linguistic criteria as well.

Finally, due to the fact that this technique does not need to change the learning and
tagging processes, we think that the application of this technique using other taggers based
on different paradigms could be of interest.

Acknowledgments

We would like to thank to the reviewers for their helpful comments. This work has been
supported by the Spanish research projects CICYT TIC2000–0664–C02–01 and TIC2000–
1599–C01–01.

References

S. Abney. Parsing by Chunks. R. Berwick, S. Abney and C. Tenny (eds.) Principle–based
Parsing . Kluwer Academic Publishers, Dordrecht, 1991.

S. Abney. Partial Parsing via Finite-State Cascades. In Proceedings of the ESSLLI’96
Robust Parsing Workshop, Prague, Czech Republic, 1996.

S. Aı̈t-Mokhtar and J.P. Chanod. Incremental Finite-State Parsing. In Proceedings of the
5th Conference on Applied Natural Language Processing, Washington D.C., USA, 1997.

S. Argamon, I. Dagan, and Y. Krymolowski. A Memory–based Approach to Learning
Shallow Natural Language Patterns. In Proceedings of the joint 17th International Con-
ference on Computational Linguistics and 36th Annual Meeting of the Association for
Computational Linguistics, COLING-ACL, pages 67–73, Montréal, Canada, 1998.

Thorsten Brants. TnT – a statistical part-of-speech tagger. In Proceedings of the Sixth
Applied Natural Language Processing (ANLP-2000), Seattle, WA, 2000.

E. Brill. Transformation–based Error–driven Learning and Natural Language Processing: A
Case Study in Part–of–speech Tagging. Computational Linguistics, 21(4):543–565, 1995.

Xavier Carreras and Lúıs Màrquez. Boosting trees for clause splitting. In Walter Daelemans
and Rémi Zajac, editors, Proceedings of CoNLL-2001, pages 73–75. Toulouse, France,
2001.

610

Shallow Parsing using Specialized HMMs

K. W. Church. A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text.
In Proceedings of the 1st Conference on Applied Natural Language Processing, ANLP,
pages 136–143. ACL, 1988.

W. Daelemans, S. Buchholz, and J. Veenstra. Memory-Based Shallow Parsing. In Proceed-
ings of EMNLP/VLC-99, pages 239–246, University of Maryland, USA, June 1999.

W. Daelemans, Antal Van den Bosch, and T. Weijters. IGTree: Using Trees for Compres-
sion and Classification in Lazy Learning Algorithms. D. Aha (ed.), Artificial Intelligence
Review 11, Special issue on Lazy Learning. Kluwer Academic Publishers, 1997.

Hervé Déjean. Learning Syntactic Structures with XML. In Proceedings of CoNLL-2000
and LLL-2000, Lisbon, Portugal, September 2000.

Hervé Déjean. Using allis for clausing. In Walter Daelemans and Rémi Zajac, editors,
Proceedings of CoNLL-2001, pages 64–66. Toulouse, France, 2001.

James Hammerton. Clause identification with long short-term memory. In Walter Daele-
mans and Rémi Zajac, editors, Proceedings of CoNLL-2001, pages 61–63. Toulouse,
France, 2001.

Christer Johansson. A Context Sensitive Maximum Likelihood Approach to Chunking. In
Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, September 2000.

J.D. Kim, S.Z. Lee, and H.C. Rim. HMM Specialization with Selective Lexicalization. In
Proceedings of the join SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora (EMNLP-VLC-99), 1999.

Rob Koeling. Chunking with Maximum Entropy Models. In Proceedings of CoNLL-2000
and LLL-2000, Lisbon, Portugal, September 2000.

Taku Kudo and Yuji Matsumoto. Use of Support Vector Learning for Chunk Identification.
In Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, September 2000.

Taku Kudo and Yuji Matsumoto. Chunking with Support Vector Machines. In
Proceedings of NAACL 2001, Pittsburgh, USA, 2001. Morgan Kaufman Publishers.
http://cactus.aist-nara.ac.jp/˜taku-ku/publications/naacl2001.ps.

Sang-Zoo Lee, Juni ichi Tsujii, and Hae-Chang Rim. Lexicalized Hidden Markov Models
for Part-of-Speech Tagging. In Proceedings of 18th International Conference on Compu-
tational Linguistics, Saarbrucken, Germany, August 2000.

Xin Li and Dan Roth. Exploring Evidence for Shallow Parsing. In Proceedings of the
5th Conference on Computational Natural Language Learning (CoNLL-2001), Toulouse,
France, July 2001.

B. Merialdo. Tagging English Text with a Probabilistic Model. Computational Linguistics,
20(2):155–171, 1994.

611

Molina and Pla

Antonio Molina and Ferran Pla. Clause detection using HMM. In Proceedings of the
5th Conference on Computational Natural Language Learning (CoNLL-2001), Toulouse,
France, July 2001.

Constantin Orasan. A hybrid method for clause splitting in unrestricted English texts. In
Proceedings of ACIDCA’2000, Monastir, Tunisia, 2000.

Miles Osborne. Shallow Parsing as Part-of-Speech Tagging. In Proceedings of CoNLL-2000
and LLL-2000, Lisbon, Portugal, September 2000.

Jon D. Patrick and Ishaan Goyal. Boosted decision graphs for nlp learning tasks. In Walter
Daelemans and Rémi Zajac, editors, Proceedings of CoNLL-2001, pages 58–60. Toulouse,
France, 2001.

Ferran Pla and Antonio Molina. Part-of-Speech Tagging with Lexicalized HMM. In pro-
ceedings of International Conference on Recent Advances in Natural Language Processing
(RANLP2001), Tzigov Chark, Bulgaria, September 2001.

Ferran Pla, Antonio Molina, and Natividad Prieto. Tagging and Chunking with Bigrams.
In Proceedings of the COLING–2000, Saarbrücken, Germany, August 2000a.

Ferran Pla, Antonio Molina, and Natividad Prieto. Improving Chunking by means
of Lexical-Contextual Information in Statistical Language Models. In Proceedings of
ConNLL–2000, Lisbon, Portugal, September 2000b.

Ferran Pla, Antonio Molina, and Natividad Prieto. Evaluación de un etiquetador morfos-
intáctico basado en bigramas especializados para el castellano. Revista para el Proce-
samiento del Lenguaje Natural, 2001.

L. Ramshaw and M. Marcus. Text Chunking Using Transformation-Based Learning.
In Proceedings of third Workshop on Very Large Corpora, pages 82–94, June 1995.
ftp://ftp.cis.upenn.edu/pub/chunker/wvlcbook.ps.gz.

A. Ratnaparkhi. A Maximum Entropy Part–of–speech Tagger. In Proceedings of the 1st
Conference on Empirical Methods in Natural Language Processing, EMNLP, 1996.

A. Ratnaparkhi. Maximum Entropy Models for Natural Language Ambiguity Resolution.
Phd. Thesis, University of Pennsylvania, 1998. http://www.cis.upenn.edu/˜adwait.

Erik F. Tjong Kim Sang. Text Chunking by System Combination. In Proceedings of
CoNLL-2000 and LLL-2000, Lisbon, Portugal, September 2000.

Erik F. Tjong Kim Sang. Memory-based clause identification. In Walter Daelemans and
Rémi Zajac, editors, Proceedings of CoNLL-2001, pages 67–69. Toulouse, France, 2001.

Erik F. Tjong Kim Sang and Sabine Buchholz. Introduction to the CoNLL-2000 Shared
Task: Chunking. In Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal,
September 2000.

612

Shallow Parsing using Specialized HMMs

Erik F. Tjong Kim Sang, Walter Daelemans, Herv Djean, Rob Koeling, Yuval Krymolowsky,
Vasin Punyakanok, and Dan Roth. Applying System Combination to Base Noun Phrase
Identification. In Proceedings of 18th International Conference on Computational Lin-
guistics COLING’2000, pages 857–863, Saarbrücken, Germany, August 2000. Morgan
Kaufman Publishers. http://lcg-www.uia.ac.be/˜erikt/papers/coling2000.ps.

Erik F. Tjong Kim Sang and Hervé Déjean. Introduction to the CoNLL-2001 shared task:
Clause identification. In Proceedings of the 5th Conference on Computational Natural
Language Learning (CoNLL-2001), Toulouse, France, July 2001.

Hans Van Halteren. Chunking with WPDV Models. In Proceedings of CoNLL-2000 and
LLL-2000, Lisbon, Portugal, September 2000.

Jorn Veenstra and Antal Van den Bosch. Single-Classifier Memory-Based Phrase Chunking.
In Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, September 2000.

Atro Voutilainen. NPTool, a Detector of English Noun Phrases. In Proceedings of the
Workshop on Very Large Corpora. ACL, June 1993.

Tong Zhang, Fred Damerau, and David Johnson. Text chunking using regularized Winnow.
In proceedings of the Joint EACL-ACL Meeting (ACL2001), Toulouse, France, July 2001.

GuoDong Zhou, Jian Su, and TongGuan Tey. Hybrid Text Chunking. In Proceedings of
CoNLL-2000 and LLL-2000, Lisbon, Portugal, September 2000.

613

