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Abstract. Functional logic languages with a complete operational se-
mantics are based on narrowing, a generalization of term rewriting where
unification replaces matching. In this paper, we study the semantic prop-
erties of a general transformation technique called unfolding in the con-
text of functional logic languages. Unfolding a program is defined as
the application of narrowing steps to the calls in the program rules in
some appropriate form. We show that, unlike the case of pure logic or
pure functional programs, where unfolding is correct w.r.t. practically
all available semantics, unrestricted unfolding using narrowing does not
preserve program meaning, even when we consider the weakest notion of
semantics the program can be given. We single out the conditions which
guarantee that an equivalent program w.r.t. the semantics of computed
answers is produced. Then, we study the combination of this technique
with a folding transformation rule in the case of innermost conditional
narrowing, and prove that the resulting transformation still preserves the
computed answer semantics of the initial program, under the usual condi-
tions for the completeness of innermost conditional narrowing. We also
discuss a relationship between unfold/fold transformations and partial
evaluation of functional logic programs.

1 Introduction

The problem of integration of functional and logic programming is an important
challenge for research in declarative programming (see [15] for a recent survey).
A functional logic program can be seen as a Conditional Term Rewriting System
(CTRS for short), i.e. a set of conditional equations where the equation in the
conclusion is implicitly oriented from left to right. Functional logic languages
obtain the power of logic variables, automatic search and constraint solving from
logic programming. From functional programming, they obtain the expressivity
of functions and types, and a more efficient evaluation mechanism thanks to
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the deterministic reduction of functional expressions [14, 15]. The operational
semantics is usually based on some variant of narrowing, an execution mechanism
which consists of the instantiation of goal variables followed by a reduction step
on the instantiated goal. The standard declarative semantics of a program E is
given by the least Herbrand E-model of the program, i.e. the set of all ground
equations which hold in the underlying theory [17].

The folding and unfolding transformations, which were first introduced by
Burstall and Darlington in [7] for functional programs, are the most basic and
powerful techniques for a framework to transform programs. Unfolding is es-
sentially the replacement of a call by its body, with appropriate substitutions.
Folding is the inverse transformation, the replacement of some piece of code by
an equivalent function call. For functional programs, folding and unfolding steps
involve only pattern matching. The fold/unfold transformation approach was
first adapted to logic programs by Tamaki and Sato [28] by replacing matching
with unification in the transformation rules. A lot of literature has been devoted
to proving the correctness of unfold/fold systems w.r.t. the various semantics
proposed for functional programs [7, 20], logic programs [18, 25, 27, 28], and
constraint logic programs [12]. However, to the best of our knowledge, these
techniques have not been studied for functional logic programs so far.

The purpose of this paper is to consider unfold/fold transformations which
preserve the semantics of computed answer substitutions of functional logic pro-
grams. This type of program behavior is naturally observed by the programmers.
However, for the sake of simplicity, most often logic program transformation tech-
niques are only proved correct w.r.t. the declarative semantics of ground logical
consequences. We first show what are the problems with näıve extensions of these
transformation rules to functional logic programs, considering unrestricted nar-
rowing as the language operational semantics.

Then we show a non standard and extremely useful relationship of partial
evaluation with unfolding. We show that a slightly modified transformation (gen-
eralized unfolding) can be formulated in terms of partial evaluation. As a conse-
quence, the conditions to ensure completeness of the partial evaluation process
(defined in [4]) can be used to formalize a sufficient condition for the complete-
ness of unfolding w.r.t. the computed answers for unrestricted narrowing. Note
that this is different from the case of pure logic programming, where no appli-
cability condition is required to produce an equivalent program.

The definition of a folding transformation for unrestricted narrowing requires
conditions which are too strong to preserve computed answers. For this reason
and in order to study the typical properties of a more efficient narrowing strat-
egy, we have defined a folding rule directly for innermost narrowing and have
instantiated the general unfolding definition to this case. We have then proved
that the unfolding/folding transformation preserve the computed answers under
the usual conditions for the completeness of innermost conditional narrowing.
In our formulation, unfolding allows the expansion of a single innermost call of
a program rule at each step, and hence can be ‘selectively’ applied. This allows
us to see the techniques of unfolding/folding as a base for the definition of a



framework for the transformation of programs, in which heuristics or automatic
transformation processes might be combined. Finally, as an example application
of the unfolding technique we have defined a semantics modelling computed an-
swers which consists of a (possibly infinite) set of unconditional rules, computed
as the limit of the unfolding expansions of the initial program.

In the literature, we found only three explicit formulations of fold/unfold
rules for functional logic programs, which are based on some form of narrow-
ing. In [8], Darlington and Pull showed how instantiation (an operation of the
Burstall/Darlington framework which introduces an instance of an existing equa-
tion) can be embedded into unfolding steps to get the ability (of narrowing) to
deal with logical variables by means of unification. Similarly, folding steps are
regarded as narrowing steps against the reversed equations. However, in this
paper we show that folding steps require the ability to generalize (or “deinstan-
tiate”) calls rather than instantiating them, which is similar to the case of logic
programming and unlike what is done by narrowing or SLD–resolution steps.
No claim is made in [8] for any sort of completeness of the transformations and,
indeed, some restrictions for the application of the rules are necessary to obtain
it [11, 20]. Another closely related approach is that of [11], which formulates a
rewrite-based technique for the synthesis of functional programs which makes
use of the rule of instantiation. However, there, the manipulations induced to
allow folding/unfolding are often more complex than simple instantiation and
involve auxiliary function definition and induction. Finally, the forward closures
of [9] produce a kind of unfolding of program rules which is used to formulate
conditions for the termination of the program.

This paper is organized as follows. Section 2 formalizes the conditional nar-
rowing semantics we focus on. In Section 3, we formalize the notion of unfolding
for functional logic programs using conditional narrowing, give the conditions for
the soundness and completeness of the transformation w.r.t. the set of ground
equational consequences and show the relationship with partial evaluation. Then,
we state and prove the soundness and completeness properties for a generalized
unfolding technique w.r.t. computed answers. Section 4 introduces a transforma-
tion method which combines folding and unfolding for an efficient (call-by-value)
evaluation strategy: innermost narrowing. As an application of the innermost un-
folding transformation, in Section 5, we define a semantics based on unfolding
which is able to characterize the answer substitutions computed by innermost
narrowing syntactically. Section 6 concludes the paper and outlines some direc-
tions for future research. More details and missing proofs can be found in [1].

2 Semantics of Functional Logic Programs

An equational Horn theory E consists of a finite set of equational Horn clauses
of the form (λ = ρ) ⇐ C, where the condition C is a (possibly empty) sequence
e1, . . . , en, n ≥ 0, of equations. A Conditional Term Rewriting System (CTRS
for short) is a pair (Σ,R), where R is a finite set of reduction (or rewrite)
rule schemes of the form (λ → ρ ⇐ C), λ, ρ ∈ τ(Σ ∪ V), λ 6∈ V, and



Var(ρ) ∪ Var(C) ⊆ Var(λ). We will often write just R instead of (Σ,R). If a
rewrite rule has no condition we usually write λ → ρ. A Horn equational theory
E which satisfies the above assumptions can be viewed as a CTRS R, where the
rules are the heads (implicitly oriented from left to right) and the conditions are
the respective bodies. We assume that these assumptions hold for all theories
we consider in this paper.

The computation mechanism of functional logic languages is based on nar-
rowing, an evaluation mechanism that uses unification for parameter passing
[26]. Narrowing solves equations by computing unifiers with respect to a given
CTRS (which we call ‘program’). O(t) and Ō(t) denote the set of occurrences
and the set of nonvariable occurrences of a term t, respectively. t|u is the subterm
at the occurrence u of t. t[r]u is the term t with the subterm at the occurrence u

replaced with r. These notions extend to sequences of equations in a natural way.
We denote by θ|̀W the substitution obtained from θ by restricting its domain

to W. θ̂ denotes the equational representation of a substitution θ. A function
symbol f/n ∈ Σ is irreducible iff there is no rule (λ → ρ ⇐ C) ∈ R such that
f occurs as the outermost function symbol in λ, otherwise it is a defined func-
tion symbol. In theories where the above distinction is made, the signature Σ
is partitioned as Σ = C

⊎
F , where C is the set of irreducible function symbols

(or constructors) and F is the set of defined function symbols. For CTRS R,
r << R denotes that r is a new variant of a rule in R. For more details on term
rewriting and functional logic programming consult [10, 15, 17, 19].

Given a program R, an equational goal g conditionally narrows into a goal

clause g′ (in symbols4 g
θ
; g′), iff:

1. there exists u ∈ Ō(g), a standardised apart variant (λ → ρ ⇐ C) << R and
a substitution θ such that θ = mgu({g|u = λ}) and g′ = (C,g[ρ]u)θ , or

2. θ = mgu(g) and g′ = true.

A narrowing derivation for g in R is defined by g
θ ∗

; g′ iff ∃θ1, . . . ,∃θn. g
θ1

;

. . .
θn

; g′ and θ = θ1 . . . θn. We say that the derivation has length n. If n = 0,
then θ = ǫ. A successful derivation (or refutation) for g in R is a narrowing

derivation g
θ ∗

; true, and θ|̀Var(g) is called a computed answer substitution
(c.a.s.) for g in R. We define the success set of an equational goal g in the

program R as: OR(g) = {θ|̀Var(g) | g
θ ∗

; true, and θ|̀Var(g) is normalized}.

Since unrestricted narrowing has quite a large search space, several strategies
for controlling the selection of redexes have been devised to improve the efficiency
of narrowing by getting rid of some useless derivations. A narrowing strategy
(or position constraint) is any well-defined criterion which obtains a smaller
search space by permitting narrowing to reduce only some chosen positions, e.g.
basic, innermost, innermost basic, or lazy narrowing (see, e.g., [15]). Formally,
a narrowing strategy ϕ is a mapping that assigns to every goal g (different
from true) a subset ϕ(g) of Ō(g) such that for all u ∈ ϕ(g) the goal g is

4 We sometimes write g
[u,r,θ]
; g′ or g

[u,θ]
; g′ to make the occurrence or the rule used

to prove the narrowing step explicit.



narrowable at occurrence u. An important property of a narrowing strategy ϕ
is completeness, meaning that the narrowing constrained by ϕ is still complete.
In this context, completeness means that for every solution σ to a given set of
equations g, a more general E-unifier θ can be found by narrowing (i.e., a E-
unifier θ s.t. θ ≤E σ [Var(g)]). It is well-known that the subscript E in θ ≤E σ
can be dropped if we only consider completeness w.r.t. normalized substitutions.
A survey of results about the completeness of narrowing strategies can be found
in [15]. Unrestricted narrowing is complete, e.g., for confluent programs w.r.t.
normalized substitutions.

3 Unfolding of Functional Logic Programs

In logic programming, unfolding is usually defined as the application of a res-
olution step to a subgoal in the body of a program clause in all possible ways.
Transformation typically proceeds in a ‘step-by-step’ fashion: a call is unfolded,
then the clause is deleted from the program and replaced by the unfolded clauses
[6, 18, 25, 27, 28]. This technique is safe for the least Herbrand model seman-
tics [28], for the semantics of computed answer substitutions [6, 18], and also
preserves the finite failure [25, 27]. In this section we first introduce, mimick-
ing the case of logic programming, a näıve unfolding transformation based on
conditional narrowing.

Definition 1 Unfolding of a rule in a program. Let R be a program and

r ≡ (λ → ρ ⇐ C) << R be a program rule. Let {g
θi

; (C′
i, ρ

′
i = y)}ni=1 be the set

of all one-step narrowing derivations that perform an effective narrowing step for
the goal g ≡ (C, ρ = y) in R. Then, UnfR(r) = {(λθi → ρ′i ⇐ C′

i) | i = 1 . . .n}.

Note that the unfolding of a rule in a program never gives back the original,
unfolded rule, since we have purposely left out the one-step narrowing derivations

(C, ρ = y)
θi

; true that could be proved if the goal (C, ρ = y) syntactically
unifies. This corresponds to the näıve, intuitive idea that one has in mind about
how to define the unfolding operation.

Definition 2 Unfolding of a program w.r.t. a rule. Let R be a program
and r ∈ R be a program rule. The unfolding of R w.r.t. r is the program:

Unfold(R, r) =

{
(R− {r}) ∪ UnfR(r) if UnfR(r) 6= ∅
R otherwise.

Note that, with this definition of unfolding, even the (weaker) semantics of
(ground) equational consequences of the original program is not preserved by
the transformation:

Example 1. Let us consider the following program R = { f(c(x)) → f(x) }. The
rhs of the rule, f(x), can only be narrowed to f(y) with substitution {x/c(y)}.
Then, we obtain the following unfolded program R′ = { f(c(c(y))) → f(y) }.
Now, the equation f(c(a)) = f(a) is only true in the original program.



The results in this paper show that there is a close connection between the
conditions for the correctness of the partial evaluation of functional logic pro-
grams (see [4]) and the correctness of the unfolding transformation. By exploit-
ing this relation, we identify sufficient conditions that guarantee the correctness
of the unfolding transformation. Namely, the transformation is always strongly
sound but the properties of confluence, decreasingness [15], and a sort of closed-
ness are necessary for completeness. The notion of closedness was introduced
in [4] for the correctness of the Partial Evaluation (PE) of functional logic pro-
grams. PE is a transformation technique which, given a program R and a goal g,
returns a partially evaluated program R′ which gives exactly the same answers
for g (and for any goal which satisfies some specific requirements, including the
closedness condition) as R does. Roughly speaking, a term t is S-closed if 1) t

is a variable, 2) t is a constructor term, or 3) t is an instance of a term s ∈ S,
with t = sθ, and the terms in θ are also S-closed. Intuitively, the closedness
condition guarantees that all calls that might occur during the execution of g

are “covered” by some program rule of R′.

Theorem 3 Strong soundness. Let R be a program and R′ = Unfold(R, r),
r ∈ R. Then, we have that OR′(g) ⊆ OR(g), for any goal g.

Theorem 4 Completeness. Let R ≡ {λi → ρi ⇐ Ci}
n
i=1 be a confluent, left–

linear and decreasing program and let L = {λ1, . . . , λn}. Let R′ = Unfold(R, r),
r ∈ R, and g be a goal. If R is L-closed, then R′ is decreasing and L-closed,
and for all θ ∈ OR(g), there exists θ′ ∈ OR′(g) such that θ′ ≤ θ [Var(g)].

Roughly speaking, the condition that R is L-closed requires that the calls
in the rhs’s and in the conditions of program rules whose outermost functor
is a defined function symbol not be in normal form. The extra requirement
for decreasingness ensures that these calls can be finitely normalized. These
conditions suffice for ensuring that the considered rule can be safely dropped
from the original program in exchange for the rules that result from unfolding,
without losing completeness.

In the following section, we introduce a generalized definition of unfolding
which preserves completeness under less demanding conditions.

3.1 Generalized-unfolding Operation

Definition 5. Let R be a program and r ≡ (λ → ρ ⇐ C) << R be a program
rule. We define the generalized unfolding of r in R by:

Gen-UnfR(r) = UnfR(r) ∪ {(λ → y)θ | θ = mgu(C ∪ {ρ = y}) 6≡ fail}.

We note that the unfolding and generalized unfolding transformations co-
incide for the case when mgu(C ∪ {ρ = y}) ≡ fail. We also note that, for
unconditional rules, mgu({true, ρ = y}) is never fail, which implies that un-
conditional rules are always reproduced in the derived program. Finally, for
r ≡ (λ → ρ ⇐ C), note that if Gen-UnfR(r) = ∅ then there is no successful
derivation starting from (C, ρ = y) in R.



The following example illustrates the previous definition and points out the
difference w.r.t. Definition 2.

Example 2. Consider again the program R of Example 1. The generalized un-
folding of the first rule of R is {f(c(x)) → f(x), f(c(c(y))) → f(y)}, which
contains the original rule (and thus the semantics is preserved).

An unfolding transformation which would always reproduce the original un-
folded rule would be trivially complete, and practically useless. This does not
happen, in general, with our generalized unfolding operation. On the contrary,
the use of other, seemingly equivalent, definitions of conditional narrowing, like
the one that substitutes single equations by true as soon as they syntactically
unify (instead of requiring the unification of the whole sequence [23]), would lead
to generalized unfolding definitions that always reproduce the unfolded rule.

Definition 6 Generalized unfolding of a program w.r.t. a rule.

The generalized unfolding of a program R w.r.t. a rule is defined as:

Gen-Unfold(R, r) = (R− {r}) ∪ Gen-UnfR(r).

Given a program R and a rule r ∈ R, Unfold(R, r) and Gen-Unfold(R, r)
do not coincide for all narrowing strategies. For unrestricted conditional narrow-
ing, e.g., Unfold(R, r) ⊆ Gen-Unfold(R, r). Therefore, Gen-Unfold(R, r) is
complete whenever Unfold(R, r) is.

In the following, we describe and prove the strong soundness and complete-
ness of the generalized unfolding operation under easier, weaker conditions,
which rely on the properties of the PE transformation of [4]. We start by formal-
izing an alternative characterization of Gen-Unfold(R, r) in terms of partial
evaluation. Roughly speaking, the definition of the PE-based, generalized un-
folding operation is based on the idea of partially evaluating the program w.r.t.
the lhs’s of the heads of program rules. The inspiration for this definition comes
from [22].

In [4], a general framework for partial evaluation of functional logic programs
is defined which is based on building partial narrowing trees for the goal and ex-
tracting the specialized definition —the resultants— from the non-failing root-to-
leaf branches. Roughly speaking, a PE of a term s is obtained by building a finite
narrowing tree for the goal s = y (where y 6∈ Var(s)), and then constructing a

resultant (sθi → ti ⇐ Ci) for each narrowing derivation (s = y
θi ∗
; Ci, ti = y)

of the tree. See [4] for a detailed definition.
Now we provide a generalized definition of unfolding, following [22].

Definition 7 Generalized unfolding of a rule using PE. Let R be a pro-
gram and r ≡ (λ → ρ ⇐ C) << R be a program rule. Let (f/n) be the outermost
function symbol of λ. Let s ≡ f(x1, . . . ,xn), with xi 6= xj, for all i 6= j. The PE-
based, generalized unfolding of r in R, PE-UnfR(r), is a PE of the term s in R
obtained by stopping the branches of the narrowing tree at the end of the first
edge for all rules except r, and continuing the branches which use r one more
level.



The following proposition is our key point for proving the correctness of the
generalized unfolding transformation.

Proposition 8. Let R be a program, and r ≡ (f(t1, . . . , tn) → ρ ⇐ C) << R
be a program rule. Then, Gen-UnfR(r) ∪ (Rr − {r})= PE-UnfR(r), where
Rr denotes the subset of rules (f(t′1, . . . , t

′
n) → ρ′ ⇐ C′) << R. Also, Gen-

Unfold(R, r) = (R− {r}) ∪ Gen-UnfR(r) = (R− {r}) ∪ PE-UnfR(r).

Now, the correctness results of the unfolding transformation directly follow
from the results in [4] since the closedness, linearity and independence conditions
required in [4] for the correctness of PE are automatically satisfied for the set
of terms partially evaluated when producing the generalized unfolding of the
program R.

Theorem 9 Completeness. Let R be a canonical program, r ∈ R be a rule,
R′ = Gen-Unfold(R, r), and g be a goal. Then, for all θ ∈ OR(g), there exists
θ′ ∈ OR′(g) s.t. θ′ ≤ θ [Var(g)].

As a consequence of Theorem 9, generalized unfolding is complete for the
semantics of the least Herbrand E-model in canonical programs.

The strong correctness is formulated using the ultra-linearity condition [4],
which means that no variable appears twice in the rhs and the condition of
the rules. Ultra-linearity is quite usual in the case of unconditional programs
(where it is known as right-linearity). For conditional programs, we plan to
study whether the (weaker) conditions for the completeness of a sharing-based
implementation of narrowing [16], where terms are represented by graphs and
all occurrences of the same variable are shared, are sufficient to get rid of the
ultra-linearity condition.

Theorem 10 Strong correctness. Let R be a confluent program, R′ = Gen-
Unfold(R, r), r ∈ R, and g be a goal. Then,

1. (Strong Soundness) OR′(g) ⊆ OR(g).
2. (Strong Completeness) OR(g) ⊆ OR′(g), if R is ultralinear.

Partial evaluation and the unfold/fold transformational approaches have been
developed rather independently. Recently, their relation has been the subject of
some discussion [21, 25, 27]. In essence, PE is a strict subset of the unfold/fold
transformation in which unfolding is the only basic transformation rule. Only a
limited form of implicit folding is obtained by imposing the closedness condition
[25]. In return for this, lower complexity and a more detailed understanding of
control are gained using the PE approach.

4 Unfolding/Folding via Innermost Narrowing

The use of efficient forms of narrowing can significantly improve the accuracy
of the specialization method and increase the efficiency of the resulting pro-
gram. In this section, we formalize and study the properties of a highly efficient
unfold/fold transformation based on innermost conditional narrowing.



4.1 Innermost Conditional Narrowing

An innermost term t is an operation applied to constructor terms, i.e. t =
f(t1, . . . , tk), where f ∈ F and, for all i = 1, . . . ,k, ti ∈ τ(C ∪ V). A CTRS is
constructor-based (CB), if the left-hand side of each rule is an innermost term. A
constructor goal is a goal which consists of a sequence of equations si = ti, with
si, ti ∈ τ(C ∪ V). A substitution σ is (ground) constructor, if xσ is a (ground)
constructor term for all x ∈ Dom(σ).

A function symbol is completely-defined (everywhere defined), if it does not
occur in any ground term in normal form, that is to say that functions are
reducible on all ground terms (of an appropriate sort). R is said to be completely-
defined (CD), if each defined function symbol is completely-defined. In a CD
CTRS, the set of ground normal terms is the set of ground constructor terms
τ(C) over C.

Let ϕ◭(g) be an innermost selection function, a narrowing strategy which
assigns the occurrence u of an innermost subterm of g to the goal g. We formulate
innermost conditional narrowing ;◭ as the smallest relation satisfying:

(1)
σ = mgu(g) ∧ g is a constructor goal

g
σ
;◭ true

(2)
u = ϕ◭(g) ∧ (λ → ρ ⇐ C) << R ∧ σ = mgu({g|u = λ})

g
σ
;◭ (C,g[ρ]u)σ

We let O◭

R(g) denote the innermost success set of g in R, i.e., the set of all
computed answer substitutions corresponding to the successful innermost con-
ditional narrowing derivations for g in R. Note that all answers computed by
innermost conditional narrowing are normalized since they are constructor [13].

For a goal g and CB-CD, canonical program R, innermost conditional nar-
rowing is complete w.r.t. ground constructor solutions σ satisfying that Var(g) ⊆
Dom(σ). This means that, given σ, there is a c.a.s. θ for R∪{g} using ;◭ such
that θ ≤ σ[Var(g)] [13].

4.2 Innermost Unfolding Transformation

Let us now formally introduce the unfolding of a program rule at one of its
innermost function calls. By abuse, for a rule r ≡ (λ → ρ ⇐ C), we define
O(r) = O(C, ρ = y) and use it to unequivocally refer to the positions of r. We
also use r|u and r[t]u, u ∈ O(r), with the obvious meaning.

Definition 11 Innermost unfold. Let R be a program and r ≡ (λ → ρ ⇐
C) << R be a program rule. Let u ∈ Ō(r) be the occurrence of an innermost
subterm of the rule r. We define the unfolding of R w.r.t. u and r as follows:

Unfold◭(R,u, r) = (R− {r}) ∪ Unf◭

R(u, r)

where Unf◭

R(u, r) is the set of unfolded rules which result from the one-step

innermost narrowing derivations {(C, ρ = y)
[u,θi]
;◭ gi | i = 1, . . . ,n} for (C, ρ =

y) in R. By abuse, we omit the parameter u when it is fixed by ϕ◭((C, ρ =
y)) = u.



The only difference w.r.t. the general definition is in the use of innermost
narrowing instead of unrestricted narrowing to build the derived rules. For in-
nermost narrowing, the selection of the innermost position to be narrowed is
don’t-care nondeterministic, hence we prefer to leave the unfolding position as
a parameter of the innermost unfolding definition. Note that, for the innermost
strategy, unfolding and general unfolding coincide.

The following theorem establishes the computational equivalence of a pro-
gram and any of its innermost unfoldings, under the simple, standard require-
ments for the completeness of innermost conditional narrowing.

Theorem 12. Let R be a CB-CD canonical program, r ∈ R a program rule, and
u ∈ Ō(r) the occurrence of an innermost subterm of r. Let R′ = Unfold◭(R,u, r).
Then, we have that O◭

R(g) = O◭

R′(g), for any goal g.

4.3 Innermost Folding Transformation

Now we introduce a folding transformation, which is intended to be the inverse of
the unfolding operation, that is, an unfolding step followed by the corresponding
folding step (and viceversa) is expected to give back the initial program. Roughly
speaking, the folding operation consists of substituting a function call (folding
call) for a definitionally equivalent set of calls (folded calls) together with a set
of equational conditions. This operation is generally used in all transformation
techniques in order to pack back unfolded rules and to detect implicitly recursive
definitions. It is also used when partial evaluation techniques are recast in terms
of unfold/fold transformations [25].

In the following, we introduce a folding transformation that can be seen as
an extension to functional logic programs of the reversible folding of [25] for logic
programs. We have chosen this form of folding since it exhibits the useful, pur-
sued property that the answer substitutions computed by innermost narrowing
are preserved through the transformation. We consider the investigation of more
general definitions of folding as a matter of further research.

Let us now introduce the innermost folding operation. Note that it has two
sources of nondeterminism. The first is in the choice of the folded calls; the
second, is in the choice of a generalization (folding call) of the heads of the
instantiated function definitions which are used to substitute the folded calls.

Definition 13 Innermost fold. Let R be a program. Let {r1, . . . , rn} << R
(the “folded rules”) and Rdef ≡ {r′1, . . . , r

′
n} << R (the “folding rules”) be two

disjoint subsets of program rules (up to renaming), with r′i ≡ (λ′
i → ρ′i ⇐ C′

i),
i = 1, . . . ,n. Let r be a rule5, u ∈ O(r) be a position of the rule r, and t be an
innermost term such that, for all i = 1, . . . ,n:

1. θi = mgu({λ′
i = t}) 6≡ fail,

5 Roughly speaking, r is the “common skeleton” of the rules that are folded in the
folding step. The occurrence u in r acts as the pointer to the “hole” where the folding
call is let fall.



2. ri ≡ (λ → ρi ⇐ C′
i,Ci)θi and r[ρ′i]u ≡ (λ → ρi ⇐ Ci), and

3. for any rule r′ ≡ (λ′ → ρ′ ⇐ C′) << R not in Rdef , mgu({λ′ = t}) ≡ fail.

Then, we define the folding of {r1, . . . , rn} in R using Rdef as follows:

Fold◭(R, {r1, . . . , rn},Rdef ) = (R− {r1, . . . , rn}) ∪ {rfold}
where rfold ≡ r[t]u.

Intuitively, the folding operation proceeds in a contrary direction to the nar-
rowing steps. In narrowing steps, for a given unifier of the redex and the lhs of
the applied rule, a reduction step is performed on the instantiated redex, then
the conditions of the unfolding rule are added to the unfolded one, and finally
the narrowing substitution is applied. Here, first folded rules are “deinstanti-
ated” (generalized). Next, one gets rid of the conditions of the applied folding
rules, and, finally, a reduction step is performed against the reversed heads of the
folding rules. The following example illustrates our notion of innermost folding.

Example 3. Let us consider the following CB-CD canonical program R:

f(x) → s(x) ⇐ h(s(x)) = 0 (r1) num(y) → y ⇐ h(y) = 0 (r3)
f(s(z)) → s(s(0))) ⇐ z = 0 (r2) num(s(s(z))) → s(s(0)) ⇐ z = 0 (r4)

Now, we can fold the rules {r1, r2} of R w.r.t. Rdef ≡ {r3, r4} using r ≡ (f(x) →
2) and t ≡ num(s(x)), obtaining the resulting program:

R′ = { f(x) → num(s(x)) (rfold)
num(y) → y ⇐ h(y) = 0 (r3)

num(s(s(z))) → s(s(0)) ⇐ z = 0 (r4) }.

The above definition requires two applicability conditions for a folding step:
(1) the set of folded rules and the set of folding rules are disjoint (up to renaming)
and (2) the term t which replaces the folded calls is innermost. Note that the
latter requirement is novel as it arises for the first time in the functional logic
context, and it is a key point for proving the reversibility property that a folded
program can be unfolded back by an innermost step.

The following lemma formalizes the reversibility condition, by showing how
folding steps can be undone by appropriate innermost unfolding steps. This
allows us to prove, in Theorem 15, the total correctness of the transformation.

Lemma14 Reversibility. Let R be a CB-CD, canonical program. If R′ =
Fold◭(R, {r1, . . . , rn},Rdef ), then there exists an occurrence u ∈ Ō(rfold) of an
innermost term s.t. R = Unfold◭(R′,u, rfold) (up to renaming), where rfold is
the new rule introduced in R′ by the innermost folding step.

Example 4. Consider again the folded program R′ of Example 3. If we unfold the
rule rfold of R′ w.r.t. the occurrence of the innermost function call num(s(x)),
then we get back the initial program R.

Theorem 15 Strong correctness. Let R be a CB-CD, canonical program and
R′ = Fold◭(R, {r1, . . . , rn},Rdef ) be a folding of {r1, . . . , rn} in R using Rdef .
Then, we have that O◭

R(g) = O◭

R′(g), for any equational goal g.



Theorem 12 and Theorem 15 show that it is possible to define a program
transformation strategy based on our innermost unfold/fold rules preserving
computed answer substitutions, which is outside the scope of this paper.

As an application of the innermost unfolding transformation, in the following
section, we define a semantics based on unfolding which is able to characterize
the answer substitutions computed by innermost narrowing syntactically.

5 A Semantics Modelling Computed Answers

The operational semantics of a program is a mapping from the set of programs
to a set of program denotations which, given a program R, returns a set of
‘results’ of the computations in R. In this section, we formalize a nonground
operational semantics for functional logic programs which is defined in terms of
the set of all ‘values’ that functional expressions can compute. This semantics
fully characterizes the c.a.s.’s computed by innermost conditional narrowing and
it admits an alternative characterization in terms of innermost unfolding.

5.1 Operational Semantics

The following definitions are auxiliary. An equation of the form x = y, x,y ∈ V

is called a trivial equation. A flat equation is an equation of the form f(x1, . . . ,xn) =
xn+1 or xn = xn+1, where xi 6= xj for all i 6= j. Any goal g can be transformed
into an equivalent one, flat(g), which is flat [5].

Definition 16. Let R be a program. Then,

O◭(R) = {(f(x1, . . . ,xn) = xn+1)θ | f(x1, . . . ,xn) = xn+1
θ ∗
;◭ true in R,

and (f/n) ∈ Σ }.

The following theorem asserts that the computed answer substitutions of any
(possibly conjunctive) goal g can be derived from O◭(R) (i.e. from the observable
behaviour of single equations), by unification of the equations in the goal with
the equations in the denotation. We note that this property is a kind of AND-
compositionality which does not hold for unrestricted conditional narrowing [3].
We assume that the equations in the denotation are renamed apart. Equations
in the goal have to be flattened first, i.e. subterms have to be unnested so that
the term structure is directly accessible to unification.

Definition 17. Let g be a goal. We define the function split : Goal → Goal×
Goal by split(g) = (g1,g2), where all trivial equations of g are in g2, and g1

contains the other, non-trivial, equations of g.

Theorem 18. Let R be a CB-CD canonical program and let g be a goal. Let
split(flat(g)) = (g1,g2). Then θ is a computed answer substitution for g in
R iff there exists C ≡ (e1, . . . , em) << O◭(R) such that θ′ = mgu(g1,C) and
θ = (θ′ ⇑ mgu(g2)) [Var(g)].



Theorem 18 shows that O◭(R) is a fully abstract semantics w.r.t. computed
answer substitutions, i.e. two programs R1 and R2 with O◭(R1) = O◭(R2)
(up to renaming) cannot produce different computed answers. Moreover, O◭(R)
can be viewed as a (possibly infinite) set of ‘unit’ clauses, and the computed
answer substitutions for g in R can be determined by ‘executing’ flat(g) in
the program O◭(R) by syntactic unification, as if the equality symbol were
an ordinary predicate. We note that in [2] a similar operational semantics was
defined for basic conditional narrowing.

5.2 Unfolding Semantics

Now we introduce an unfolding semantics for functional logic programs, based
on the unfolding transformation we have defined in Section 4.2. First, we define
the unfolding of a program as follows.

Definition 19 Unfolding of a program. The unfolding of a program R is the
program obtained by unfolding the rules of R w.r.t. R. Formally,

Unfold◭(R) =
⋃

r∈R

{Unf◭

R(r) | r ∈ R}.

Now, the repeated application of unfolding leads to a sequence of equivalent
programs which is inductively defined as follows.

Definition 20. The sequence:

R0 = R
Ri+1 = Unfold◭(Ri), i ≥ 0

is called the innermost unfolding sequence starting from R.

We notice that, as an immediate consequence of Theorem 12, we have that
O◭(Ri) = O◭(Ri+1), i ≥ 0, for CB-CD, canonical programs.

The unfolding semantics of a program is defined as the limit of the (top-
down) unfolding process described in Definition 19. Let us now formally define
the unfolding semantics U◭(R) of a program R. The main point of this definition
is in compelling the rhs’s of the equations in the denotation to be constructor
terms. Let ΦC be the set of identical equations c(x1, . . . ,xn) = c(x1, . . . ,xn),
for each c/n ∈ C.

Definition 21. Let R be a program. Then,

U◭(R) = ΦC ∪
⋃

i∈ω

{(s = d) | (s → d ⇐) ∈ Ri and d ∈ τ(C ∪ V)}

where R0,R1, . . . is the innermost unfolding sequence starting from R.

The following theorem is the main result of this section and it formalizes the
intuitive claim that, since the unfolding rule preserves the observable properties,
we have found out a useful alternative characterization of the computed answers
semantics O◭(R) in terms of unfolding.

Theorem 22. Let R be a CB-CD canonical program. Then, U◭(R) = O◭(R).



6 Conclusions and Further Research

In this paper, we have considered the correctness of the unfold/fold transfor-
mations in relation to some standard semantics of functional logic programs,
namely, unrestricted conditional narrowing and innermost conditional narrow-
ing. We have taken on the systematic study of program transformations for
unrestricted narrowing because it brings to light some common problems caused
by the basic mechanism and not tied to the intricacies of any particular strategy.
We have ascertained and exemplified general conditions that guarantee that the
meaning of the program is not modified by the transformation. These condi-
tions cover many practical cases and are easy to check, since they are mostly
syntactical and do not depend on the final program, but only on the initial one.

Future investigation concerns the study of unfolding techniques based on
more elaborated narrowing strategies. As logic programming unfold/fold sug-
gests, constructor computed answer substitutions are easier to preserve by trans-
formed programs. Since lazy narrowing only computes solutions of this kind, we
hope that stronger results may be obtained with this strategy when used as oper-
ational semantics in unfold/fold transformations. The definition of a framework
for combining folding and unfolding with new, useful transformation techniques
is subject of ongoing research.
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