
A Unifying View of Functional and Logic Program

Specialization

MAŔIA ALPUENTE

U. Politécnica de Valencia, Spain 〈http://www.dsic.upv.es/users/elp/alpuente.html〉

MORENO FALASCHI

U. di Udine, Italy 〈http://www.dimi.uniud.it/∼falaschi/〉

and

GERMÁN VIDAL

U. Politécnica de Valencia, Spain 〈http://www.dsic.upv.es/users/elp/gvidal.html〉

We give a general introduction to the particular problems associated with the partial evaluation
of functional logic programs, explain the relationship with similar techniques for functional and
logic languages, and show that it is useful to transfer the technology of narrowing into a technique

for driving specialization in integrated languages.

Preliminary version. Final version in Computing
Surveys (ACM Press), Vol. 30, No. 3es (Sept. 1998), pp. 9-es, 1998

1. FUNCTIONAL LOGIC PROGRAM SPECIALIZATION

The aim of partial evaluation (PE) is to specialize a given program w.r.t. part
of its input data (hence also called program specialization). PE has been widely
applied in the field of functional programming (FP) [5; 11] and logic programming
(LP) [7; 14]. Although the objectives are similar, the general methods are often
different due to the distinct underlying computation models. This separation has
the negative consequence of duplicated work since developments are not shared and
many similarities are overlooked. In recent years, some correspondences have been
established among different techniques in some particular cases [9; 16; 18].

Narrowing generalizes the rewriting machinery of functional programs to cover
LP features such as logical variables, partial data structures and built-in search
as well as FP features like polymorphism, higher-order and lazy (demand-driven)
evaluation. Narrowing is complete in the sense of functional programming (com-
putation of normal forms) as well as logic programming (computation of answers).
Essentially, it consists of computing an appropriate substitution such that when
applied to the current goal it becomes reducible, and then reducing it [10].

This work has been partially supported by CICYT under grant TIC 95-0433-C03-03 and by HCM
project CONSOLE.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.



2 · Maŕıa Alpuente et al.

Narrowing-driven PE [3] is the first generic algorithm for the specialization of
functional logic (FL) languages. The method is formalized within the theoretical
framework established in [14; 15] for the partial evaluation of logic programs (also
known as partial deduction, PD), although a number of concepts have been gen-
eralized to deal with nested function calls. Our approach has better opportunities
for optimization thanks to the functional dimension (e.g. by the inclusion of deter-
ministic simplification steps). Also, since unification is embedded into narrowing,
we are able to automatically propagate syntactic information on the partial input
(term structure) and not only constant values. The different instances of our frame-
work which can be obtained by considering different narrowing strategies preserve
some logical, strong (computed answers) program semantics under conditions easily
ascertained by reusing methods and results developed for narrowing.

We are not aware of any formal antecedent of the narrowing-driven approach in
the PE literature, although the idea can be traced back to [6]. A closer, automatic
approach is that of positive supercompilation (PS) [9], whose basic transformation
operation is driving [19], a unification-based transformation mechanism which is
somehow similar to (lazy) narrowing. Although our work shares many similarities
with PS, it still has some notable differences (some of which are discussed below).
A different PE method for a rewriting-based, FL language is presented in [12].

2. NARROWING-DRIVEN PARTIAL EVALUATION

Given a program P and a set S of atoms, the aim of PD [14] is to derive a new
program P ′ which computes the same answers for any input goal which is an in-
stance of an atom in S. The program P ′ is obtained by gathering together the
set of resultants, which are constructed as follows: for each atom A of S, i) first
construct a finite SLD-tree, T (A), for P ∪{⇐ A}, then ii) consider the leaves of the
non-failing branches of T (A), say G1, . . . , Gr, and the computed substitutions along
these branches, say θ1, . . . , θr, and finally iii) construct the clauses: Aθ1 ⇐ G1,. . . ,
Aθr ⇐ Gr. The basic correctness of the transformation is ensured whenever P ′ is
S-closed , i.e. every atom in P ′ is an instance of an atom in S. An independence

condition, which holds if no two atoms in S have a common instance, is needed to
guarantee that P ′ does not produce additional answers. Using the terminology of
[16], the constructed SLD-trees can be viewed as (i) symbolic computations for the
atoms in S; the S-closedness of P ′ illustrates the idea of (ii) regularity of a symbolic
computation; and finally, (iii) program extraction from a set of SLD-trees consists
basically in building up the associated set of resultant rules.

We now identify these three categories for narrowing-driven PE [3].

Symbolic Execution. It is similar to PD, but we use narrowing in the place of
SLD-resolution. For a set S of terms (possibly with nested function calls) and a
FL program {λi → ρi ⇐ Ci}

n

i=1
(a conditional term rewriting system), a partial

(finite) narrowing tree is constructed for each term in S. The inclusion of a deter-
ministic, normalization process between narrowing steps improves the elimination
of intermediate data structures and reduces the size of the specialized program since
less choices are unfolded [1]. By exploiting the results on normalizing narrowing

[10], this is achieved in a principled way which does not compromise termination.
Control issues are managed by using standard techniques as in [15; 17].



A Unifying View of Functional and Logic Program Specialization · 3

Search for Regularities. Our notion of regularity is similar to the PD closedness
condition, which we have generalized to recurse over the terms in order to handle
nested function calls. Informally, a term t is considered S-closed iff it only contains
constructors (symbols that do not appear as the outermost function symbol of
any rule of the program) and variables, or i) there exists a substitution θ such
that tθ ∈ S, and ii) the terms in θ are recursively S-closed. For instance, the
term f(g(0)) is closed w.r.t. the set of calls {f(x), g(x)}. This recursive notion of
closedness substantially enhances the specialization power of the method, since it
supplies a notion of “similarity” which subsumes both the standard, PD-like notion
of closedness and the perfect (“α-identical”) closedness test of [18]. It also differs
from the folding operation in [17], which does not allow to fold back a function call
which is closed by a different branch of the driving tree.

Program Extraction. It is not straightforward to extend the notion of resultant
to our setting. Consider a narrowing derivation from the initial goal ⇐ A to ⇐ G

computing θ, where A is an equation. This would correspond to the restriction
to perform PD on single atoms used in [14]. The associated LP-like resultant
(i.e. the rule Aθ → true ⇐ G) is not useful, since it does not specialize any user-
defined function of the original program, but the equality symbol in the equation A.
Also, if we handle conjunctions of equations as boolean-valued terms and we define
resultants by Aθ → G, then few opportunities to find regularities are provided and
very poor specialization is achieved (by effect of the abstraction operation required
to guarantee termination), unless special partitioning techniques are introduced (in
the line of conjunctive PD [13]). Thus, we decided to specialize single terms s,
and so we consider derivations for initial goals s = y, where y is a fresh variable,
that we prolong down to the leaves (C, t = y) (where C are the equations brought
by the conditions of the applied program rules), and we extract the resultant as
(sθ → t ⇐ C). As in PD, the ‘root-to-leaf’ notion of resultant results in fewer rules
than in the case of PS, where rules are extracted from each single computation
step, but has the disadvantage that there are less opportunities to find appropriate
regularities, just because fewer specialized functions are produced.

3. NARROWING STRATEGIES AND THE NEED FOR RENAMING

The behavior of a concrete narrowing-driven partial evaluator greatly depends on
the narrowing strategy. Our results in [1; 2] show that if computed answer semantics
is to be preserved by program transformations, then the only reasonable class is
that of constructor-based (CB) programs with constructor answers. Unfortunately,
even if the original program is CB, the residual program might not be, which is
undesirable for the completeness of some strategies such as lazy narrowing. A post-
processing renaming transformation is then necessary to restore the constructor
discipline [1]. Complex terms are ‘folded’ recursively, by replacing them by calls to
new functions which satisfy the CB constraint. The renaming phase also achieves
a more involved independence condition (w.r.t. PD) that guarantees the strong
correctness of the transformation by removing overlaps between the specialized
function calls. Renaming is also striking for conjunctive PE techniques in our
setting.



4 · Maŕıa Alpuente et al.

4. FUTURE RESEARCH

Further studies are needed to accommodate the propagation of negative information

[8; 19] through (constrained) narrowing derivations in our framework as well as to
formalize some form of conjunctive partial evaluation comparable to [13]. We have
started this line of work using the lazy higher order functional logic language TOY
[4], pursuing the development of a self-applicable partial evaluator.

REFERENCES

[1] M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Specialization of Lazy Functional Logic
Programs. In Proc. PEPM’97, pages 151–162. ACM, New York, 1997.

[2] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe Folding/Unfolding with Conditional
Narrowing. In Proc. ALP’97, pages 1–15. Springer LNCS 1298, 1997.

[3] M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven Partial Evaluation of Functional

Logic Programs. In Proc. ESOP’96, pages 45–61. Springer LNCS 1058, 1996.

[4] R. Caballero-Roldán, F.J. López-Fraguas, and J. Sánchez-Hernández. User’s manual for Toy.

Technical report SIP-5797, UCM, Madrid (Spain), April 1997.

[5] C. Consel and O. Danvy. Tutorial notes on Partial Evaluation. In Proc. of 20th Annual ACM

Symp. on Principles of Programming Languages, pages 493–501. ACM, New York, 1993.

[6] J. Darlington and H. Pull. A Program Development Methodology Based on a Unified Ap-

proach to Execution and Transformation. In Proc. of the Int’l Workshop on Partial

Evaluation and Mixed Computation, pages 117–131. North-Holland, Amsterdam, 1988.

[7] J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of Partial Evaluation

and Semantics-Based Program Manipulation, pages 88–98. ACM, New York, 1993.

[8] R. Glück and A.V. Klimov. Occam’s Razor in Metacomputation: the Notion of a Perfect
Process Tree. In Proc. of WSA’93, pages 112–123. Springer LNCS 724, 1993.

[9] R. Glück and M.H. Sørensen. Partial Deduction and Driving are Equivalent. In Proc.

PLILP’94, pages 165–181. Springer LNCS 844, 1994.

[10] M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice.
Journal of Logic Programming, 19&20:583–628, 1994.

[11] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Gen-

eration. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[12] L. Lafave and J.P. Gallagher. Partial Evaluation of Functional Logic Programs in Rewriting-
based Languages. Tech. Report CSTR-97-001, U. Bristol, England, March 1997.

[13] M. Leuschel, D. De Schreye, and A. de Waal. A Conceptual Embedding of Folding into
Partial Deduction: Towards a Maximal Integration. In Proc. JICSLP’96, pages 319–332.
The MIT Press, Cambridge, MA, 1996.

[14] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming. Journal of

Logic Programming, 11:217–242, 1991.

[15] B. Martens and J. Gallagher. Ensuring Global Termination of Partial Deduction while Al-
lowing Flexible Polyvariance. In Proc. ICLP’95, pages 597–611. MIT Press, 1995.

[16] A. Pettorossi and M. Proietti. A Comparative Revisitation of Some Program Transformation
Techniques. In Partial Evaluation, Int’l Seminar, pages 355–385. LNCS 1110, 1996.

[17] M.H. Sørensen and R. Glück. An Algorithm of Generalization in Positive Supercompilation.
In Proc. ILPS’95, pages 465–479. The MIT Press, Cambridge, MA, 1995.

[18] M.H. Sørensen, R. Glück, and N.D. Jones. A Positive Supercompiler. Journal of Functional

Programming, 6(6):811–838, 1996.

[19] V.F. Turchin. The Concept of a Supercompiler. ACM Transactions on Programming Lan-

guages and Systems, 8(3):292–325, July 1986.


