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Abstract
With a recent quick development of a molecu-
lar biology domain the Information Extraction
(IE) methods become very useful. Named Entity
Recognition (NER), that is considered to be the
easiest task of IE, still remains very challenging
in molecular biology domain because of the com-
plex structure of biomedical entities and the lack
of naming convention. In this paper we apply
two popular sequence labeling approaches: Hid-
den Markov Models (HMMs) and Conditional
Random Fields (CRFs) to solve this task. We ex-
ploit different stategies to construct our biomed-
ical Named Entity (NE) recognizers which take
into account special properties of each approach.
Although the CRF-based model has obtained
much better results in the F-score, the advantage
of the CRF approach remains disputable, since
the HMM-based model has achieved a greater re-
call for some biomedical classes. This fact makes
us think about a possibility of an effective com-
bination of these models.
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1 Introduction

Recently the molecular biology domain has been get-
ting a massive growth due to many discoveries that
have been made during the last years and due to a
great interest to know more about the origin, struc-
ture and functions of living systems. It causes to ap-
pear every year a great deal of articles where scientific
groups describe their experiments and report about
their achievements.

Nowadays the largest biomedical database resource
is MEDLINE that contains more than 14 millions of
articles of the world’s biomedical journal literature and
this amount is constantly increasing - about 1,500 new
records per day [1]. To deal with such an enormous
quantity of biomedical texts different biomedical re-
sources as databases and ontologies have been created.

Actually NER is the first step to order and structure
all the existing domain information. In molecular biol-
ogy it is used to identify within the text which words
or phrases refer to biomedical entities, and then to
classify them into relevant biomedical concept classes.

Although NER in molecular biology domain has
been receiving attention by many researchers for a
decade, the task remains very challenging and the re-
sults achieved in this area are much poorer than in the
newswire one.

The principal factors that have made the biomed-
ical NER task difficult can be described as follows [11]:

(i) Different spelling forms existing for one en-
tity (e.g. “N-acetylcysteine”, “N-acetyl-cysteine”,
“NacetylCysteine”).

(ii) Very long descriptive names. For example, in
the Genia corpus (which will be described in Section
3.1) the significant part of entities has length from 1
to 7.

(iii) Term share. Sometimes two entities share the
same words that usually are headnouns (e.g. “T and
B cell lines”).

(iv) Cascaded entity problem. There exist many
cases when one entity appears inside another one (e.g.
< PROTEIN >< DNA > kappa3 < /DNA >
bindingfactor < /PROTEIN >) that lead to certain
difficulties in a true entity identification.

(v) Abbreviations, that are widely used to shorten
entity names, create problems of its correct classifica-
tion because they carry less information and appear
less times than the full forms.

This paper aims to investigate and compare a per-
formance of two popular Natural Language Processing
(NLP) approaches: HMMs and CRFs in terms of their
application to the biomedical NER task. All the ex-
periments have been realized using a JNLPBA version
of Genia corpus [2].

HMMs [6] are generative models that proved to be
very successful in a variety of sequence labeling tasks
as Speech recognition, POS tagging, chunking, NER,
etc.[5, 12]. Its purpose is to maximize the joint proba-
bility of paired observation and label sequences. If, be-
sides a word, its context or another features are taken
into account the problem might become intractable.
Therefore, traditional HMMs assume an independence
of each word from its context that is, evidently, a
rather strict supposition and it is contrary to the fact.
In spite of these shortcomings the HMM approach of-
fers a number of advantages such as a simplicity, a
quick learning and also a global maximization of the
joint probability over the whole observation and label
sequences. The last statement means that the deci-

1



sion of the best sequence of labels is made after the
complete analysis of an input sequence.

CRFs [3] is a rather modern approach that has al-
ready become very popular for a great amount of NLP
tasks due to its remarkable characteristics [9, 4, 8].
CRFs are indirected graphical models which belong to
the discriminative class of models. The principal dif-
ference of this approach with respect to the HMM one
is that it maximizes a conditional probability of labels
given an observation sequence. This conditional as-
sumption makes easy to represent any additional fea-
ture that a researcher could consider useful, but, at
the same time, it automatically gets rid of the prop-
erty of HMMs that any observation sequence may be
generated.

This paper is organized as follows. In Section 2 a
brief review of the theory of HMMs and CRFs is in-
troduced. In Section 3 different strategies of building
our HMM-based and CRF-based models are presented.
Since corpus characteristics have a great influence on
the performance of any supervised machine-learning
model the first part of Section 3 is dedicated to a de-
scription of the corpus used in our work. In Section 4
the performances of the constructed models are com-
pared. Finally, in Section 5 we draw our conclusions
and discuss the future work.

2 HMMs and CRFs in sequence

labeling tasks

Let x = (x1x2...xn) be an observation sequence of
words of length n. Let S be a set of states of a finite
state machine each of which corresponds to a biomed-
ical entity tag t ∈ T . We denote as s = (s1s2...sn) a
sequence of states that provides for our word sequence
x some biomedical entity annotation t = (t1t2...tn) .

HMM-based classifier belongs to naive Bayes
classifiers which are founded on a joint probability
maximization of observation and label sequences:

P (s,x) = P (x|s)P (s)

In order to provide a tractability of the model tradi-
tional HMM makes two simplifications. First, it sup-
poses that each state si only depends on a previous
one si−1. This property of stochastic sequences is also
called a Markov property. Second, it assumes that
each observation word xi only depends on the current
state si. With these two assumptions the joint proba-
bility of a state sequence s with observation sequence
x can be represented as follows:

P (s,x) =

n
∏

i=1

P (xi|si)P (si|si−1) (1)

Therefore, the training procedure is quite simple for
HMM approach, there must be evaluated three prob-
ability distributions:

(1) initial probabilities P0(si) = P (si|s0) to begin
from a state i;

(2) transition probabilities P (si|si−1) to pass from
a state si−1 to a state si;

(3) observation probabilities P (xi|si) of an appear-
ance of a word xi in a position si.

All these probabilities may be easily calculated using
a training corpus.

The equation (1) describes a traditional HMM
classifier of the first order. If a dependence of each
state on two proceding ones is assumed a HMM
classifier of the second order will be obtained:

P (s,x) =
n
∏

i=1

P (xi|si)P (si|si−1, si−2) (2)

CRFs are undirected graphical models. Although
they are very similar to HMMs they have a different
nature. The principal distinction consists in the fact
that CRFs are discriminative models which are trained
to maximize the conditional probability of observa-
tion and state sequences P (s|x). This leads to a great
diminution of a number of possible combinations be-
tween observation word features and their labels and,
therefore, it makes possible to represent much addi-
tional knowledge in the model. In this approach the
conditional probability distribution is represented as a
multiplication of feature functions exponents:

Pθ(s|x) =
1

Z0
exp

(

n
∑

i=1

m
∑

k=1

λkfk(si−1, si,x)+

+
n
∑

i=1

m
∑

k=1

µkgk(si,x)

)
(3)

where Z0 is a normalization factor of all state se-
quences, fk(si−1, si,x), gk(si,x) are feature functions
and λk,µk are learning weights of each feature func-
tion. Although, in general, feature functions can be-
long to any family of functions, we consider the sim-
plest case of binary functions.

Comparing equations (1) and (3) there may be
seen a strong relation between HMM and CRF ap-
proaches: feature functions fk together with its
weights λk are some analogs of transition probabil-
ities in HMMs while functions µkfk are observation
probability analogs. But in contrast to the HMMs,
the feature functions of CRFs may not only depend
on the word itself but on any word feature, which is
incorporated into the model. Moreover, transition fea-
ture functions may also take into account both a word
and its features as, for instance, a word context.

A training procedure of the CRF approach consists
in the weight evaluation in order to maximize a condi-
tional log likelihood of annotated sequences for some
training data set D = (x, t)(1), (x, t)(2), ..., (x, t)(|D|)

L(θ) =
|D|
∑

j=1

logPθ(t
(j)|x(j))

We have used CRF++ open source 1 which imple-
mented a quasi-Newton algorithm called LBFGS for
the training procedure.

1 http://www.chasen.org/ taku/software/CRF++/
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3 Biomedical NE recognizers

description

Biomedical NER task consists in the detecting in a
raw text biomedical entities and assigning them to one
of the existing entity classes. In this section the two
biomedical NE recognizers, we constructed, based on
the HMM and CRF approaches will be described.

3.1 JNLPBA corpus

Any supervised machine-based model depends on a
corpus that has been used to train it. The greater and
the more complete the training corpus is, the more
precise the model will be and, therefore, the better re-
sults can be achieved. At the moment the largest and,
therefore, the most popular biomedical annotated cor-
pus is Genia corpus v. 3.02 which contains 2,000 ab-
stracts from the MEDLINE collection annotated with
36 biomedical entity classes. To construct our model
we have used its JNLPBA version that was applied
in the JNLPBA workshop in 2004 [2]. In Table 1 the
main characteristics of the JNLPBA training and test
corpora are illustrated.

Table 1: JNLPBA corpus characteristics
Characteristics Training Test

corpus corpus
Number of abstracts 2,000 404
Number of sentences 18,546 3,856
Number of words 492,551 101,039
Number of biomed. tags 109,588 19,392
Size of vocabulary 22,054 9,623
Years of publication 1990-1999 1978-2001

The JNLPBA corpus is annotated with 5 classes of
biomedical entities: protein, RNA, DNA, cell type and
cell line. Biomedical entities are tagged using the IOB2
notation that consists of 2 parts: the first part indi-
cates whether the corresponding word appears at the
beginning of an entity (tag B) or in the middle of it
(tag I); the second part refers to the biomedical entity
class the word belongs to. If the word does not belong
to any entity class it is annotated as “O”. In Fig. 1
an extract of the JNLPBA corpus is presented in or-
der to illustrate the corpus annotation. In Table 2 a
tag distribution within the corpus is shown. It can be
seen that the majority of words (about 80%) does not
belong to any biomedical category. Furthermore, the
biomedical entities themselves also have an irregular
distribution: the most frequent class (protein) con-
tains more than 10% of words, whereas the most rare
one (RNA) only 0.5% of words. The tag irregularity
may cause a confusion among different types of enti-
ties with a tendency for any word to be referred to the
most numerous class.

Table 2: Entity tag distribution in the training corpus
Tag cell cell no-

name Protein DNA RNA type line entity
Tag

distr.% 11.2 5.1 0.5 3.1 2.3 77.8

Fig. 1: Example of the JNLPBA corpus annotation

3.2 Feature set

As it is rather difficult to represent in HMMs a rich
set of features and in order to be able to compare
HMM and CRF models under the same conditions
we have not applied such commonly used features
as orthografic or morphological ones. The only ad-
ditional information we have exploited are parts-of-
speech (POS) tags.

The set of POS tags was supplied by the Genia Tag-
ger2. It is significant that this tagger was trained on
the Genia corpus in order to provide better results
in the biomedical texts annotation. As it has been
shown by [12], the use of the POS tagger adapted to
the biomedical task may greatly improve the perfor-
mance of the NER system than the use of the tagger
trained on any general corpus as, for instance, Penn
TreeBank.

3.3 Two different strategies to build
HMM-based and CRF-based
models

As we have already mentioned, CRFs and HMMs have
principal differences and, therefore, distint method-
ologies should be employed in order to construct the
biomedical NE recognizers based on these models.

Due to their structure, HMMs cause certain incon-
viniences for feature set representation. The simplest
way to add a new knowledge into the HMM model is to
specialize its states. This strategy was previously ap-
plied to other NLP tasks, such as POS tagging, chunk-
ing or clause detection and proved to be very effective
[5].

Thus, we have employed this methodology for the
construction of our HMM-based biomedical NE recog-
nizer. States specialization leads to the increasing of
a number of states and to adjusting each of them to
certain categories of observations. In other words, the
idea of specialization may be formulated as a spliting
of states by means of additional features which in our
case are POS tags.

In our HMM-based system the specialization strat-
egy using POS information serves both to provide an
additional knowledge about entity boundaries and to
diminish an entity class irregularity. As we have seen

2 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

3



in Section 3.1, the majority of words in the corpus does
not belong to any entity class. Such data irregularity
can provoke errors, which are known as false negatives,
and, therefore, may diminish the recall of the model.
It means that many biomedical entities will be clas-
sified as non-entity. Besides, there also exists a non-
uniform distribution among biomedical entity classes:
e.g. class “protein” is more than 100 times larger than
class “RNA” (see Table 2).

We have constructed three following models based
on HMMs of the second order (2):

(1) only the non-entity class has been splitted;
(2) the non-entity class and two most numerous en-

tity categories (protein and DNA) have been splitted;
(3) all the entity classes have been splitted.

It may be observed that each following model in-
cludes the set of entity tags of the previous one. Thus,
the last model has the greatest number of states.

Besides, we have carried out various experimens
with a different number of boundary tags, and we have
concluded that only adding two tags (E - end of an en-
tity and S - a single word entity) to a standard set of
boundary tags, supplied by the JNLPBA corpus an-
notation, can notably improve the performance of the
HMM-based model.

Consequently, each entity tag of our models con-
tains the following components:

(i) entity class (protein, DNA, RNA, etc.);
(ii) entity boundary (B - beginning of an entity, I -

inside of an entity, E - end of an entity, S - a single
word entity);

(iii) POS information.

With respect to the CRF approach, the specializa-
tion strategy seems to be rather absurd, because it
was exactly developed to be able to represent a rich
set of features. Therefore, instead of increasing of the
states number the greater quantity of feature func-
tions corresponding to each word should be used. Our
CRF-based NE recognizer along with the POS tags in-
formation employes also context features in a window
of 5 words.

4 Experiments

The standard evaluation metrics used for classification
tasks are next three measures:

(1) Recall (R) which can described as a ratio be-
tween a number of correctly recognized terms and all
the correct terms;

(2) Precision (P) that is a ratio between a number
of correctly recognized terms and all the recognized
terms;

(3) F-score (F), introduced by [10], is a weighted
harmonic mean of recall and precision which is calcu-
lated as follows:

Fβ =
(1 + β2) ∗ P ∗ R

β2 ∗ P + R
(4)

where β is a weight coefficient used to control a ra-
tio between recall and precision. As a majority of re-
searchers we will exploit an unbiased version of F-score
- F1 which establish an equal importance of recall and
precision.

The first experiments we have carried out were de-
voted to compare our three HMM-based models in
order to analyze what entity class splitting provides
the best performance. In Table 3 our baseline (i.e.,
the model without class balancing procedure) is com-
pared with our three models. Although all our models
have improved the baseline, there is a significant differ-
ence between the first model and the other two models,
which have shown rather similar results.

Table 3: Comparison of the influence of different sets
of POS to the HMM-based system performance

Model Tags Recall, Precision, F-score
number % %

Baseline 21 63.7 60.2 61.9
Model 1 40 68.4 61.4 64.7
Model 2 95 69.1 62.5 65.6
Model 3 135 69.4 62.4 65.7

In Table 4 the results we obtained with our CRF-
based system are presented. Here, the baseline model
takes into account only words and their context fea-
tures. Model 1 is the final model which uses also POS-
tag information.

Table 4: The CRF-based system performance
Model Recall, % Precision, % F-score
Baseline 61.9 72.2 66.7
Model 1 66.4 71.1 68.7

At first glance, if only the F-score values are com-
pared, the CRF-based model outperforms the HMM-
based one with a significant difference (3 points). How-
ever, when the recall and precision are compared their
opposite behaviour may be noticed : for the HMM-
based model the recall almost always is higher than
the precision whereas for the CRF-based model the
contrary is true.

In Tables 5, 6 recall and precision values of the de-
tection of two biomedical entities “protein” and “cell
type” for the HMM and the CRF approaches are pre-
sented. The analysis of these tables shows the higher
effectiveness of HMMs in finding as many biomedical
entities as possible and their failure in the correctness
of this detection. CRFs are more foolproof models but,
as a result, they commit a greater error of the second
order: the omission of the correct entities.

Table 5: Recall values of a detection of “protein” and
“cell type” for the HMM and the CRF medels

Method Protein cell type
HMM 73.4 67.5
CRF 69.8 60.9

4



Table 6: Precision values of a detection of “protein”
and “cell type” for the HMM and the CRF models

Method Protein cell type
HMM 65.2 65.9
CRF 70.2 79.2

The certain advantage of the CRF model with re-
spect to the HMM one could also be disputed by the
fact that the best biomedical NER system [12] is prin-
cipally based on the HMMs. Nevertheless, the com-
parison does not seem rather fair, because this sys-
tem, besides exploiting a rich set of features, employes
some deep knowledge resources and techniques such
as biomedical databases (SwissProt and LocusLink)
and a number of post-processing operations consisting
of different heuristic rules in order to correct entity
boundaries.

Summarizing the obtained results we can conclude
that the possibility of an effective combination of
CRFs and HMMs would be very beneficial. Since gen-
erative and discriminative models have different na-
ture, it is intuitive, that their integration might allow
to capture more information about the object under
investigation. The example of a successful combina-
tion of these methods can be a Semi-Markov CRF
approach which was developed by [7] and is a con-
ditionaly trained version of semi-Markov chains. This
approach proved to obtain better results on some NER
problems than CRFs.

5 Conclusions

In this paper we have presented two biomedical NE
recognizers based on the HMM and CRF approaches.
Both models have been constructed with the use of
the same additional information in order to compare
fairly their performance under the same conditions.
Since CRFs and HMMs belong to different families of
classifiers two distint strategies have been applied to
incorporate an additional knowledge into these mod-
els. For the former model a methology of states spe-
cialization has been used whereas for the latter one
all additional information has been presented in the
feature functions of words.

The comparison of the results has shown a better
performance of the CRF approach if only F-scores of
both models are compared. If also the recall and the
precision are taken into account the advantage of one
method with respect to another one does not seem so
evident. In order to improve the results, a combination
of both approaches could be very useful. As future
work we plan to apply a Semi-Markov CRF approach
for the biomedical NER model construction and also
investigate another possibility of the CRF-based and
the HMM-based models integration.
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