
Improving Offline Narrowing-Driven Partial
Evaluation using Size-Change Graphs?

Gustavo Arroyo, J.Guadalupe Ramos, Josep Silva, and Germán Vidal

Technical University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain.
{garroyo,guadalupe,jsilva,gvidal}@dsic.upv.es

Abstract. Recently, an offline approach to narrowing-driven partial eval-
uation—a partial evaluation scheme for first-order functional and func-
tional logic programs—has been introduced. In this approach, program
annotations (i.e., the expressions that should be generalized at partial
evaluation time to ensure termination) are based on a simple syntac-
tic characterization of quasi-terminating programs. This work extends
the previous offline scheme by introducing a new annotation strategy
which is based on a combination of size-change graphs and binding-time
analysis. Preliminary experiments point out that the number of program
annotations is drastically reduced compared to the previous approach.

1 Introduction

Narrowing [9] extends the reduction principle of functional languages by re-
placing matching with unification (as in logic programming). Narrowing-driven
partial evaluation (NPE) [1] is a powerful specialization technique for the first-
order component of many functional and functional logic languages like Haskell
or Curry. In NPE, some refinement of narrowing [9] is used to perform symbolic
computations. Currently, needed narrowing [3], a narrowing strategy which only
selects a function call if its reduction is necessary to compute a value, is the
strategy that presents better properties. In general, the narrowing space (i.e.,
the counterpart of the SLD search space in logic programming) of a term may
be infinite. However, even in this case, NPE may still terminate when the orig-
inal program is quasi-terminating w.r.t. the considered narrowing strategy, i.e.,
when only finitely many different terms—modulo variable renaming—are com-
puted. The reason is that the (partial) evaluation of multiple occurrences of
the same term (modulo variable renaming) in a computation can be avoided by
inserting a call to some previously encountered variant (a technique known as
specialization-point insertion in the partial evaluation literature).

Recently, [8] identified a class of quasi-terminating rewrite systems (w.r.t.
needed narrowing) that are called non-increasing. This characterization is purely
syntactic and very easy to check, though too restrictive to be useful in practice.
? This work has been partially supported by the EU (FEDER) and the Spanish MEC

under grant TIN2005-09207-C03-02 and by the ICT for EU-India Cross-Cultural
Dissemination Project ALA/95/23/2003/077-054.

Therefore, [8] introduces an offline scheme for NPE by 1) annotating the program
expressions that violate the non-increasingness property, and 2) considering a
slight extension of needed narrowing to perform partial computations so that
annotated subterms are generalized at specialization time (which ensures the
termination of the process).

In this work, however, we improve on the simpler characterization of non-
increasing rewrite systems by the use of size-change graphs [7], which approx-
imate the changes in parameter sizes at function calls. In particular, we use
the information in the size-change graphs to identify a particular form of quasi-
termination, i.e., that only finitely many different function calls (modulo variable
renaming) can be produced in a computation. For this purpose, the output of
a standard binding-time analysis is also used in order to have information on
which function arguments are static (and thus ground) or dynamic. When the
information gathered from the combined use of size-change graphs and binding-
time analysis does not allow us to infer that the rewrite system quasi-terminates,
we proceed as in [8] and annotate the problematic subterms to be generalized at
partial evaluation time. Finally we present some benchmarks on the implemen-
tation of the new analysis and conclude.

Our work shares many similarities with [6], where a quasi-termination anal-
ysis based on size-change graphs is used to ensure the termination of an offline
partial evaluator for first-order functional programs. However, transferring Glen-
strup and Jones’ scheme to functional logic programs and NPE is not easy. For
instance, NPE propagates bindings forward in the partial computations and,
thus, some additional requirements (compared to [6]) are necessary to still en-
sure quasi-termination.

2 Preliminaries

In this section, we introduce some basic notions of term rewriting (further details
in [4]). A term rewriting system (TRS for short) is a set of rewrite rules l → r
such that l is a nonvariable term and r is a term whose variables appear in l;
terms l and r are called the left-hand side and the right-hand side of the rule,
respectively. Given a TRS R over a signature F , the defined symbols D are
the root symbols of the left-hand sides of the rules and the constructors are
C = F \ D. We restrict ourselves to finite signatures and TRSs. We denote the
domain of terms and constructor terms by T (F ,V) and T (C,V), respectively,
where V is a set of variables with F ∩ V = ∅.

A TRS R is constructor-based if the left-hand sides of its rules have the
form f(s1, . . . , sn) where si are constructor terms, i.e., si ∈ T (C,V), for all
i = 1, . . . , n. In the following, we write on for the sequence of objects o1, . . . , on.
The set of variables appearing in a term t is denoted by Var(t). A term t is linear
if every variable of V occurs at most once in t. R is left-linear (resp. right-linear)
if l (resp. r) is linear for all rules l → r ∈ R. The definition of f in R is the
set of rules in R whose root symbol in the left-hand side is f . A function f ∈ D

is left-linear (resp. right-linear) if the rules in its definition are left-linear (resp.
right-linear).

The root symbol of a term t is denoted by root(t). A term t is operation-
rooted (resp. constructor-rooted) if root(t) ∈ D (resp. root(t) ∈ C). A term t is
ground if Var(t) = ∅. A term t is a variant of term t′ if they are equal modulo
variable renaming. Inductively sequential TRSs [2] are a subclass of left-linear
constructor-based TRSs. Essentially, a TRS is inductively sequential when all its
operations are defined by rewrite rules that, recursively, make on their arguments
a case distinction analogous to a data type (or structural) induction.

3 A Simple Offline NPE Scheme

In this section, we briefly present the offline approach to NPE from [8]. Given
an inductively sequential TRS R, the first stage of the process consists in com-
puting the annotated TRS. In [8], annotations were added to those subterms
that violate the non-increasingness condition, a simple syntactic characterization
of programs that guarantees the quasi-termination of computations. Neverthe-
less, annotations can be based on other, more refined analysis—the goal of this
paper—as long as the annotated program still ensures the termination of the
specialization process.

For the annotation stage, the signature F of a program is extended with a
fresh symbol: “•”. A term t is then annotated by replacing t by •(t).

Then, the second stage—the proper partial evaluation—takes the annotated
TRS, together with an initial term, t, and constructs its associated (finite) gener-
alizing needed narrowing tree (see below) where, additionally, a test is included
to check whether a variant of the current term has already been computed and,
if so, stop the derivation; finally, a residual—partially evaluated—program is ex-
tracted from the generalizing needed narrowing tree. Essentially, a generalizing
needed narrowing derivation s ∗

σ t is composed of

a) proper needed narrowing steps, for operation-rooted terms with no annota-
tions,

b) generalizations, for annotated terms, e.g., f(•(g(y)), x) is reduced to both
f(w, x) and g(y), where w is a fresh variable, and

c) constructor decompositions, for constructor-rooted terms with no annota-
tions, e.g., c(f(x), g(y)) is reduced to f(x) and g(x) when c ∈ C and f, g ∈ D,

where σ is the composition of the substitutions labeling the proper needed nar-
rowing steps. Consider, for instance, the following definitions of the addition and
product on natural numbers built from zero and succ:

add(zero, y) → y prod(zero, y) → zero
add(succ(x), y) → succ(add(x, y)) prod(succ(x), y) → add(prod(x, y), y)

According to [8], this program is not non-increasing. Then, it is annotated by

add(zero, y) → y prod(zero, y) → zero
add(succ(x), y) → succ(add(x, y)) prod(succ(x), y) → add(•(prod(x, y)), y)

For example, the following needed narrowing computation is not quasi-terminating
w.r.t. the original program (the selected function call is underlined):

prod(x, y) ;{x7→succ(x′)} add(prod(x′, y), y)
;{x′ 7→succ(x′′)} add(add(prod(x′′, y), y), y) ; . . .

In contrast, the corresponding computation by generalizing needed narrowing is
quasi-terminating (generalization steps are denoted by “;•”):

add(w, y) ; . . .

prod(x, y) ;{x7→succ(x′)} add(•(prod(x′, y)), y)

• 666v6v6v6v6v

•
)))i)i)i)i)i

prod(x′, y) ; . . .

We skip the details of the extraction of residual programs from generalizing
needed narrowing trees since it is orthogonal to the topic of this paper (see [8]).

4 Ensuring Quasi-Termination with Size-Change Graphs

In this section, we first recall some basic notions on size-change graphs from [7,
10] and, then, introduce our new approach for ensuring quasi-termination.

In the following, we say that a given order “�” is closed under substitutions
(or stable) if s � t implies σ(s) � σ(t) for all s, t ∈ T (F ,V) and substitution σ.

Definition 1 (reduction pair). We say that (%,�) is a reduction pair if %
is a quasi-order and � is a well-founded order on terms where both % and � are
closed under substitutions and compatible (i.e., % ◦ � ⊆ � or � ◦ % ⊆ � but
% ⊆ � is not necessary).

Definition 2 (size-change graph). Let (%,�) be a reduction pair. For every
rule f(sn) → r of a TRS R and every subterm g(tm) of r where g ∈ D, we
define a size-change graph as follows. The graph has n output nodes marked with
{1f , . . . , nf} and m input nodes marked with {1g, . . . ,mg}. If si � tj, then there
is a directed edge marked with � from if to jg. Otherwise, if si % tj, then there
is an edge marked with % from if to jg.

A size-change graph is thus a bipartite graph G = (V,W,E) where V =
{1f , . . . , nf} and W = {1g, . . . ,mg} are the labels of the output and input nodes,
respectively, and we have edges E ⊆ V ×W × {%,�}.

In order to focus on program loops, the following definition introduces the notion
of maximal multigraphs:

Definition 3 (Concatenation, Maximal Multigraphs). Every size-change
graph of R is a multigraph of R and if G = ({1f , . . . , nf}, {1g, . . . ,mg}, E1) and
H = ({1g, . . . ,mg}, {1h, . . . , ph}, E2) are multigraphs of R w.r.t. the same reduc-
tion pair (%,�), then the concatenation G ·H = ({1f , . . . , nf}, {1h, . . . , ph}, E)
is also a multigraph of R. For 1 ≤ i ≤ n and 1 ≤ k ≤ p, E contains an edge

from if to kh iff E1 contains an edge from if to some jg and E2 contains an
edge from jg to kh. If there is such a jg where the edge of E1 or E2 is labeled
with “�”, then the edge in E is labeled with “�” as well. Otherwise, it is labeled
with “%”.

A multigraph G of R is called a maximal multigraph of R if its input and
output nodes are both labeled with {1f , . . . , nf} for some f and if it is idempotent,
i.e., G = G ·G.

Roughly speaking, given the set of size-change graphs of a program, we first
compute its transitive closure under the concatenation operator, thus produc-
ing a finite set of multigraphs. Then, we only need to focus on the maximal
multigraphs of this set because they represent the program loops.

Example 1. Consider the following example which computes the reverse of a list:

rev([]) → [] app([], y) → y
rev(x : xs) → app(rev(xs), x : []) app(x : xs, y) → x : app(xs, y)

where “[]” and “:” are the list constructors. In this example, we consider a
particular reduction pair (%,�) defined as follows:

– s % t iff Var(t) ⊆ Var(s) and for all x ∈ Var(t), dv(t, x) 6 dv(s, x);
– s � t iff Var(t) ⊆ Var(s) and for all x ∈ Var(t), dv(t, x) < dv(s, x).

where the depth of a variable x in a constructor term t [5], dv(t, x), is defined
as follows:

dv(c(tn), x) = 1 + max (dv(tn, x)) if x ∈ Var(c(tn)) dv(y, x) = 0 if x = y
dv(c(tn), x) = −1 if x 6∈ Var(c(tn)) dv(y, x) = −1 if x 6= y

with c ∈ C a constructor term with arity n > 0. Now, the corresponding size-
change graphs for this program are the following:

G1 : 1rev
� // 1rev G2 : 1rev %

**TTTTTT 1app

2app

G3 : 1app
� // 1app

2app
% // 2app

where G1 and G3 are also the maximal multigraphs of the program.

Definition 4 (PE-termination, PE-terminating TRS). A needed narrow-
ing computation is PE-terminating if only a finite number of different function
calls (i.e., redexes) have been unfolded modulo variable renaming. A TRS is PE-
terminating if every possible needed narrowing computation is PE-terminating.

Observe that a PE-terminating TRS does not ensure the quasi-termination of
its computations. For instance, given the TRS of Example 1 and the initial call
rev(xs), we have the following needed narrowing derivation:

rev(xs) ;{xs7→y:ys} app(rev(ys), y : [])
;{ys 7→z:zs} app(app(rev(zs), z : []), y : []) ;{zs 7→w:ws} . . .

Although this derivation contains an infinite number of different terms, there
is only a finite number of different function calls modulo variable renaming.
Fortunately, this is sufficient to ensure the termination in many partial evaluation
schemes.

In the following, we consider that the output of a simple (monovariant)
binding-time analysis (BTA) is available. Informally speaking, given a TRS and
the information on which parameters of the initial function call are static and
which are dynamic, a BTA maps each program function to a list of static/dynamic
values. Here, we consider that a static parameter is definitely known at special-
ization time (hence it is ground), while a dynamic parameter is possibly unknown
at specialization time.

In the following, we will require the component % of a reduction pair (%,�)
to be bounded, i.e., the set {s | t % s} must contain a finite number of nonvariant
terms for any term t.

The following theorem states sufficient conditions to ensure PE-termination:

Theorem 1. Let R be a TRS and (%,�) a reduction pair. R is PE-terminating
if every maximal multigraph associated to some function f/n contains either

(i) at least one edge if
�−→ if for some i ∈ {1, . . . , n} such that if is static, or

(ii) an edge if
R−→ if , R ∈ {%,�}, for all i = 1, . . . , n, such that % is bounded.

Also, we require R to be right-linear w.r.t. the dynamic variables, i.e., no repeated
occurrence of the same dynamic variable may occur in a right-hand side.

The last condition on right-linearity is required in order to avoid situations like
the following one: given the TRS

double(x) → add(x, x) add(zero, y) → y
add(succ(x), y) → succ(add(x, y))

although double and add seem clearly terminating (and thus quasi-terminating),
the following infinite computation is possible:

double(x) ; add(x, x) ;{x7→succ(x′)} succ(add(x′, succ(x′)))
;{x′ 7→succ(x′′)} succ(succ(add(x′′, succ(succ(x′′)))))
;{x′′ 7→succ(x′′′)} . . .

which is not quasi-terminating nor PE-terminating.
Rather than requiring source programs to fulfill the conditions of the theorem

above, we use this result in order to define a new program annotation for offline
NPE which ensures PE-termination.

Basically, it takes every function symbol f/n such that f has a maximal
multigraph, and performs one of the following actions:

1) if the conditions of Theorem 1 hold, no annotation is added;
2) otherwise, we have two possibilities:

– if function f has a static parameter (which does not decrease in the maximal
multigraph or the first condition of Theorem 1 would hold), say the i-th
parameter, then the i-th argument of every function call to f in the program
is annotated;

– otherwise, if all the parameters of f are dynamic, then the j-th argument
of every function call to f in the program is annotated, where j ranges over
the parameters of f that do not have an edge jf

R−→ jf , with R ∈ {%,�};
3) finally, if there is more than one occurrence of the same dynamic variable (not
yet annotated) in the right-hand side of a program rule, then all occurrences but
one (e.g., the leftmost one) are annotated.

5 Discussion

We have undertaken a prototype implementation of the improved offline NPE
scheme, which is publicly available at: http://www.dsic.upv.es/~jsilva/peval.

In order to further improve the precision of the partial evaluator, we are
currently implementing a polyvariant version of the program annotation stage.
In this case, every function call is treated separately according to the informa-
tion gathered from the associated maximal multigraph. The resulting algorithm
would be more expensive but also more precise.

References

1. E. Albert and G. Vidal. The Narrowing-Driven Approach to Functional Logic
Program Specialization. New Generation Computing, 20(1):3–26, 2002.

2. S. Antoy. Definitional trees. In Proc. of the 3rd Int’l Conference on Algebraic and
Logic Programming (ALP’92), pages 143–157. Springer LNCS 632, 1992.

3. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, 47(4):776–822, 2000.

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

5. W.N. Chin and S.C. Khoo. Better Consumers for Program Specializations. Journal
of Functional and Logic Programming, 1996(4), 1996.

6. A.J. Glenstrup and N.D. Jones. Termination analysis and specialization-point in-
sertion in offline partial evaluation. ACM Trans. Program. Lang. Syst., 27(6):1147–
1215, 2005.

7. C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The Size-Change Principle for Pro-
gram Termination. In ACM Symposium on Principles of Programming Languages
(POPL’01), volume 28, pages 81–92. ACM press, 2001.

8. J.G. Ramos, J. Silva, and G. Vidal. Fast Narrowing-Driven Partial Evaluation
for Inductively Sequential Systems. ACM SIGPLAN Notices (Proc. of ICFP’05),
40(9):228–239, 2005.

9. J.R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity and Associativity. Journal of the ACM, 21(4):622–642, 1974.

10. R. Thiemann and J. Giesl. The size-change principle and dependency pairs for
termination of term rewriting. Appl. Algebra Eng. Commun. Comput., 16(4):229–
270, 2005.

