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Abstract

We introduce a simple method to build Lexicalized Hidden Markov Models (L-HMMs) for

improving the precision of part-of-speech tagging. This technique enriches the contextual

Language Model taking into account a set of selected words empirically obtained. The

evaluation was conducted with different lexicalization criteria on the Penn Treebank corpus

using the TnT tagger. This lexicalization obtained about a 6% reduction of the tagging error,

on an unseen data test, without reducing the efficiency of the system. We have also studied

how the use of linguistic resources, such as dictionaries and morphological analyzers, improves

the tagging performance. Furthermore, we have conducted an exhaustive experimental

comparison that shows that Lexicalized HMMs yield results which are better than or similar to

other state-of-the-art part-of-speech tagging approaches. Finally, we have applied Lexicalized

HMMs to the Spanish corpus LexEsp.

1 Introduction

Over the last few years, inductive or corpus-based approaches have been widely

used in nearly all the Natural Language Processing (NLP) tasks. The availability

of linguistic resources such as corpora or dictionaries has made the application

and development of these learning techniques possible. These methods have been

successfully applied to solve different disambiguation problems such as part-of-

speech tagging, shallow parsing or chunking, prepositional phrase attachment, etc.

The main attractiveness of the corpus-based methods is that they can achieve satis-

factory results without much human intervention. They can also be easily applied to

different languages or can be fitted to different tasks with little effort.

One of the most well-known disambiguation problems is part-of-speech (POS)

tagging. A POS tagger attempts to assign the corresponding POS tag to each word in

a sentence, taking into account the context in which this word appears. Each POS tag

is composed of the lexical category of the word (common noun, proper noun, adject-

ive, etc.) and usually adds morphological information (number, gender, person, etc.).

Normally, this set of POS tags has been previously defined by an expert human for

a specific language.
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A POS tagger has different applications. Generally, morpho-syntactic disambig-

uation is used as a preprocess in NLP systems. Thus, the use of a POS tagger

simplifies the task of syntactic or semantic parsers because they do not have to

manage ambiguous morphological sentences. It can be incorporated in NLP systems

that have to deal with unrestricted text, such as information extraction, information

retrieval, summarization, machine translation, etc. Also, speech recognition systems

can reduce the number of parameters of the Language Model using lexical categories

instead of words. All these applications can benefit from POS tagging to improve

their performance in both accuracy and computational efficiency. Even though a

great number of researchers have dedicated their efforts to developing or improving

POS taggers in the last few years, the state-of-the-art performance of a single POS

tagger (96–97%) still leaves a little room for improvement. For these reasons, there

is a great interest in the development and improvement of POS taggers for different

languages.

The most relevant corpus-based POS tagging approaches are based on Hidden

Markov Models (Church 1988; Weischedel et al. 1993; Merialdo 1994; Brants 2000),

transformation-based learning (Brill 1995a), memory-based learning (Daelemans

et al. 1996), decision trees (Márquez et al. 2000; Magerman 1996), maximum

entropy principle (Ratnaparkhi 1996), finite-state automata (Pla and Prieto 1998),

etc. Moreover, some works combine the output of different taggers by means of

some “voting” methods in order to improve their performance (Brill and Wu 1998;

Van Halteren et al. 1998).

The comparison among these different approaches is difficult due to the multiple

factors that must be considered: the language, the number and type of the tags, the

size of the vocabulary, the ambiguity ratio, the difficulty of the test set, the size of the

training and the test sets, etc. For English, most of the taggers have been evaluated

on the Wall Street Journal (WSJ) corpus (Marcus et al. 1993). The results reported

on the WSJ achieved a precision ratio of between 96% and 97%. Some comparison

experiments have been conducted in order to rigorously contrast the different ap-

proaches (Brill and Wu 1998; Van Halteren et al. 1998; Zavrel and Daelemans 1999).

Although some of these works report that HMM-based taggers achieved results

which are lower than the results obtained for taggers based on other paradigms,

it has recently been shown that HMMs perform better than or similar to other

single taggers (Brants 2000; Pla and Molina 2001). Only combined methods slightly

outperform the singles approaches (Brill and Wu 1998; Van Halteren et al. 2001).

This paper presents a way to enrich HMMs by incorporating lexical information

into the contextual model. First, in section 2, we briefly review the most relevant

corpus-based POS tagging approaches. Next, in section 3, we describe the use of

HMMs in the POS tagging problem. In section 4, we introduce the technique used

to lexicalize HMMs. In section 5, we describe the learning and tagging processes of

the system used. The experimental work is presented in section 6. We study how the

lexicalization improves the performance of a HMM-based tagger for both first and

second-order HMM. We have applied and compared several criteria to determine the

word set to specialize the HMM. These criteria are independent of the language and

have been applied for both English and Spanish. For experiments, we used the Penn
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Treebank corpus for English (Marcus et al. 1993) and the LexEsp corpus for Spanish.

The results show that lexicalized models perform better than non-lexicalized models

in all cases. Moreover, this method achieves results which are similar to or better than

other current tagging approaches. We have also studied the influence on tagging

precision when certain linguistic resources such as dictionaries or morphological

analyzers are used. Lastly, in section 7, we present some conclusions.

2 POS tagging approaches

We will compare Lexicalized HMMs with the most popular current POS tagging

approaches: Transformation-Based Error-Driven Learning (TBL), Memory-Based

Learning (MBL) and Maximum Entropy (ME). Following, we will briefly describe

each of these approximations.

2.1 Transformation-based error-driven learning

The main contribution to this approach was introduced by Brill (1992) and developed

in following works (Brill 1993; Brill 1995b). It consists of the automatic learning

of transformation rules in order to correct certain cases of morphological ambiguity.

These rules are learned from a corpus using a set of patterns or rule-templates

which have previously been defined. There are two kinds of rules: lexical rules, to

predict the most likely tag for unknown words, and contextual rules, to improve the

accuracy based on contextual cues. Lexical rules take into account the morphological

information of the words (prefixes, suffixes, capitalization, and so on). Contextual

rules are of the form tagi is changed by tagj if P, that is, the initial tag (tagi) of a

word, must be substituted by the new tag (tagj), in the context P. The context is

formed by the current word, the two words on the left, the current tag and the two

tags on the left.

The learning process is carried out basically as follows. The training corpus is

initially tagged by assigning to each word the most probable tag. The tagged corpus

is compared with the reference corpus. If a word has not been correctly predicted,

an instantiation of the corresponding pattern is generated. Then, the set of rules are

ordered to obtain the best tagging correction. This process is repeated iteratively

until the improvement in the tagging accuracy is under a certain threshold. The

tagging process first assigns the most probable tag for each word. If the word is

unknown, it applies the lexical rules. Then, the set of learned rules are applied

following the order previously learned.

2.2 Maximum entropy

This statistical approach make use of the Maximum Entropy principle, that was

previously applied by Rosenfeld (1996) in language modeling tasks and, afterwards,

in speech recognition systems. The underlying model of this paradigm aims to

maximize the entropy of a probabilistic distribution subject to certain constraints.

The language model has to be consistent with the events observed in the training



170 F. Pla and A. Molina

data and has to satisfy the constraints introduced. No knowledge about unseen

events is assumed.

The most relevant application of the ME model to POS tagging was developed

by Ratnaparkhi (1996). In that work, a set of “feature-templates”, which takes

into account the information appearing in the available context for each word, was

defined in order to disambiguate the sentence. For each word wi, the model’s features

take into account: the words in the context (the current word, the two previous words

wi−1 wi−2, and the two posterior words wi+1 wi+2) and the tags in the context on the

left (bigrams and trigrams). If wi is a “rare” or uncommon word, the features also

include morphological information: prefixes, suffixes, numbers, uppercase characters

or special symbols. The inference of the model consists of the estimation of the

parameters that combine these features thus maximizing the entropy. The tagging

process consists of finding the highest probability tag sequence for a sentence. It is

basically a “beam-search” algorithm that enumerates the n-tag sequence candidates

with the highest probability up to a token in the sentence.

2.3 Memory-based learning

The Memory-Based Learning (MBL) approach is a kind of supervised learning

based on similarity-based reasoning (Daelemans et al. 1996). The essential idea of

MBL consists of keeping a set of examples or cases obtained from training data in

memory. Each case is represented as a feature vector that defines a certain category.

All the examples extracted from the training corpus are stored during the training

process. The tagging process assigns the tag corresponding to the most similar case

held in memory to a word.

To make this approach efficient, it is necessary to correctly define several aspects.

Daelemans uses decision-trees as an appropriate data structure for both efficiently

classifying all the examples and retrieving information from this data structure by

means of the compressing algorithm, IGTree. The similarity metric used to obtain

the nearest case is basic for a good performance of the tagger. The algorithm IB-1G

takes into account the distance between the values of a certain feature and ponders

them with the information gain of the feature. Two base-cases are distinguished in

Daelemans et al. (1996). For known words, the features are: the ambiguity class

of the focus word, the ambiguity class of the first word on the right and the

disambiguated tag of the two words on the left. For unknown words, the features

considered are: the three suffix letters, the first letter of the word, the tag of the first

word on the left and the ambiguity class of the first word on the right.

3 POS tagging and HMMs

From the statistical point of view, POS tagging can be defined as a maximization

problem. Let C = {c1, c2, . . . , cN} be a set of POS tags and let V = {w1, w2, . . . , wm}
be the vocabulary of the application. Given an input sentence of length T , W =

w1, . . . , wT , the process consists of finding the sequence of POS tags of maximum
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probability, that is:

Ĉ = arg max
C

P (C|W ) = arg max
C

(
P (C) · P (W |C)

P (W )

)
; C ∈ CT (1)

Due to the fact that the probability P (W ) is a constant that can be ignored in

the maximization process, the problem is reduced to maximizing the numerator of

equation 1. In this equation, the contextual probabilities or language model, P (C),

represent the possible or probable sequences of POS tags. The lexical probabilities,

P (W |C), represent the relation between the vocabulary and the POS tags.

To solve equation 1, the Markov assumptions should be made in order to simplify

the problem. For second-order Markov models (n = 2 or trigrams) and taking into

account the Markov assumptions, the problem is reduced to solving the following

equation:

Ĉ = arg max
c1 ...cT

(∏
1...T

P (ci|ci−1, ci−2) · P (wi|ci)
)

(2)

The parameters of this equation can be represented as a HMM. We can consider

that the states of the model have pairs of POS tags associated to them. Contextual

probabilities, P (ci|ci−1, ci−2), correspond to the transition probabilities between the

states (ci−2, ci−1) and (ci−1, ci). Lexical probabilities, P (wi|ci), correspond to the output

probabilities and, as usual, we assume that they only depend on the most recent

category. The tagging process can be carried out by Dynamic Programming Decoding

using the Viterbi algorithm (Viterbi 1967).

4 Lexicalized HMMs

In the HMM approach, the relationship among the words in a sentence is not

directly captured by the contextual model, because it is established in terms of POS

tags. This characteristic means certain relevant relations among words, or among

words and tags, are not modelized. Due to the fact that a total lexicalization of the

model increases the number of parameter to be estimated excessively, an alternative

method is needed to introduce the words in the context. In this sense, in Kim

et al. (1999) a selective lexicalization of a first-order HMM (bigrams) was proposed

by considering a set of “uncommon” words, that is, the words whose probability

distribution within a certain category is different from the rest. A new state is made

(lexicalized state) for each “uncommon” word. The tagging accuracy improved on

the Brown corpus using this technique from 95.79% to 95.99%.

Lexicalization techniques have also been applied to different paradigms. The Max-

imum Entropy (ME) model (Ratnaparkhi 1996) is refined by means of specializing

some features for “difficult” words (words with a high error rate). However, this

specialization had an improvement which was lower than 0.1%. Memory-Based

Learning (MBL) methods can consider focus words as features, but the increasing

number of parameters makes it difficult to estimate the model. For certain languages,

the inclusion of the most frequent words in the feature set slightly increases the

performance of the tagger (Zavrel and Daelemans 1999). Transformation-Based
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Learning (TBL) (Brill 1995a) also improves performance when it introduces words

into the contextual rules (from 97.0% to 97.2% for known words).

The aim of this work is to present a lexicalization technique of the underlying

contextual model of a HMM (and in general, any regular model) to enrich it. This

technique consists of incorporating a set of selected words (we call them specialized

words) to the contextual model in addition to the POS tags, in order to establish

new lexical-contextual constraints.

The effect of the lexicalization on the model is as follows. If we select a specialized

word wi which is emitted in a state ci, the lexicalization process splits this state

into two states: one state (wi, ci) that only emits the word wi, and another state, the

original state ci, that emits all the words emitted before splitting it, except for wi.

As a lexicalized state can only emit one word, its lexical probability must be equal

to one. This process specializes a word in all the categories associated to it in the

training data. Therefore, the number of parameters of the model to be estimated

is increased. To achieve a reliable modelization, we have to adjust the number of

parameters, that is, the number of specialized words, depending on the available

training data.

The specialization of certain words (which can be selected taking into account

linguistic criteria or extracted automatically from a training data set) produces

a better modelization and, therefore, an improvement in the performance of the

tagging process as we will show below. The criteria that we have considered for

selecting the specialized words are: the most frequent words in the training set, the

words with highest tagging error rate and the words that belong to closed categories.

Other more selective lexicalization methods could be considered. For instance,

specializing a word in only certain categories. We are not going to make reference to

some preliminary experiments as they have shown that this selective lexicalization

does not improve our lexicalization proposal. Although a selective lexicalization can

reduce the number of parameters in the model, we think that our approach is more

practical and can be easily translated to other corpora.

The lexicalization technique proposed consists of relabeling the original training

data set taking the specialized words into account. This process is carried out on

the training set as follows.

Given the POS tag set C, the vocabulary of the application V, and a training data

set T ⊂ (V × C)∗ composed by tuples of words and POS tags (〈w1, c1〉, . . . , 〈wM, cM〉),
the goal is to get a new training set that includes lexical-contextual infor-

mation.

Let Ws ⊂ V be the word set to be incorporated to the contextual model. Taking

this set into account, a specialization function fs is defined over the training set T
as follows:

fs : T ⊂ (V × C)∗ → T̃ ⊂ (V × C̃)∗

fs(〈wi, ci〉) =

{
〈wi, (wi, ci)〉 if wi ∈ Ws

〈wi, (λ, ci)〉 if wi /∈ Ws

This function produces a new training set T̃ in which a POS tag ci is replaced by

the new tag (wi, ci), if wi is tagged with ci and belongs to the set Ws. If this word
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does not belong to Ws, the POS tag is not changed. In this case, the POS tag has

been represented as (λ, ci)
1, where λ stands for the null string. When this function is

applied, there is an extended set of POS tags C̃ ⊂ ((Ws ∪ λ) × C) that encodes the

desired words.

The main advantage of this specialization technique is that no change is necessary

for either training or tagging processes carried out with a standard HMM approach.

To confirm this, all the experimental work was conducted using the TnT2 tagger

(Brants 2000) without making any modification on it.

5 Tagger description

In a corpus-based tagging system, there are two main phases that can be distin-

guished: the training or learning phase and the tagging phase.

5.1 The learning phase

The learning process of the parameters in equation 2 can be carried out from

labelled corpora – supervised methods – (Church 1988; Weischedel et al. 1993) or

from an unlabelled corpus – unsupervised methods – (Cutting et al. 1992; Chanod

and Tapanainen 1995). In the first case, the model is trained from the relative

frequencies observed. In the second one, the model is learned using the Baum–Welch

algorithm from an initial model which is estimated using labelled corpora (Merialdo

1994). In practice, better results are obtained when supervised methods are used

(Elworthy 1994).

TnT tagger uses a supervised method that estimates the parameters of the model

by Maximum Likelihood from annotated data. Lexical probabilities P (wi|ci) are

calculated by dividing the frequency of the pair 〈wi, ci〉 by the frequency of the

category ci. Contextual probabilities for trigrams are estimated by dividing the

frequency of the sequence (ci, ci−1, ci−2) by the frequency of the sequence (ci−1, ci−2).

To solve sparse data problems, TnT applies a linear interpolation technique

that combines unigram, bigram and trigram information to smooth contextual

probabilities. To handle unknown words, it assigns lexical probabilities based on

a word suffix probabilistic analysis. A detailed description of this tagger can be

consulted in Brants (2000).

We now present an example that clarifies the specialization process on the training

set and the differences between the non-lexicalized and the lexicalized models learnt.

For simplicity, we will show the result of the specialization on a first-order HMM

(see figure 1). This example shows the different contexts where the word “that” can

appear, that is, as a subordinating conjunction (IN3) or as a wh-determiner (WDT).

1 For simplicity, these POS tags are represented as ci in the rest of this paper.
2 TnT is available on the WWW at http://www.coli.uni-sb.de/~thorsten/tnt.
3 The tag “IN” is used in Penn Treebank corpus to label both subordinating conjunctions

and prepositions.
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Fig. 1. An example of the result of lexicalization on a first-order HMM.

To do this, the word “that” is included in the specialized word set (Ws = {that}). In

this example, the training set T, annotated with Penn Treebank POS tags, consists

of the following sentences:
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We/PRP believe/VBP that/IN tagging/NN is/VBZ difficult/JJ.

It/PRP is/VBZ known/VBN that/IN words/NNS are/VBP ambiguous/JJ.

Words/NNS that/WDT are/VBP ambiguous/JJ are/VBP difficult/JJ to/TO tag/VB.

I/PRP read/VBP the/DT book/NN that/WDT won/VBD the/DT award/NN.

This/DT is/VBZ the/DT key/NN of/IN the/DT house/NN.

He/PRP is/VBZ in/IN the/DT house/NN.

She/PRP is/VBZ from/IN Valencia/NNP.

The/DT tagger/NN has/VBZ known/VBN which/WDT tag/NN to/TO assign/VB.

In this case, the application of the specialization function fs on T with the set

Ws produces a specialized training set (T̃) where only the pair that/IN has been

replaced by that/(that,IN), and the pair that/WDT by that/(that,WDT).

Figure 1(a) shows a sample of the first-order HMM (only for the training sequences

marked in italics in the sentences of the example) obtained from the training set

T. Filled states correspond to the categories associated with the specialized word

“that” in the training data T. Figure 1(b) shows how this model is modified when

the new training data T̃ is considered. The state (IN) is split into two states: a

lexicalized state, (that,IN), that only emits the word “that” with lexical probability

equal to one, and the original state (IN) that now does not emit the word “that”.

In a similar way, the state (WDT) is split into two. Thus, the lexicalized model can

distinguish among the different local contexts where the word “that” appears, for

example, between VBP (that,IN) NN and NN (that,WDT) VBP; in the first context,

“that” will be tagged as IN, and, in the second one, as WDT. Therefore, it can be

seen that a Lexicalized HMM represents a more specific modelization for certain

contexts in which the selected words are involved. That is, this technique attempts

to reduce the overgeneration produced by the n-gram models.

5.2 The tagging phase

TnT carries out the tagging process by using the well-known Viterbi algorithm, which

finds the highest probability state sequence for the input sentence. It uses a “beam

search” technique that increases the speed of the tagging process. A correct choice

of the beam-pruning threshold does not significantly affect the tagging accuracy.

We chose a beam-default value of TnT, which has been empirically tested in Brants

(2000). No change is needed in the tagging process for Lexicalized HMMs. You

simply have to apply a function that undoes the specialization previously defined.

This function, fd, directly maps the sequence of output POS tags (which belong to

C̃) to the original POS tag set C.

fd : Ĉ → C
fd(〈wi, ci〉) = ci where wi ∈ (Ws ∪ λ)

6 Experimental work

In this section, we present the evaluation of tagging performance using the models

described above. Our first goal was to contrast HMMs against Lexicalized HMMs.

We considered first-order HMMs (bigrams) and second-order HMMs (trigrams).

In this sense, we defined different lexicalization criteria which are independent
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of the language, and we tested them on English and Spanish corpora. We also

conducted an experimental comparison with the most relevant approaches described

in section 2. Finally, we studied the influence on tagging precision when certain

linguistic resources such as dictionaries (for English) or morphological analyzers

(for Spanish) are used. The experimental work was conducted using the TnT tagger

with default options and without making any modification on its source code.

6.1 Tagging the WSJ Corpus

We used the part of the Wall Street Journal which had been processed in the

Penn Treebank, release 2. This corpus was automatically labelled with POS tags

and manually checked as described in (Marcus et al. 1993). The POS tag set was

composed of 45 different tags.

6.1.1 Lexicalization criteria

To test the different lexicalization criteria proposed, we used sections 00 to 19 of

the Penn Treebank corpus. We divided this data set into two partitions: 90% for

training and 10% for tuning (development set).

We defined three criteria to determine the set of words to be used to specialize

the models. The first one is based on the frequency of the words in the training set

(SWF). The second one only takes into account the words in the training set that

belong to closed categories (SCC). The third one takes into account the words with

tagging error frequency (SEF) calculated on a development data set.

For SWF criterion, we chose the words whose frequency in the training set was

higher than a certain threshold (some words such as proper nouns, punctuation signs

or numbers were not considered4). We specialized the training set and learned the

corresponding lexicalized bigram (BIG-SWF) and trigram (TRI-SWF) models using

these words.

To determine which threshold maximized the performance of the model (that is,

the best set of words to specialize the model), we tuned it on a development partition

with word sets of different sizes.

In figure 2, we show the results obtained with these specialized models on the

development set. The result for zero words corresponds to non-lexicalized models

(96.13% for bigrams and 96.44% for trigrams). The accuracy for BIG-SWF and

TRI-SWF was better than BIG and TRI, respectively. The best result for BIG-SWF

was 96.43% using 286 words (those words whose frequency was higher than 250).

The best precision for TRI-SWF was 96.66% using 31 words (with a frequency higher

than 2000). It can be observed that with a few words (around 30 words), lexicalized

models obtain improvements on the development data set (a 6.2% reduction of

the tagging error using trigrams). On the other hand, the use of more words in

the models reduces the tagging accuracy. We think this is because the number of

4 We also performed some experiments that included these “excluded” words, but this
increased the number of parameters of the models without improving the tagging results.
Another reason to exclude proper nouns and numbers is that we were trying to look for
“common” words that could appear in other corpora.
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Fig. 2. Performance of L-HMM using SWF criterion for different word-set sizes on the

development set.

parameters of the models is larger and thus more poorly estimated for the same

training set. Moreover, due to the fact that the selection of words was only based

on their frequency in the training set, there could be words that do not improve the

precision or that do not appear with sufficient frequency on the development set to

be able to observe some improvement.

The main drawback of this criterion is that the threshold is very dependent on

the training and development sets defined, and it can only be known if a tuning

experiment is carried out in advance.

Therefore, we defined the SCC criterion which is based on more general properties.

In particular, this criterion takes into account only the words from the training set

that belong to closed categories5. The number of these words was 200 and the

precision obtained was 96.34% for bigrams (BIG-SCC) and 96.60% for trigrams

(TRI-SCC). These results were slightly lower than those obtained using the SWF

criterion (96.43% for BIG-SWF and 96.66% for TRI-SWF), but the SCC criterion

is more general and it can be established in advance.

For the third criterion (SEF), we considered the words in the development set

whose error frequency was greater than a certain value. The best results (96.68% for

trigrams and 96.38% for bigrams) were obtained by specializing the words whose

error frequency was greater than 5 (98 words) on the development set using a

non-specialized HMM model.

5 The closed categories considered are: CC, DT, MD, POS, PP$, RP, TO, WDT, WP$, EX,
IN, PDT, PRP, WP, WRB.
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Table 1. Precision results of the ten-fold cross validation for the different criteria

using bigram models on WSJ corpus (sections 00 to 19)

BIG BIG-SWF BIG-SCC BIG-SEF

PART 1 96.17% 96.42% 96.36% 96.37%
PART 2 95.91% 96.26% 96.19% 96.17%
PART 3 95.96% 96.26% 96.12% 96.17%
PART 4 96.13% 96.42% 96.40% 96.35%
PART 5 96.27% 96.47% 96.36% 96.38%
PART 6 95.96% 96.32% 96.18% 96.19%
PART 7 96.24% 96.58% 96.45% 96.47%
PART 8 95.73% 96.07% 95.92% 95.96%
PART 9 95.89% 96.22% 96.15% 96.15%
PART 10 96.14% 96.44% 96.35% 96.39%

AVERAGE 96.04% ± 0.11 96.35% ± 0.09 96.25% ± 0.10 96.26% ± 0.10

Table 2. Precision results of the ten-fold cross validation for the different criteria

using trigram models on WSJ corpus (sections 00 to 19)

TRI TRI-SWF TRI-SCC TRI-SEF

PART 1 96.45% 96.63% 96.62% 96.63%
PART 2 96.25% 96.49% 96.45% 96.45%
PART 3 96.29% 96.51% 96.46% 96.50%
PART 4 96.50% 96.68% 96.68% 96.63%
PART 5 96.60% 96.76% 96.68% 96.62%
PART 6 96.33% 96.54% 96.49% 96.44%
PART 7 96.49% 96.69% 96.69% 96.68%
PART 8 96.08% 96.33% 96.28% 96.23%
PART 9 96.32% 96.52% 96.51% 96.43%
PART 10 96.45% 96.65% 96.60% 96.68%

AVERAGE 96.38% ± 0.09 96.58% ± 0.08 96.55% ± 0.08 96.53% ± 0.09

To better contrast the different criteria, we conducted a ten-fold cross validation

experiment using the entire data set (sections 00 to 19). Each experimental partition

consisted of 90% of the data set for training and 10% for the test set. The data

test sets were completely different in the different partitions, and so the entire data

set was used as a test set. We chose the specialized word sets that were selected in

the experiments reported above, without tuning the models in every experiment. We

made this decision in order to test the behaviour of these specialized word sets in a

more extensive data test.

Tables 1 and 2 show the cross validation results for bigrams and trigrams,

respectively. In both cases, the best model (SWF) achieved significant differences

with respect to the non-lexicalized one at 95% confidence level6 (see figure 3).

6 We calculated the confidence interval by using the formula P ± 1.96
√

s2

10
, where P is the

average precision and s2 is the variance.
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Table 3. Total word precision and unknown word precision for HMM and L-HMM

models on WSJ corpus (Training set: sections 00 to 19; Test set: sections 23 and 24)

Total Known Unknown
Model words words words |C̃| |Ws|

BIG 96.28% 96.60% 84.67% 45 0
BIG-SCC 96.52% 96.86% 83.92% 535 200
BIG-SWF 96.71% 97.04% 84.46% 831 286
BIF-SEF 96.50% 96.83% 84.42% 342 98

TRI 96.58% 96.90% 85.17% 45 0
TRI-SCC 96.77% 97.09% 85.29% 535 200
TRI-SWF 96.80% 97.10% 85.38% 144 31
TRI-SEF 96.74% 97.06% 85.21% 342 98

Fig. 3. Confidence intervals for the compared models using 00-19 sections of WSJ corpus.

To show that lexicalized criteria behave in a similar way on a new data set, we

defined a training set consisting of sections 00 to 19 (956,549 words) and a test set

that included sections 23 and 24 (89,529 words). We chose the same specialized word

sets that were selected in the tuning experiments reported above. We learned both

bigram (BIG) and trigram (TRI) models from this training set. With these models,

TnT achieved an accuracy of 96.28% (BIG) and 96.58% (TRI). These results were

considered as the baseline system to contrast with the lexicalized models. Table 3

shows the total precision results, distinguishing between known and unknown word

precision. In addition, it shows the size of the output tag set (|C̃|) and the size of
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the selected word set (|Ws|). It can be observed that lexicalization improved tagging

precision in all cases. The best results were obtained again using SWF models

obtaining an error tagging reduction of 11.6% for BIG-SWF and an error tagging

reduction of 6.4% for TRI-SWF.

This experimental result shows that, in some cases, lower-order HMMs performed

as well as higher-order HMMs (for instance, 96.71% for BIG-SWF vs. 96.58% for

TRI on this test set, or 96.35% for BIG-SWF vs. 96.38% for TRI on the cross-

validation). Although the number of parameters for a lexicalized bigram is much

bigger than for a non-lexicalized trigram, the lexicalized model includes more features

(selected words) in the context. This shows the importance of the selection of these

features. We think that this behaviour should be studied more in detail in future

works. This could provide a selective method that allows us to include more features

without overly increasing the size of the models.

For the bigram model, the error tagging reduction (11.6%) was higher than

the result presented in (Kim et al. 1999) (about 5% of error reduction). Kim’s

approach uses a more sophisticated lexicalization method based on the computation

of transition vectors for each state. Although the amount of data used was similar,

these results are not directly comparable because Kim tested his approach on a

different corpus (the Brown corpus).

Finally, we conducted additional experiments combining the different specialized

word sets defined above. We combined them using the set operations union and

intersection. None of these experiments achieved significant improvements. The best

result for trigrams on the test set was 96.85% using the specialized word set defined

as (WSCC ∩ WSEF) ∪ WSWF. This set is composed by the following 64 words. (The

words that belong to WSWF are typed in bold.)

a, about, ago, all, along, an, and, are, as, at, back, be, because, both, by, company, do,

down, either, enough, for, from, further, had, half, has, have, he, in, is, it, its, later, left,

less, long, million, more, most, much, next, no, of, off, on, one, only, or, out, over, plus,

said, so, that, the, there, to, up, was, what, which, will, with, year

Unfortunately, when this combination was applied to different data sets, e.g. in the

development data set, no improvement was achieved. We think that a more extensive

study (from the linguistic point of view) of the words that might be significant to

the lexicalization process could be done. In particular, it would be important to

determine how words belonging to open categories influence this process and which

words included in closed categories are more relevant.

6.2 Comparison with other approaches

The results presented in section 6.1 are in line with the best tagging results

reported in the literature on the WSJ corpus. However, these results cannot be

reliably interpreted because the experimental conditions were different. Therefore,

we performed some experiments in order to compare our system to other current

tagging approaches under the same experimental conditions. We used the training
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Table 4. Comparison among different taggers on WSJ corpus (Training set: sections

00 to 19; Test set: sections 23 and 24)

Total Known Unknown Training Testing
Tagger words words words time speed

TRI-SWF 96.80% 97.10% 85.38% 20 sec. 18,000 w/s
ME 96.92% 97.24% 85.29% 1 day 70 w/s
TBL 96.47% 96.84% 83.12% 9 days 750 w/s
MBL 96.45% 96.82% 83.18% 4.5 min. 11,200 w/s

and test set defined in section 6.1. The parameters of all taggers were set to optimize

the tagging accuracy, but not the training and test time. The experiments for TRI-

SWF, TBL7 and ME8 were run on a Pentium 266 Mhz with 256MB of RAM. The

results for MBL were provided by Walter Daelemans on the same data sets.

Table 4 shows the results of the comparison among these different taggers. We

calculated tagging precision (for all words, known words and unknown words),

training time and tagging speed (words per second) including file I/O. It can be

observed that lexicalized models (TRI-SWF) performed better than TBL and MBL

achieving significant differences at the 95% level of confidence9. Only ME achieved

a precision (96.92% ± 0.11%) which was slightly better than TRI-SWF (96.80% ±
0.11%), but it is not significant at 95% level of confidence (see figure 4). It can

also be observed that ME achieved a higher precision than TRI-SWF for known

words (97.24% against 97.10%), but that TRI-SWF achieved a precision which was

slightly better than ME for unknown words (85.38% against 85.29%). On the other

hand, the training time and testing time for ME were much higher than TRI-SWF.

This is an important aspect to be taken into account when we plan to incorporate

a tagger to a NLP system, because the tagging speed must be very fast in order to

construct efficient on-line applications.

6.3 Study of the lexicalization for difficult words

We also studied the effect of the lexicalization on the highest error-rate words in the

test set. We compared the absolute tagging error number for these words, for the

different tagging approaches compared.

The words whose error rates were improved by the Lexicalized HMM are listed

in table 5, and the words whose error rates were not improved are listed in table 6.

For both tables, the three first columns show the words and their corresponding

frequencies in the training and test sets. The rest of the columns correspond to

7 Available at ftp://ftp.cs.jhu.edu/pub/brill/Programs/. A TBL toolkit (fnTBL), developed
by the NLP group at Johns Hopkins University, has recently become available at
http://nlp.cs.jhu.edu/˜tbl–toolkit.html

8 Available at ftp://ftp.cis.upenn.edu/pub/adwait/jmx/
9 If the experiment is run only one time, the confidence interval is estimated by using the

formula P ± 1.96
√

P (1 −P )
N

, where P is the precision and N is the number of samples in the

test data set.
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Fig. 4. Confidence intervals for the compared approaches.

the absolute tagging error produced by the different taggers. With respect to

the specialized words, the words that and as decreased the error rate and no

improvements were obtained for the words do and on. Other difficult words, such

as about, ago, as, out, up, etc., were more accurately disambiguated with respect to

the non-lexicalized model. The improvement of the accuracy using TRI-SWF with

respect to TRI models was mainly due to the improvements obtained in the words

presented in table 5. In general, the number of errors produced by the lexicalized

models are in line with or better than the other approaches compared.

6.4 A finer comparison between ME and HMM

Having seen the results presented above, we decided to perform a finer comparison

between the approaches that achieved the best results, that is, ME and TRI-SWF.

We conducted a ten-fold cross validation experiment in order to better contrast

the systems. Again, we used sections 00 to 19 as data set and each experimental

partition consisted of 90% of this data set as the training data and 10% for the

test set. As we have seen in figure 3, the differences among the tested criteria were

not significant and we used the set of words obtained with the best criterion (SWF).

This set of words was the same in every partition.

Table 7 show the results10 of this experiment. From these results we can draw the

following conclusions. First, the TRI-SWF model reduced the error tagging about

10 We also tested TRI-SCC and TRI-SEF criteria obtaining less improvements than TRI-SWF.



Improving part-of-speech tagging using lexicalized HMMs 183

Table 5. Comparison of the tagging error number for the highest error-rate words

on the test set, for different tagger approaches. Only the words whose absolute error

number has been improved by TRI-SWF model with respect to TRI model are shown

Words Ftrain Ftest TRI TRI-SWF TBL ME MBT

’s 9341 903 16 12 17 14 15
about 2063 258 104 93 104 90 98
ago 452 55 17 14 17 15 16
airlines 32 31 20 19 19 16 18
as 4242 461 48 17 15 28 24
back 439 50 23 20 14 10 16
both 375 48 14 11 10 13 10
called 277 35 11 10 6 8 8
capital-gains 75 17 15 14 2 3 4
close 307 43 11 10 6 8 10
communications 50 18 11 9 6 8 7
down 697 94 51 46 52 39 51
ended 299 26 11 8 8 10 11
estimated 201 19 8 3 3 6 2
firm 457 50 9 7 8 6 5
further 244 28 10 9 12 13 10
had 1749 175 8 6 9 7 8
late 297 27 14 10 6 7 6
no 722 79 9 6 8 4 7
off 508 62 14 12 21 14 15
one 1410 149 11 8 10 8 13
out 1011 98 39 21 16 19 29
proposed 211 20 11 10 6 9 7
right 250 28 9 7 4 8 4
securities 418 73 18 17 13 14 15
selling 245 43 9 6 10 7 10
so 628 79 20 11 12 14 11
that 8063 831 88 60 62 94 73
trading 1065 97 20 16 16 14 15
up 1696 146 46 33 36 51 38

6% with respect to the non-lexicalized model TRI. Second, the difference in the total

tagging precision between TRI-SWF (96.58%) and ME (96.63%) was insignificant

(only an 0.05%). This difference was similar for both known and unknown words.

Finally, we performed an additional experiment in order to test our lexicalized

approach in ME. We performed the ten-fold cross validation obtaining a tagging

precision of 96.68% (an improvement only of 0.05%). We think this is because ME

already includes words in the definition of certain features. Nevertheless, we think

this is an open question and an area to be studied more in depth.

6.5 Using the lexicon

It is known that the use of dictionaries improves the accuracy of the taggers. In

this sense, we have incorporated a supervised lexicon into the system. We used a

POS tag dictionary extracted from the full Penn Tree Bank. Due to errors in corpus

annotation, this lexicon was filtered in (Márquez et al. 2000) by manually checking

the entries for the most frequent 200 words in the corpus (these words cover over

half of it). Although in most cases the checking was done by filtering out wrong
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Table 6. Comparison of the tagging error number for the highest error-rate words

on the test set, for different tagger approaches. Only the words whose absolute error

number has not been improved by TRI-SWF model with respect to TRI model are

shown

Words Ftrain Ftest TRI TRI-SWF TBL ME MBT

all 1065 113 13 17 13 14 14
around 259 36 8 9 9 13 9
chief 537 58 16 16 15 15 18
deficit-reduction 19 13 8 8 0 6 4
do 940 104 9 11 8 8 8
executive 539 60 13 17 17 13 13
farmers 60 17 14 14 14 13 10
half 253 24 11 13 11 11 11
in 15379 1641 24 24 24 18 22
less 365 39 8 11 10 13 11
machines 93 25 9 9 9 7 8
markets 379 61 10 10 6 6 4
more 1905 198 33 35 35 43 42
most 792 104 13 13 13 15 7
much 662 75 19 21 22 23 20
only 930 86 8 8 8 8 5
on 5162 507 13 17 11 11 18
over 879 82 8 9 5 5 8
p.m. 43 15 9 9 9 4 8
sell 466 55 8 8 6 7 7

Table 7. Precision results of the ten-fold cross validation

TRI TRI-SWF ME

PART 1 96.45% 96.63% 96.74%
PART 2 96.25% 96.49% 96.54%
PART 3 96.29% 96.51% 96.57%
PART 4 96.50% 96.68% 96.63%
PART 5 96.60% 96.76% 96.82%
PART 6 96.33% 96.54% 96.58%
PART 7 96.49% 96.69% 96.73%
PART 8 96.08% 96.33% 96.28%
PART 9 96.32% 96.52% 96.61%
PART 10 96.45% 96.65% 96.77%

AVERAGE 96.38% 96.58% 96.63%

AVG-known-words 96.75% 96.96% 97.00%
AVG-unknown-words 85.22% 85.48% 85.53%

tags, there are some entries for which some missing readings were also added. The

use of this lexicon is equivalent to having a morphological analyzer that provides

the tagger with all the possible tags for every known word. This assumption, which

significantly improves the tagging performance, has been used in different works

(Márquez et al. 2000; Pla et al. 2000).

This dictionary did not include statistics from the corpus, that is, frequency of

words, of categories, of words per category, etc. This information was only extracted
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Table 8. Precision results for HMM and Lexicalized HMM models, using the

Lexicon, on WSJ corpus (Training set: sections 00 to 19; Test set: sections 23

and 24)

Total Known Unknown
Model words words words

Using the lexicon only for KNOWN words

BIG 96.47% 96.80% 84.79%
BIG-SCC 96.72% 97.08% 83.88%
BIG-SWF 96.93% 97.27% 84.33%
BIF-SEF 96.69% 97.03% 84.38%

TRI 96.79% 97.11% 85.29%
TRI-SCC 96.98% 97.31% 85.33%
TRI-SWF 96.99% 97.31% 85.38%
TRI-SEF 96.95% 97.27% 85.33%

Using the lexicon both for KNOWN and UNKNOWN words

BIG-SWF 97.33% 97.28% 99.21%
TRI-SWF 97.38% 97.32% 99.25%

from the training set. We took into account the lexicon to modify these statistics as

follows11:

• If the word was unknown in the training set, TnT assigned a lexical probability

for every possible POS given by the lexicon using a smoothing method based

on the suffix of the words.

• If the word was known in the training set, we modified the lexical model

estimated by TnT as follows:

1. If the lexicon gave a POS which was not seen in the training set for the

word, we incorporated an entry to the lexical model. This entry associated

the POS with the word setting the frequency equal to 1, and we added 1

to the total frequency of the word.

2. If the lexical model gave a POS that did not appear in the lexicon, we

removed the POS for this word from the lexical model, and we subtracted

its frequency from the total frequency of the word.

Table 8 shows how the use of this lexicon outperformed the tagging precision in all

the experiments conducted. This improvement was about 0.2% in all the models. We

only used this lexicon for known words on the different lexicalized models presented

in section 6.1. We did this as the supervised lexicon is not a complete dictionary. In

general, it only provides the POS seen in the corpus for every word. For this reason,

in the experiments conducted, unknown words had a low ambiguity ratio and, in

general, they were correctly disambiguated, which is not a real situation. The use

11 We used this simple approach to avoid to modify the source code of TnT tagger.



186 F. Pla and A. Molina

Table 9. Precision results on LexEsp corpus using HMM and Lexicalized HMM with

SCC criterion

TnT TnT+MACO

Total Known Unknown Total Known Unknown
Model words words words words words words

BIG 95.2% 97.4% 84.0% 96.8% 97.3% 94.2%
BIG-SCC 95.3% 97.5% 84.3% 96.9% 97.5% 94.0%
TRI 95.4% 97.4% 85.4% 96.9% 97.4% 94.7%
TRI-SCC 95.5% 97.5% 85.1% 97.0% 97.4% 94.8%

of this lexicon for both known and unknown words improved the performance by

0.4% as can be see in table 8.

6.6 Tagging the LexEsp corpus

For Spanish, we used the LexEsp corpus. It contains 5.5 million words of written

material, including general news, sports news, literature, etc. This corpus only has

96,000 manually disambiguated words. The tag set contains 62 tags. The percentage

of ambiguous words is 39.26% and the average ambiguity ratio is 2.63 tags/word

for the ambiguous words (1.64 overall). In this experiment, we chose the SCC

lexicalization criterion presented above, that is, the words that belong to closed

categories from the training set (45 words). We did not choose the SWF criterion

because we did not have enough data to tune the lexicalized model.

We conducted a ten-fold cross validation and the results are summarized in

table 9. We show the total and unknown word tagging precision obtained using TnT

tagger for different order HMMs. The total tagging precision was lower than the

precision obtained for English. This is mainly due to the high error rate for unknown

words. The method used by TnT to handle unknown words is based on word-suffix

analysis. This method does not seem to work well for languages such as Spanish,

which presents a morphology which is more complex than English. To solve this

inconvenience, we used the Spanish morphological analyzer maco+(Carmona et al.

1998) as guesser. We can see the improvements obtained in table 9. Lexical model

was modified following the method described in section 6.5.

It can also be observed that lexicalized models outperformed non-lexicalized ones,

but the differences were not significant at 95% confidence level, maybe because the

training data were insufficient.

7 Conclusions

We have presented a method to build Lexicalized HMMs by incorporating a set of

words to the contextual model. We have followed three different criteria: the most

frequent words in the training set (SWF), the words that belong to closed categories

(SCC) and the words with the highest error frequency (SEF). These criteria can be

applied automatically to any training set, independently of the language or the tag

set used.
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In all the experiments conducted, the Lexicalized HMM outperformed the standard

HMM tagger. For English, the lexicalization obtained about 6% reduction of the

tagging error using the SWF criterion. This increment in the tagging precision

is better than the results presented in other works which use more sophisticated

lexicalization methods. We think that a more extensive study of the words that

might be significant to the lexicalization could improve the performance of these

models. In particular, it would be important to determine how words belonging to

open categories influence this process and which words included in closed categories

are more relevant.

It would also be interesting to continue research on more selective lexicalization

methods that would allow us to include more features without overly increasing the

size of the models. This is an important aspect of study in the field of Language

Modeling. More work is necessary to contrast our approach using other corpora for

the tagging problem or in other tasks that need a language model, such as speech

recognition, machine translation, etc.

The exhaustive experimental comparison conducted shows that our approach

(Lexicalized HMMs) outperforms other current approaches (MBL and TBL) and

yields results of precision which are comparable to the ME approach. Our approach

also clearly outperforms the training and testing time, so that the incorporation

of the tagger to help other tasks such as parsing, machine translation, information

retrieval, etc., does not seriously affect the efficiency of these systems.

Although the direct application of this technique in other tagging approaches

(such as ME) did not significantly improve the tagging precision, we think that it

would be interesting to study the way to adapt this technique to other paradigms.

The definition of other lexicalization criteria from a linguistic point of view may

enrich this technique. Finally, this technique can also be applied to other NLP tasks

which can be treated as classification problems. For example, an adaptation of this

technique (Molina and Pla 2002) has been successfully applied to the chunking

problem.
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