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Abstract. We introduce a compositional characterization of the op-
erational semantics of equational Horn programs. Then we show that
this semantics and the standard operational semantics based on (ba-
sic) narrowing coincide. We define an abstract narrower mimicking this
semantics, and show how it can be used as a basis for efficient AND-
compositional program analysis. As an application of our framework, we
show a compositional analysis to detect the unsatisfiability of an equa-
tion set with respect to a given equational theory. We also show that our
method allows us to perform computations and analysis incrementally
in a Constraint Equational setting and that the test of satisfiability in
this setting can be done in parallel.

Keywords: Semantic analysis, compositionality, equational logic pro-
gramming, term rewriting systems.

1 Introduction

Compositionality is a desirable property which has been recognised as funda-
mental in the semantics of programming languages [11]. Compositionality has
to do with a (syntactic) composition operator ⋄, and holds when the meaning
(semantics) S(C1 ⋄ C2) of a compound construct is defined by composing the
meanings of the constituents S(C1) and S(C2), i.e. for a suitable function f⋄,
S(C1 ⋄ C2) = f⋄(S(C1),S(C2)). In the case of logic programs [11], one could
be concerned with AND-composition (of atoms in a goal or in a clause body)
or with OR-composition, i.e. composition of (sets of) clauses. In the context
of equational logic programming [15, 19], consideration has been given to the
problem of defining a compositional semantics for the direct union of complete
theories which correctly models the computational properties related to the use
of logical variables [4]. In this paper, we address the problem of solving equations
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in equationally defined theories but, unlike [4], we want to define composition-
ally the meaning of the union of E-unification problems. Let a theory E be fixed
and consider two finite equation sets Γ1, Γ2. We want to define the meaning of
Γ1 ∪ Γ2 (with respect to E) in terms of the meanings of Γ1 and Γ2. Throughout
the paper, E is assumed to be axiomatized as an equational Horn theory, which
is called the ‘program’ [12, 15, 19]. We do not consider compositionality with
respect to the union of programs in this paper. For this topic we refer to [4].

The semantics of equational Horn programs is usually defined as some variant
of narrowing, a method for generating complete sets of E-unifiers with respect
to a canonical set of clauses. Simple restrictions on narrowing, like narrowing
only at basic positions, are still complete for theories which satisfy some addi-
tional properties [25]. The use of narrowing as the operational mechanism for
computing leads to a powerful extension of ordinary logic programs [15, 28] and
the computation model has many opportunities for parallelism. For example,
[10] describes a kind of OR-parallelism in which, for each position in the term
and each rule in the program, alternative narrowings are explored concurrently
according to some heuristic function. Our work concerns an AND-parallel com-
putation model of equational Horn programs, where all subexpressions can be
narrowed independently and the computed substitutions obtained so far can then
be composed. This mechanism of computation was also mentioned in [28]. We
extend the notion of parallel composition of substitutions introduced in [17, 27]
to the case of equational logic programs. Hence we show how complete sets of
E-unifiers for a given goal ⇐ Γ1, Γ2 can be generated by composing the com-
plete sets of E-unifiers computed by narrowing the separate subgoals ⇐ Γ1 and
⇐ Γ2. This allows us to model the combination of substitutions computed by
AND-parallel ‘narrowing processes’, i.e. by agents which narrow subexpressions
in parallel. We show that for unrestricted narrowing a “semantic” composition
operator would be necessary. However, for basic narrowing we achieve a stronger
result and show that the substitutions can be composed syntactically.

We have recently defined an equational logic language [1] as an instance of
Constraint Logic Programming [18], where the equations to be solved with re-
spect to an equational theory are considered as constraints. For a computational
step in this framework, it is essential to be able to (semi-)decide if a set of equa-
tions is satisfiable. The computation of complete sets of E-unifiers is less striking
in this context, while it is essential a mechanism to evaluate the satisfiability
of the constraints incrementally. In [2] we have defined a lazy procedure which
does not prove the satisfiability of the equational constraint c but just checks
that c is not unsatisfiable by means of an approximated narrower. We show that
a compositional narrowing can be taken as a basis for a compositional analysis
for the problem of unsatisfiability. Then we show that compositionality leads,
as a by-product, to an incremental implementation for the analysis. Therefore,
while OR-compositionality, i.e. compositionality w.r.t. union of programs, has
proven significant for programming with modules [4, 11], we show that AND-
compositionality can lead to incremental computations.

This paper is organized as follows. After introducing some preliminary no-



tions in Section 2, Section 3 defines an operator which describes the operational
semantics of equational Horn programs in a compositional way. In Section 4,
we introduce compositional conditional narrowing, an AND-parallel computa-
tion model for equational Horn programs. We characterize the success set of
a goal, i.e. the set of the computed answer substitutions corresponding to all
successful narrowing derivations. That is, we prove that the meaning of a com-
posite goal can be obtained by composing the meanings of its conjuncts, when
considering the success set as observable. Then we state the completeness of our
semantics. In Section 5 we recall an abstract algorithm for the static analysis of
unsatisfiability of equation sets [2] and modify it to perform the analysis composi-
tionally. Section 6 formulates an incremental analyzer for equational constraints
and presents some encouraging results from the implementation of the analyzer.
Section 7 concludes. More details and missing proofs can be found in [5].

2 Preliminaries

We briefly recall some known results about equations, conditional rewrite sys-
tems and equational unification. For full definitions refer to [9, 20]. Throughout
this paper, V will denote a countably infinite set of variables and Σ denotes a
set of function symbols, each with a fixed associated arity. τ(Σ ∪ V) and τ(Σ)
denote the sets of terms and ground terms built on Σ∪V and Σ, respectively. A
Σ-equation s = t is a pair of terms s, t ∈ τ(Σ∪V). Terms are viewed as labelled
trees in the usual way. Occurrences are represented by sequences, possibly empty,
of natural numbers used to address subterms of t, and they are ordered by the
prefix ordering u ≤ v if there exists a w such that uw = v. Ō(t) denotes the
set of nonvariable occurrences of a term t. t|u is the subterm at the occurrence
u of t. t[r]u is the term t with the subterm at the occurrence u replaced with r.
These notions extend to equations in a natural way. Identity of syntactic objects
is denoted by ≡. Var(s) is the set of distinct variables occurring in the syntactic
object s. A fresh variable is a variable that appears nowhere else. The symbol ˜
denotes a finite sequence of symbols.

We describe the lattice of equation sets following [7]. We let Eqn denote the
set of possibly existentially quantified finite sets of equations over terms. We
let fail denote the unsatisfiable equation set, which (logically) implies all other
equation sets. Likewise, the empty equation set, denoted by true, is implied by
all elements of Eqn. We write E ≤ E′ if E′ logically implies E. Thus Eqn is a
lattice ordered by ≤ with bottom element true and top element fail. An equation
set is solved if it is either fail or it has the form ∃y1 . . . ∃ym. {x1 = t1, . . . ,xn =
tn}, where each xi is a distinct variable not occurring in any of the terms ti and
each yi occurs in some tj. Any set of equations E can be transformed into an
equivalent one solve(E) which is solved. We restrict our interest to the set of
idempotent substitutions over τ(Σ ∪ V), which is denoted by Sub. There is a
natural isomorphism between substitutions and unquantified equation sets. The
equational representation of a substitution θ = {x1/t1, . . . ,xn/tn} is the set of

equations θ̂ = {x1 = t1, . . . ,xn = tn}. The identity function on V is called the



empty substitution and denoted ǫ. Given a substitution θ and a set of variables
W ⊆ V, we denote by θ|̀W the substitution obtained from θ by restricting its
domain, Dom(θ), to W.

We consider the usual preorder on substitutions ≤: θ ≤ σ iff ∃γ. σ ≡ θγ.
Note that θ ≤ σ iff σ̂ ⇒ θ̂ [27]. A substitution {x1/t1, . . . ,xn/tn} is a unifier
of an equation set E iff {x1 = t1, . . . ,xn = tn} ⇒ E. We denote the set of
unifiers of E by unif(E) and mgu(E) denotes the most general unifier of the
unquantified equation set E. In abuse of notation, we let fail denote failure
when computing the mgu(E). While every unquantified equation set has a most
general unifier [23], this is not generally true for equation sets with existentially
quantified variables [7].

An equational Horn theory E consists of a finite set of equational Horn clauses
of the form e ⇐ e1, . . . , en, n ≥ 0, where e, ei, i = 1, . . . ,n, are equations. An
equational goal is an equational Horn clause with no head. We let Goal denote
the set of equational goals. The set of states is defined by State = Goal×Sub.

A Term Rewriting System (TRS for short) is a pair (Σ,R) where R is a
finite set of reduction (or rewrite) rule schemes of the form (λ → ρ ⇐ ẽ), λ,
ρ ∈ τ(Σ ∪ V), λ 6∈ V and Var(ρ) ⊆ Var(λ). The condition ẽ is a possibly
empty conjunction e1, . . . , en, n ≥ 0, of equations. Variables in ẽ that do not
occur in λ are called extra-variables. If a rewrite rule has no condition we write
λ → ρ. We will often write just R instead of (Σ,R).

An equational Horn theory E which satisfies the above assumptions can be
viewed as a term rewriting system R where the rules are the heads (implicitely
oriented from left to right) and the conditions are the respective bodies. We
assume that these assumptions hold for all theories we consider in this paper.
The equational theory E is said to be canonical (complete) if the binary one-step
conditional rewriting relation →R defined by R is noetherian and confluent. For
TRS R, r << R denotes that r is a new variant of a rule in R such that r contains
no variable previously met during computation (standardised apart). Given a
conditional TRS R, an equational goal clause ⇐ g conditionally narrows into a

goal clause ⇐ g′ (in symbols ⇐ g
θ
→֒ ⇐ g′) if there exists an equation e ∈ g,

u ∈ Ō(e), a standardised apart variant (λ → ρ ⇐ ẽ) << R and a substitution
θ such that θ = mgu({e|u = λ}) and g′ = ((g ∼ {e}) ∪ {e[ρ]u} ∪ ẽ)θ. A

narrowing derivation is defined by ⇐ g
θ ∗
→֒ ⇐ g′ iff ∃θ1, . . . , θn. ⇐ g

θ1

→֒

. . .
θn

→֒ ⇐ g′ and θ = θ1 . . . θn. We say that the derivation has length n. In order
to treat syntactical unification as a narrowing step, we add to the TRS R the rule

x = x → true ⇐, x ∈ V. Then t = s
σ
→֒ true holds iff σ = mgu({t = s}). A

successful derivation for ⇐ g in R∪{x = x → true ⇐} is a narrowing derivation

⇐ g
θ ∗
→֒ ⇐ true and θ|̀Var(g) is called a computed answer substitution for ⇐ g

in R. If n = 0 then θ = ǫ.

Each equational Horn theory E generates a smallest congruence relation =E

called E-equality on the set of terms τ(Σ ∪ V) (the least equational theory
which contains all logic consequences of E under the entailment relation |= obey-
ing the axioms of equality for E). E is a presentation or axiomatization of =E .



In abuse of notation, we sometimes speak of the equational theory E to de-
note the theory axiomatized by E . E-equality is extended to substitutions by
σ=Eθ iff ∀x ∈ V. xσ=Exθ.

A finite set of equations Γ = {s1 = t1, . . . , sn = tn} together with an
equational theory E is called an E-unification problem. A substitution σ is
an E-unifier or a solution of the equation set Γ iff E |= (σ̂ ⇒ Γ ) [24]. The set
UE(Γ ) of all E-unifiers of Γ is recursively enumerable [12, 15, 29].

For E-unification problems, the notion of most general unifier generalizes
to complete sets of minimal (incomparable) E-unifiers. A set S of E-unifiers of
the equation set Γ is complete iff every E-unifier σ of Γ factors into σ =E θγ
for some substitutions θ ∈ S and γ. A complete set of E-unifiers of a system
of equations may be infinite. Minimal complete sets µUE(Γ ) of E-unifiers of Γ
do not always exist. An E-unification procedure is complete if it generates a
complete set of E-unifiers for all input equation system. Conditional narrowing
has been shown to be a complete E-unification algorithm for canonical theories
satisfying different restrictions [15, 25].

3 Equational Parallel Composition

In the following, we recall the notion of parallel composition of substitutions,
denoted by ⇑. Roughly speaking, parallel composition is the operation of unifi-
cation generalized to substitutions.

Parallel composition corresponds to one of the basic operations performed
by the AND-parallel execution model of logic programs [17, 27]. Namely, when
two subgoals (of the same goal) are run in parallel, the answer substitutions
(computed independently) have to be combined to get the final result. This
‘combination’ can be done as follows [17, 27]. Given two idempotent substitutions

θ1 and θ2, we let θ1 ⇑ θ2 = mgu(θ̂1 ∪ θ̂2). Parallel composition is idempotent,
commutative, associative and has a null element fail and an identical element ǫ.
⇑ is lifted to sets of substitutions by

Θ1 ⇑ Θ2 =





⋃

θ1∈Θ1,θ2∈Θ2

θ1 ⇑ θ2 if it is different from {fail}

Ø otherwise.

Parallel composition was proposed in [27] as a basis for a compositional
characterization of the semantics of Horn Clause Logic. We are able to generalize
the notion of parallel composition to the case when unification in equational
theories is considered. In the following definition we formalize the notion of
equational parallel composition, denoted by ⇑E .

Definition 1. Let θ1, θ2 ∈ Sub. We define the operator ⇑E : Sub × Sub →
℘(Sub) as follows:

θ1 ⇑E θ2 = UE(θ̂1 ∪ θ̂2).



Example 1. Let E = {f(0) = 0, f(g(X)) = g(X), g(0) = c(0), g(c(X)) =
g(X)}.

1. Let θ1 = {X/g(Z)} and θ2 = {X/c(Z)}. Then {X/c(0),Z/0} ∈ θ1 ⇑E θ2.
2. Let θ1 = {X/f(0)} and θ2 = {X/g(Z)}. Then θ1 ⇑E θ2 = Ø.

It is straightforward to show that ⇑E is commutative and associative and has
a null element {fail} and an identical element {ǫ}. The operator ⇑E can be lifted
to sets of substitutions as follows.

Definition 2. Given Θ1, Θ2 ∈ ℘(Sub), let:

Θ1 ⇑E Θ2 =
⋃

θ1∈Θ1,θ2∈Θ2

θ1 ⇑E θ2.

Given an E-unification problem Γ = Γ1∪Γ2, a compositional characterization
of the set of all E-unifiers of Γ is given in the following proposition.

Proposition 3. Let Γ = Γ1 ∪ Γ2, Θ1 = UE(Γ1) and Θ2 = UE(Γ2). Then
UE(Γ ) = Θ1 ⇑E Θ2.

We note that it is much more complex to evaluate ⇑E than the much simpler
operation ⇑. However, equational parallel composition can be redefined in terms
of ‘most general’ unifiers in the case of finitary theories, for which the solutions
to an E-unification problem Γ can always be represented by a complete and
minimal finite set µUE(Γ ) of (maximally general) E-unifiers, which is unique
up to equivalence [29]. Equational theories which are of finitary unification type
play an important role in logic programming with equality [19]. In general, the
unification type of an equational theory is undecidable. On the other hand, for a
finitary theory the minimality requirement is often too strong, since an algorithm
which generates a superset of µUE(Γ ) may be far more efficient than a minimal
one and hence sometimes preferable. In the following section, we will show that
we can still work with ordinary parallel composition ⇑ when we consider the class
of (level-)canonical equational theories, for which the problem of E-unification
reduces to ordinary (syntactic) unification plus narrowing [16].

4 Compositional Conditional Narrowing

In this section we recall the operational semantics of our language, following [4].
We specify the observables, that is, the property we are interested to “observe” in
a computation (e.g. the set of successes, the finite failure set, the infinite failure
set, etc.) and that has to be reflected in the semantics. In this paper we are
interested in the success set. We describe the success set of a goal, i.e. the set
of all computed answer substitutions corresponding to all successful narrowing
derivations, by a formal operational semantics O : Goal 7→ ℘Sub, based on a
(labelled) transition relation, which associates a set of substitutions with a goal.



Basic conditional narrowing has been proposed as the operational model of
equational logic programs [15, 25]. Basic conditional narrowing gives a complete
set of solutions for level-canonical sets of conditional rewrite rules [25]. Compared
to ordinary narrowing, the basic strategy leads to a smaller search space by
eliminating some search paths that lead to reducible solutions. In the rest of
this paper, we assume the level-canonical program R to be fixed. We formulate
basic conditional narrowing as a transition system (State,;) whose transition
relation ; ⊆ State × State is defined as the smallest relation satisfying

〈⇐ g, θ〉 ; 〈⇐ g′, θσ〉 iff e ∈ g ∧ u ∈ Ō(e) ∧ (λ → ρ ⇐ ẽ) << R ∧
σ = mgu({(e|u)θ = λ}) ∧ g′ = (g ∼ {e}) ∪ {e[ρ]u} ∪ ẽ.

Note that, in the above inference rule, the computed substitution σ is not ap-
plied to the equations in the derived state, as opposed to ordinary (unrestricted)
narrowing (cf. Section 2). This ensures that no narrowing step will reduce any
expression brought by a substitution computed in a previous step.

A basic conditional narrowing derivation is a sequence of states s1 ; s2 ;

. . ., where si ≡ 〈⇐ gi, θi〉 is the ith state in the sequence.
Based on this transition system, we define the operational semantics of an

equational goal ⇐ g in the TRS R ∪ {x = x → true ⇐} by the (non ground)
set (success set)

OR(⇐ g) = {θ | 〈⇐ g, ǫ〉 ;
∗ 〈⇐ true, θ〉}3.

Now we are ready to give a compositional characterization of the operational
semantics of equational Horn programs in a style similar to that of [27] for logic
programs. We define a new narrowing procedure by means of a transition relation
from equational goals to equational goals, labeled on substitutions.

Definition 4. (Compositional Conditional Narrowing)
We define compositional conditional narrowing as a labelled transition system
(Goal,Sub, 7−→) whose transition relation 7−→ ⊆ Goal × Sub × Goal is the
smallest relation which satisfies

(1)
u ∈ Ō(e) ∧ (λ → ρ ⇐ ẽ) << R ∧ σ = mgu({e|u = λ})

⇐ {e}
σ

7−→⇐ {e[ρ]u} ∪ ẽ

(2)
⇐ g1

θ17−→⇐ g′
1 ∧ ⇐ g2

θ27−→⇐ g′
2

⇐ g1,g2
θ1⇑θ2

7−→ ⇐ g′
1,g

′
2

Roughly speaking, in the computation model formalized by the transition
system above, all equations in the equational goal to be solved are reduced at
the same time. Then, the substitutions resulting from these local computations
are combined by means of the operator of parallel composition to obtain the
global result of the computation. By abuse, we consider ⇐ true

ǫ
7−→ ⇐ true.

3 We often write O(⇐ g) instead of OR(⇐ g) when R is understood.



Note that, by not applying the substitutions to the goal at each derivation
step, compositional conditional narrowing may have to overcompute when com-
pared to (basic) conditional narrowing thus possibly causing execution to slow
down (see Example 2 below).

The computation model formalized in Definition 4 could be taken as a basis
for an AND-parallel computation model of equational Horn programs. We note
that the model has not been devised to achieve maximal parallelism in the sense
that not all redexes in a given goal are allowed to perform one narrowing step
independently. Namely, redexes which occur in a same equation are not reduced
in parallel, while they could. To overcome this lack, it suffices to introduce the
following flattening rule, which preserves the reachable solutions

(3)
e ∈ g ∧ u ∈ Ō(e) ∧ x is a new variable

⇐ g
ǫ

7−→⇐ (g ∼ {e}) ∪ {e[x]u} ∪ {e|u = x}

provided that both e|u and e[x]u contain at least one function symbol [26]. Note
that we need not determine the level of granularity [22] (as it neither affects
correctness nor completeness); this we consider to be an implementation issue
that could enable (more) effective parallelizations.

Our approach differs from other AND-parallel execution models, such as e.g.
[22], where subexpressions are only narrowed in parallel if they are independent,
i.e. if they do not share (unbound) variables. A ‘need-driven’ syncronization
model is imposed which compels processes to wait for the value of a parallel
subexpression if such a value is needed. In [21], a dependent AND-parallel exe-
cution model is exploited, but the imposed syncronization mechanisms produce
too much overhead.

A new operational semantics of an equational goal ⇐ g in the TRS
R∪ {x = x → true ⇐} can now be defined by

Definition 5. O′(⇐ g) = {θ | ⇐ g
θ17−→ . . .

θn7−→ ⇐ true and θ = θ1 ⇑ . . . ⇑ θn,
θ 6≡ fail}.

In Definition 5 we use parallel composition because, in the transition system
in Definition 4, the computed substitution is not applied to either the derived
goal or to the redex e|u selected to be narrowed, as opposed to the standard
semantics. Therefore, the next computation step will not take this substitution
into account and the next substitution that is computed has to be combined
with the previous one.

The new success set semantics O′ is compositional w.r.t. the AND operator.
Formally,

Theorem 6. O′(⇐ g1,g2) = O′(⇐ g1) ⇑ O′(⇐ g2).

The following result states that the compositional conditional semantics and
the standard basic conditional semantics coincide. The correspondence is re-
stricted to successes, namely to the substitutions computed by all successfully
terminating derivations. The compositional semantics and the standard basic



semantics have a different failure behaviour: the latter delivers finite failure for
more goals than the former, as illustrated in the following example.

Example 2. Let R = {f(0) → 0 ⇐, f(c(X)) → c(f(X)) ⇐} and consider the
goal ⇐ g ≡ ⇐ f(c(0)) = 0. Then there is only one (failed) basic narrowing
derivation for ⇐ g in R:

〈⇐ f(c(0)) = 0, ǫ〉 ; 〈⇐ c(f(X)) = 0, {X/0}〉 ; 〈⇐ c(0) = 0, {X/0}〉,

whereas there exists the nonterminating compositional narrowing derivation:

⇐ f(c(0)) = 0
{X/0}
7−→ ⇐ c(f(X)) = 0

{X/c(Y)}
7−→ ⇐ c(c(f(Y))) = 0 7−→ . . .

Corollary 7. 〈⇐ g, ǫ〉 ;
∗ 〈⇐ true, θ〉 iff ⇐ g

θ17−→ . . .
θn7−→ ⇐ true and θ =

θ1 ⇑ . . . ⇑ θn, θ 6≡ fail.

We note that the equivalence established by Theorem 6 and Corollary 7 does
not hold for ordinary (unrestricted) narrowing. Roughly speaking, what is wrong
with ordinary narrowing is the fact that it transfers terms from the substitution
part into the goal, thus introducing narrowing steps (at non-basic positions) that
might not be proven when the subgoals are solved independently. As a conse-
quence, ordinary narrowing is not compositional using the parallel composition
operator ⇑. The following example illustrates this point.

Example 3. Let R be the following program

R = { z(s(0)) → 0 ⇐
z(one(X)) → 0 ⇐

one(0) → s(0) ⇐
one(s(X)) → one(X) ⇐ },

and consider the following (ordinary) narrowing derivation:

⇐ X = s(0), z(X) = 0
{X/one(Y)}

→֒ ⇐ one(Y) = s(0), 0 = 0
{Y/0}
→֒

⇐ s(0) = s(0), 0 = 0
ǫ
→֒ ⇐ true, 0 = 0

ǫ
→֒ ⇐ true

with computed answer substitution θ = {X/one(0)}. According to Definition
4, there is no compositional narrowing derivation for R with initial goal ⇐
X = s(0), z(X) = 0 with computed answer substitution {X/one(0)} as the
goal ⇐ X = s(0) only computes the substitution {X/s(0)}. Note that basic
conditional narrowing does not compute the answer substitution {X/one(0)}
either.

As a consequence of Corollary 7, every solution found by basic conditional
narrowing is found by compositional basic conditional narrowing as well. Hence,
we have the following corollary for level-canonical systems.

Corollary 8. (completeness)
The set {ϑ|̀Var(g) | ϑ ∈ O′(⇐ g)} is a complete set of E-unifiers of g.



We note that, by forcing the join of the parallel solutions every time that
all equations in the goal have performed a single step independently, the com-
positional execution model formalized by Definition 4 might not couch all the
exploitable AND-parallelism. Corollary 7 suggests that many different computa-
tion schemes are possible. For instance, we can solve in parallel all (sub-)goals,
joining the AND-parallel (sub-)goals when the (sub-)goals are completely solved,
instead of forcing the syncronization of the AND-parallel branches at every sin-
gle reduction step. In the following section, we show how this execution scheme
can be efficiently exploited for program analysis.

5 Abstract Basic Conditional Narrowing

Abstract interpretation is a theory of semantic approximation which is used to
provide statically sound answers to some questions about the run-time behaviour
of programs [8]. The ‘concrete’ data and semantic operators are approximated
and replaced by corresponding abstract data and operators. The ‘answers’ ob-
tained by using the abstract data and operators have to be proven sound by
exploiting the correspondence with the concrete data and operators. In this sec-
tion, we recall the framework of abstract interpretation for analysis of equational
unsatisfiability we defined in [2]. Then we extend this framework by defining a
compositional abstract semantics which safely approximates the observables.

Our analysis of unsatisfiability is an abstraction of the transition system se-
mantics for basic conditional narrowing that we have introduced in Definition
4. We first recall the abstract domains and the associated abstract operators
together with some previous results concerning them. We note that a different
analysis of unsatisfiability is introduced in [6] for constructor-based programs
where the computation is done by abstract rewriting. This method is not compa-
rable to ours, since there are examples which can be analyzed by only one of the
two methods and our method is able to capture some computational properties
related to the use of logical variables that abstract rewriting does not.

5.1 Abstract Domains and Operators

A description is the association of an abstract domain (D,≤) (a poset) with a
concrete domain (E,≤) (a poset). When E = Eqn, E = Sub or E = State, the
description is called an equation description, a substitution description or a state
description, respectively. The correspondence between the abstract and concrete
domain is established through a ‘concretization’ function γ : D → ℘E. We say
that d approximates e, written d ∝ e, iff e ∈ γ(d). The approximation relation
can be lifted to relations and cross products as usual [2].

We approximate the behaviour of a TRS and initial state by an abstract
transition system which can be viewed as a finite transition graph with nodes la-
beled by state descriptions, where transitions are proved by (abstract) narrowing
reduction [2]. State descriptions consist of a set of equations with substitution
descriptions. The descriptions for equations, substitutions and term rewriting
systems are defined as follows.



Definition 9. By T = (τ(Σ∪V),≤), we denote the standard domain of (equiv-
alence classes of) terms ordered by the standard partial order ≤ induced by the
preorder on terms given by the relation of being “more general”. Let ⊥ be an
irreducible symbol, where ⊥ 6∈ Σ. Let TA = (τ(Σ ∪V∪ {⊥}),�) be the domain
of terms over the signature augmented by ⊥, where the partial order � is defined
as follows:

(a) ∀t ∈ TA.⊥ � t and t � t and
(b) ∀s1, . . . , sn, s′1, . . . , s

′
n ∈ TA,∀f/n ∈ Σ. s′1 � s1 ∧ . . . ∧ s′n � sn ⇒

f(s′1, . . . , s
′
n) � f(s1, . . . , sn)

This order can be extended to equations: s′ = t′ � s = t iff s′ � s and t′ � t
and to sets of equations S,S′:

1) S′ � S iff ∀e′ ∈ S′.∃e ∈ S such that e′ � e.
2) S′ ⊑ S iff (S′ � S) and (S � S′ implies S′ ⊆ S).

Roughly speaking, we introduce the special symbol ⊥ in the abstract domains
to represent any concrete term. Logically, ⊥ stands for an existentially quantified
variable [2, 24]. Define [[S]] = S′, where the n-tuple of occurrences of ⊥ in S is
replaced by an n-tuple of existentially quantified fresh variables in S′.

Definition 10. An abstract substitution is a set of the form {x1/t1, . . . ,xn/tn}
where, for each i = 1, . . . ,n, xi is a distinct variable in V not occurring in
any of the terms t1, . . . , tn and ti ∈ τ(Σ ∪ V ∪ {⊥}). The ordering on abstract
substitutions can be given as logical implication: let θ, κ ∈ SubA, κ � θ iff
[[θ̂]] ⇒ [[κ̂]].

Let us introduce the abstract domains which we will use in our analysis.

Definition 11. Let T = (τ(Σ ∪ V),≤) and TA = (τ(Σ ∪ V ∪ {⊥}),�). The
term description is 〈TA, γ, T 〉 where γ : TA → ℘ T is defined by: γ(t′) = {t ∈
T | t′ � t}.

Let Eqn be the set of finite sets of equations over τ(Σ ∪ V) and EqnA be
the set of finite sets of equations over τ(Σ ∪V∪{⊥}). The equation description
is 〈(EqnA,⊑), γ, (Eqn,≤)〉, where γ : EqnA → ℘Eqn is defined by: γ(g′) =
{g ∈ Eqn | g′ ⊑ g and g is unquantified }.

Let Sub be the set of substitutions over τ(Σ ∪ V) and SubA be the set of
substitutions over τ(Σ ∪ V ∪ {⊥}). The substitution description is 〈(SubA,�),
γ, (Sub,≤)〉, where γ : SubA → ℘Sub is defined by: γ(κ) = {θ ∈ Sub | κ � θ}.

Define the abstract state domain StateA induced by EqnA and SubA to be
StateA = {〈⇐ g, κ〉 | g ∈ EqnA, κ ∈ SubA}.

In the following, we formalize the idea that abstract narrowing reduction
approximates narrowing reduction by replacing concrete states, unification and
term rewriting systems with abstract states, abstract unification and abstract
term rewriting systems. We define the abstract most general unifier for an equa-
tion set E′ ∈ EqnA as follows. First replace all occurrences of ⊥ in E′ by existen-
tially quantified fresh variables. Then take a solved form of the resulting quanti-
fied equation set and finally replace the existentially quantified variables again by



⊥. Formally: let ∃y1 . . .yn.E = solve([[E′]]) and κ = {y1/⊥, . . . ,yn/⊥}. Then
mguA(E′) = Eκ .

We now extend the notion of parallel composition from substitutions to ab-
stract substitutions by replacing unification by abstract unification.

Definition 12. Let κ1, κ2 ∈ SubA. We define the abstract parallel composition
κ1 ⇑A κ2 by:

κ1 ⇑A κ2 = mguA(κ̂1 ∪ κ̂2).

Our notion of abstract term rewriting system is parametric with respect
to a loop-check, i.e. a finite graph of functional dependencies built from the
equational theory, which helps to recognize the narrowing derivations which
definitely terminate. The purpose of a loop-check is to reduce the search space
to end up with a finite search space. Two different instances can be found in [2, 3].

Definition 13. A loop-check is a graph GR associated with a term rewriting
system R, i.e. a relation consisting of a set of pairs of terms, such that: (1) the

transitive closure G+
R is decidable and (2) Let

◦

t = t′ be a function which assigns
to a term t some node t′ in GR. If there is an infinite sequence:

〈⇐ g0, θ0〉 ; 〈⇐ g1, θ1〉 ; . . .
then

∃i ≥ 0. 〈
◦

ti,
◦

ti〉 ∈ G+
R, where ti = e|uθi, e ∈ gi and u ∈ Ō(e).

(we refer to 〈
◦

ti,
◦

ti〉 as a ‘cycle’ of GR.)

A loop-check can be thought of as a sort of ‘oracle’ whose usefulness in
proving the termination of basic narrowing derivations is stated in the following
proposition.

Proposition 14. [2] Let R be a term rewriting system and GR be a loop-check
for R. If there is no cycle in GR, then every basic conditional narrowing deriva-
tion for R terminates.

To illustrate our definition, we consider a simple example here.

Example 4. Let R = {X + 0 → X ⇐, X + s(Y) → s(X + Y) ⇐} and define
◦

t = t′ the function which, given a graph, assigns to a term t some node t′ in the
graph such that t′ unifies with t (variables are implicitly renamed to be disjoint).
Then the graph G = {〈X + s(Y),X + s(Y)〉} is a loop-check for R.

Most papers on loop-checking consider the application of loop-checks at run-
time. Static loop-checks have not received that much attention yet. In the fol-
lowing we show how a loop-check can be used to obtain a form of (compiled)
abstract program which always terminates and in which the semantics of a given
goal can be approximated safely. A TRS is abstracted by simplifying the right-
hand side and the body of each rule. This definition is given inductively on the



structure of terms and equations. The main idea is that terms which are mapped
to a cycle of the loop-check are drastically simplified by replacing them by ⊥.
This enforces termination.

Definition 15. (abstract term rewriting system)
Let R be a TRS. Let GR be a loop-check for R. We define the abstraction of R
using GR as follows:

RA = {λ → sh(ρ) ⇐ sh(ẽ) | λ → ρ ⇐ ẽ ∈ R} (we also write RA ∝ R),
where the shell sh(x) of an expression x is defined inductively

sh(x) =





x if x ∈ V

f(sh(t1), . . . , sh(tk)) if x = f(t1, . . . , tk) and 〈
◦

x,
◦

x〉 6∈ G+
R

sh(l) = sh(r) if x = (l = r)
sh(e1), . . . , sh(en) if x = e1, . . . , en

⊥ otherwise

Example 5. (Continued from Example 4) The abstraction of R using the loop-
check G is: RA = {X + 0 → X ⇐, X + s(Y) → s(⊥) ⇐}.

5.2 Compositional Abstract Narrowing

We now introduce compositional abstract (basic) narrowing.

Definition 16. Let RA be an abstract TRS. We define compositional abstract
(basic) narrowing as a transition system (StateA,;A) whose transition relation
;A ⊆ StateA × StateA is defined as the smallest relation satisfying:

(1)

e ∈ g ∧ u ∈ Ō(e) ∧ (λ → ρ ⇐ ẽ) << RA ∧
σ = mguA({(e|u)κ = λ})

〈⇐ g, κ〉 ;A 〈⇐ (g ∼ {e}) ∪ {e[ρ]u} ∪ ẽ, κσ〉

(2)
〈⇐ g1, κ〉 ;

∗
A 〈⇐ true, κ1〉 ∧ 〈⇐ g2, κ〉 ;

∗
A 〈⇐ true, κ2〉

〈⇐ (g1,g2), κ〉 ;A 〈⇐ true, κ1 ⇑A κ2〉

Example 6. (Continued from Example 5) The sequences

〈⇐ X + 0 = 0, ǫ〉 ;A 〈⇐ X = 0, ǫ〉 ;A 〈⇐ true, {X/0}〉,
〈⇐ X + s(Y) = s(0), ǫ〉 ;A 〈⇐ s(⊥) = s(0), ǫ〉 ;A 〈⇐ true, ǫ〉, and
〈⇐ (X + 0 = 0, X + s(Y) = s(0)), ǫ〉 ;A 〈⇐ true, {X/0}〉

are three (successful) compositional abstract narrowing derivations for RA∪{x =
x → true ⇐}. Note that there is no successful compositional abstract narrowing
derivation for RA with initial goal 〈⇐ s(0) + Y = 0, ǫ〉.

The following definition formalizes the compositional abstract basic narrowing
semantics for the success set.



Definition 17. (abstract semantics)

∆RA
(⇐ g) = {κ ∈ SubA | 〈⇐ g, ǫ〉 ;

∗
A 〈⇐ true, κ〉}.

The main purpose of introducing compositional abstract basic narrowing here
is to suggest a mechanism for the static analysis of the run-time behaviour of
programs. We now establish a preliminary result that clarifies our interest in
compositional abstract basic narrowing reduction. It basically states that in the
abstract computations no solutions are lost, that is, each concrete computed
answer is still ‘represented’ by a more general answer in the abstract semantics.

Theorem 18. Let RA ∝ R and g′ ∝ g. Then, for every solution θ ∈ OR(⇐ g)
there exists κ ∈ ∆RA

(⇐ g′) such that κ ∝ θ.

Our analysis of unsatisfiability is formalized in the following theorem.

Corollary 19. If ∆RA
(⇐ g) = Ø, then g is unsatisfiable in R.

The following theorem constitutes the main result in this section and basically
states that compositional abstract narrowing is compositional w.r.t. the AND
operator.

Theorem 20. ∆RA
(⇐ g1,g2) = ∆RA

(⇐ g1) ⇑A ∆RA
(⇐ g2).

As a consequence of Theorem 20, the analysis for a specific goal (the abstract
meaning of a goal) can be determined by exploiting the AND-compositionality
of the basic narrowing semantics and its abstract version. In Section 6 we will
formalize the idea that the compositionality of the abstract semantics w.r.t the
union of E-unification problems, as established in Theorem 20, provides for incre-
mentality when dealing with constraint satisfaction problems in the framework of
constraint logic programming, where sets of constraints are incrementally added
to a solver.

6 Incremental Equational Analyzer

In the context of constraint logic programming [14, 18], incremental search con-
sists of proving the solvability of a sequence of constraint problems by trans-
forming the existing solution to each previously solved problem into a solution
to the next problem [13].

When dealing with equational constraints [1], the tests of solvability can be
extremely redundant. Termination is not even guaranteed. In [2] we propose a
lazy resolution procedure [14] which incorporates an analysis of unsatisfiability
which allows us to avoid some useless computations. To achieve efficiency, the
analyses also need to be incremental, that is, when adding a new equation set c̃
to an already tested set c of constraints, the analysis should not start checking
the accumulated constraint c ∪ c̃ from scratch. In this section, we formulate an
incremental algorithm for analyzing the unsatisfiability of equation sets within a



constraint setting [1]. The kernel of the algorithm is the calculus of compositional
abstract (basic) narrowing reduction as formulated in Section 5.

We assume that constraints monotonically grow as long as the computation
proceeds, and the question we consider is how to deal efficiently with the test
of unsatisfiability for the accumulated constraints as long as new equations are
added.

Definition 21. (incremental constraint satisfaction problem)
Let c0, c1, c̃1, . . . , cn, c̃n be constraints, where ci = ci−1 ∪ c̃i. The incremental
constraint satisfaction problem consists of (efficiently) checking the (un)satisfiability
of ci by using some information from the computations of c0, . . . , ci−1,
i = 1, . . . ,n.

The idea here is to compute the abstract success set of ⇐ c∪ c̃ by combining
the sets ∆RA

(⇐ c) and ∆RA
(⇐ c̃) which describe the successes of ⇐ c and

⇐ c̃, respectively.
We define an incremental Equational Analyzer (iEA) as follows.

Definition 22. An iEA-state is a pair 〈c, Θ〉, where c is a constraint and Θ is
a set of substitutions. The empty iEA-state is 〈Ø,Ø 〉.

Definition 23. (iEA transition relation
c̃

−→iEA)

Θ′ = Θ ⇑A ∆RA
(⇐ c̃)

〈c, Θ〉
c̃

−→iEA 〈c ∪ c̃, Θ′〉

We note that, if the accumulated abstract success set Θ′ = Ø then c ∪ c̃ is
unsatisfiable by Corollary 19. Our strategy proves the unsatisfiability of c ∪ c̃,
or it builds the (non-empty) abstract success set ∆RA

(⇐ c ∪ c̃), as stated by:

Theorem 24. Let c be a constraint and Θ = ∆RA
(⇐ c) 6= Ø. Then,

1. if a transition 〈c, Θ〉
c̃

−→iEA 〈c∪ c̃, Θ′〉 is proven, then Θ′ = ∆RA
(⇐ c∪ c̃);

2. if a transition 〈c, Θ〉
c̃

−→iEA 〈c∪ c̃,Ø〉 is proven, then the constraint c∪ c̃
is unsatisfiable.

We note that the computed abstract answer set ∆RA
(⇐ c∪ c̃) can be used to

guide the final execution of a ‘full’ narrower which can find the concrete solutions
and possibly recognize the unsatisfiability not detected by this lazy procedure,
as described in [3].

The analysis above has been implemented in Prolog and tested on several
programs with good results. To demonstrate this point empirically, consider the
performance of the simple program parity:

X + 0 → X ⇐
X + s(Y) → s(X + Y) ⇐
parity(X) → even ⇐ X = Y + Y



constraint CAn ICAn AbNar APCom

parity(X) = even 0.42 0.42 0.30 0.00

parity(Y) = even 3.88 2.80 0.32 1.20

X + Y = s2(0) 18.24 3.44 0.44 2.92

parity(X) = even 0.40 0.40 0.28 0.00

Y = s(0), Z = X + Y 3.78 1.52 0.46 0.66

X + Z = s3(0) 26.36 4.44 fail

X + Y = s4(0) 0.72 0.72 0.54 0.00

parity(X) = even 3.66 2.10 0.32 1.46

parity(Y) = even 19.48 3.64 0.30 2.62

parity(X) = parity(Y) 3.62 3.66 2.30 0.00

X + Y = s(Z) 23.18 12.00 0.46 9.52

Z = 0 20.26 1.14 fail

Z = 0, parity(X) = even 0.52 0.54 0.42 0.00

Y + Z = s2(0) 3.38 1.62 0.62 0.86

Y = X + Z 10.62 5.24 0.44 4.76

CAn Constraint Analyzer
ICAn Incremental Constraint Analyzer
AbNar Abstract Narrowing
APCom Abstract Parallel Composition

Table 1. Incremental vs. Non-Incremental constraint analyzer times (secs, using
BIM-Prolog, SUN 3/80)

In Table 1 we report on some experiments we have performed for the case of a
sequential implementation. We have not tried with the parallel interpreter yet.
The time in the second column (ICAn) is the result of the sum of the time in
the third and fourth column (AbNar and APCom) plus some extratime for some
simplification rules which are only relevant for the implementation. We compare
the time performances of the incremental vs. the non-incremental analyzers. If
the incrementality was exploited our interpreter was able to achieve up to 95%
gain in efficiency.

7 Conclusion and further research

The contribution of this paper is twofold. We have presented a formal composi-
tional semantics for the success set of equational logic programs which is suitable
for AND-parallel implementations. We have then shown that this semantics leads
to compositional analyses and have given an example of an enhanced analysis of
unsatisfiability which is suitable for theories where equations are considered as
constraints.

The approach which we have taken is of general interest. In particular it ap-
plies to any kind of analysis where we look for properties which are satisfied by
all (or some) success paths. For specific analyses, it will be necessary to provide



the appropriate abstract domains and approximation of the term rewriting sys-
tem. A groundness analysis which follows the approach proposed here is defined
in [3].
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