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Abstract

Partial evaluation is a method for program specialization based on fold/unfold transfor-
mations [4, 15]. Partial evaluation of functional programs uses only static values of given
data to specialize the program. In logic programming, the so-called static/dynamic distinc-
tion is hardly present, whereas considerations of determinacy and choice points are far more
important for control [7]. In this paper, we formalize a two-phase specialization method for
a non-strict functional logic language which makes use of (normalizing) lazy narrowing to
specialize the program w.r.t. a goal. The basic algorithm (first phase) is formalized as an
instance of the framework for the partial evaluation of functional logic programs of [2], using
lazy narrowing. However, the results inherited by [2] mainly regard the termination of the
PE method, while the (strong) soundness and completeness results must be restated for the
lazy strategy. A post-processing renaming scheme (second phase) for obtaining independence
is then described and illustrated on the well-known matching example. We show that our
method preserves the lazy narrowing semantics and that the inclusion of simplification steps
in narrowing derivations can greatly improve control during specialization.

1 Introduction

Many proposals for the integration of functional and logic programming are based on narrowing
(see [10] for a recent survey). Narrowing is a natural extension of the evaluation mechanism of
functional languages to incorporate unification. Narrowing solves equations by computing unifiers
w.r.t. an equational theory usually described by means of a (conditional) term rewriting system.
In order to avoid useless computations and to deal with nonterminating and nonstrict functions,
lazy narrowing strategies have recently been proposed [3, 18, 21, 24]. One main advantage of an
integrated functional logic language is the reduction of the search space by exploiting functional
computations. Hence, an important improvement of (lazy) narrowing is the incorporation of
deterministic simplification steps which can largely reduce both run time and search space in
comparison to pure logic programs, since normalization can avoid the creation of useless choice
points in sequential implementations [9, 10].

Program specialization refers to the technique of how to derive a specialized instance of a pro-
gram to a restricted set of inputs. Particular cases include Partial Evaluation (PE) of functional
[15] and logic [7, 20] programs. PE of functional programs, as in [15], is usually restricted to con-
stant propagation, whereas PE techniques for logic languages exploit unification-based information
propagation, which results in more powerful transformations. Turchin’s driving transformation for
functional programs achieves the same effect as the PE of logic programs, by virtue of unification
[8].

The PE of functional logic languages is a relatively new area of research. As far as we know,
[2] formalizes the first PE scheme for functional logic languages which can improve the original
program w.r.t. the ability of computing the set of answer substitutions. In contrast to the approach
usually taken with pure functional languages, in [2] we use the unification-based computation
mechanism of narrowing for the specialization of the program as well as for the execution. Our
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framework is parametric w.r.t. the narrowing strategy which is used for the automatic construction
of (finite) narrowing trees. We have defined the notions of closedness and independence that
are essential to prove the computational equivalence of the original and the partially evaluated
programs, for a restricted set of goals. We have proved that these conditions suffice for correctness
in the case of unrestricted narrowing. An appropriate abstract operator is also introduced which
guarantees termination of the PE process. However, the independence condition is not obtained
automatically and, for some particular narrowing strategies, the partially evaluated program might
not satisfy the restrictions on the theories which are necessary for the completeness of the narrowing
strategy which is considered.

In this paper, we formalize a call-by-name partial evaluator for functional logic languages
with a lazy narrowing semantics like that of [24]. Then, we formalize a renaming transformation
of the residual program, which removes any remaining lack of independence. This is a post-
processing stage whereby new function symbols are introduced and a transformed program and
goal are obtained. We prove that, for the renamed queries, the transformed program computes
the same answers as the original program. We note that the post-processing phase is also crucial
to guarantee the correctness of the whole process. In general, the partially evaluated program
resulting from the PE phase might not satisfy one of the basic assumptions for the completeness
of lazy narrowing (the so-called ‘constructor discipline’), which may prevent the lazy strategy
from being able to narrow a goal in the partially evaluated program. The post-processing phase
generates a constructor based program. Our method passes the so-called Knuth-Morris-Pratt
test [8, 14], i.e. the specialization of a näıve pattern matcher w.r.t. a fixed pattern obtains the
efficiency of the Knuth, Morris and Pratt matching algorithm [17].

The structure of the paper is as follows. Basic definitions are given in Section 2. Section 3
recalls the general scheme for the PE of functional logic languages of [2]. In Section 4, a two-phase
specialization method is described and shown to be correct. Section 5 concludes the paper. More
details and missing proofs can be found in [1].

2 Preliminaries

We briefly recall some known results about rewrite systems and functional logic programming
[5, 10, 11, 16]. Throughout this paper, V will denote a countably infinite set of variables and
Σ denotes a set of function symbols f/n, each with a fixed associated arity n. τ(Σ ∪ V) and
τ(Σ) denote the sets of terms and ground terms built on Σ and V, respectively. We assume
that the alphabet Σ contains some primitive symbols, including at least the nullary constructor
true and a binary equality function symbol, say =, written in infix notation, which allows us
to interpret equations s = t as terms, with s, t ∈ τ(Σ ∪ V). The term true is also considered
an equation. Terms are viewed as labelled trees in the usual way. Occurrences are represented
by sequences, possibly empty, of natural numbers used to address subterms of t, and they are
ordered by the prefix ordering: u ≤ v if there exists w such that uw = v. We let Λ denote the
empty sequence. Ō(t) denotes the set of nonvariable occurrences of a term t. t|u is the subterm
at the occurrence u of t. t[r]u is the term t with the subterm at the occurrence u replaced
with r. These notions extend to sequences of equations in a natural way. For instance, the
nonvariable occurrence set of a sequence of equations g ≡ (e1, . . . , en) can be defined as follows:
Ō(g) = {i.u | u ∈ Ō(ei), i = 1, . . . ,n}. Identity of syntactic objects is denoted by ≡. Var(s)
is the set of distinct variables occurring in the syntactic object s. We let Sub denote the set of
idempotent substitutions over τ(Σ ∪ V).

An equational Horn theory E consists of a finite set of equational Horn clauses of the form
(λ = ρ) ⇐ C. The condition C is a (possibly empty) sequence e1, . . . , en, n ≥ 0, of equations.
An equational goal is an equational Horn clause with no head. We let Goal denote the set of
equational goals. We often leave out the ⇐ symbol when we write goals.

A Conditional Term Rewriting System (CTRS for short) is a pair (Σ,R), where R is a finite
set of reduction (or rewrite) rule schemes of the form (λ → ρ ⇐ C), λ, ρ ∈ τ(Σ ∪ V), λ 6∈ V
and Var(ρ)∪Var(C) ⊆ Var(λ). If a rewrite rule has no condition we write λ → ρ. We will often
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write just R instead of (Σ,R).
Operationally, equational Horn clauses will be used as conditional rewrite rules. A term s

conditionally rewrites to a term t, written s →R t, if there exists u ∈ O(s), (λ → ρ ⇐ s1 =
t1, . . . , sn = tn) ∈ R and substitution σ such that s|u = λσ, t = s[ρσ]u and ∀i. 1 ≤ i ≤ n. ∃wi

such that siσ →∗
R wi and tiσ →∗

R wi. A term s is a normal form, if there is no term t with
s →R t. We let s↓ denote the normal form of s. A substitution σ is normalized, if xσ is a normal
form for all x ∈ Dom(σ). For CTRS R, r << R denotes that r is a new variant of a rule in R
such that r contains no variable previously met during computation (standardised apart).

A function symbol f ∈ Σ is irreducible iff there is no rule (λ → ρ ⇐ C) ∈ R such that f
occurs as the outermost function symbol in λ, otherwise it is a defined function symbol. In theories
where the above distinction is made, the signature Σ is partitioned as Σ = C

⊎
F , where C is the

set of irreducible (constructor) function symbols and F is the set of defined function symbols or
operations. The terms in τ(C ∪ V) are called constructor terms.

Given a CTRS R, an equational goal g conditionally narrows into a goal clause g′ (in symbols

g
θ
; g′), if there exists an occurrence u ∈ Ō(g), a standardised apart variant r ≡ (λ → ρ ⇐

C) << R and a substitution θ such that θ = mgu({g|u = λ}) and g′ = (C,g[ρ]u)θ. s is called
a (narrowing) redex (reducible expression) iff there exists a new variant (λ → ρ ⇐ C) of a
reduction rule in R and a substitution σ such that sσ ≡ λσ. A redex t|u is an outermost redex
if there is no redex t|u′ of t with u′ ≤ u. A narrowing derivation for g in R is defined by

g
θ ∗

; g′ iff ∃θ1, . . . , θn. g
θ1

; . . .
θn

; g′ and θ = θ1 . . . θn. We say that the derivation has length n.
If n = 0, then θ = ǫ. In order to treat syntactical unification as a narrowing step, we add the rule
(x = x → true), x ∈ V, to the CTRS R. Then s = t

σ
; true holds iff σ = mgu({s = t}). We

use ⊤ as a notation for sequences of the form true, . . . , true. A successful derivation for g in R

is a narrowing derivation g
θ ∗

; ⊤, and θ|̀Var(g) is called a computed answer substitution for g in
R. The narrowing derivations can be represented by a (possibly infinite) finitely branching tree.
Following [20], we adopt the convention in this paper that any derivation is potentially incomplete
(a branch thus can be failed, incomplete, successful or infinite).

Since unrestricted narrowing has quite a large search space, several strategies to control the
selection of redexes have been devised to improve the efficiency of narrowing by getting rid of some
useless derivations. A narrowing strategy (or position constraint) is any well-defined criterion which
obtains a smaller search space by permitting narrowing to reduce only some chosen positions, e.g.
basic [12], innermost [6], innermost basic [11] or lazy narrowing [25]. The innermost and the lazy
strategies mimic the strict and lazy evaluation known from functional programming languages.
An important property of a narrowing strategy ϕ is completeness, meaning that the narrowing
constrained by ϕ is still complete. In this context, completeness means that for every solution to
a given set of equations, a more general solution can be found by narrowing. A survey of results
about the completeness of narrowing strategies can be found in [10].

In the case of a confluent and decreasing CTRS R, we can further improve narrowing without
losing completeness by normalizing the goal before a narrowing step is applied [13]. A normalizing

conditional narrowing step w.r.t. R, g
σ
 g′, is given by a normalization g →∗

R g↓ followed by a

narrowing step g↓
σ
; g′.

Lazy narrowing reduces expressions at outermost narrowable positions. Narrowing at inner
positions is performed only if it is demanded (by the pattern in the lhs of some rule) and contributes
to some later narrowing step at an outer position. Since the notion of “demanded position” is not
unique, different lazy narrowing strategies have been proposed [3, 18, 21, 24, 25]. In the following,
we specify our lazy narrowing strategy, similar to [24].

Lazy Narrowing

The following definitions are necessary for our formalization of lazy narrowing. An innermost
term t is an operation applied to constructor terms, i.e. t = f(t1, . . . , tk), where f ∈ F and, for all
i = 1, . . . ,k, ti ∈ τ(C ∪ V). A CTRS is constructor-based (CB) if the left-hand side (lhs) of each
rule is an innermost term. A head normal form is a variable or a constructor-rooted term. A term
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t is linear if no variable occurs in t more than once. In the rest of this paper we assume that R is
a CTRS which is confluent, CB, and not necessarily terminating. Confluence can be guaranteed
by imposing certain natural conditions such as left linearity and nonambiguity; see [18].

In the following definition, the set-valued function ϕ◮(g) returns the set of triples (u,k, σ) such
that u ∈ Ō(g) is a demanded position of g which can be narrowed by the rule rk with narrowing
substitution σ.

Definition 2.1 (Lazy Conditional Narrowing) We define lazy conditional narrowing as a la-
belled transition system (Goal,Sub,;◮) whose transition relation ;◮⊆ (Goal × Sub × Goal)
is the smallest relation which satisfies:

(u,k, σ) ∈ ϕ◮(g) ∧ rk ≡ (λ → ρ ⇐ C) << R

g
σ

;◮ (C,g[ρ]u)σ

Our strategy is essentially equivalent to the demand driven reduction mechanism formalized in
[24]. Similarly to [24], our calculus allows some narrowing derivations that do not contribute to any
later steps. It is not difficult to strengthen the demand driven nature of our strategy by somehow
forcing the use of the rule that demands evaluation of a suspended argument [10, 18, 21, 24]. In
[3], an optimal lazy narrowing strategy (for a restricted class of programs) is obtained which avoids
superfluous steps by dropping the restriction to mgu’s. Since these types of optimizations are not
relevant to the subject of this paper, we do not consider them here for the sake of simplicity.

Due to the presence of nonterminating functions, completeness results for lazy narrowing are
stated w.r.t. a nonstandard interpretation of equality. Functional logic languages with a lazy
narrowing operational semantics define the validity of an equation as a strict equality ≈ on terms.
Strict equality regards two terms as equal iff they have the same ground constructor normal form.
The semantics of ≈ is defined by the following set StrEq of confluent CB rules:

StrEq = {c(x1, . . . ,xn) ≈ c(y1, . . . ,yn) → true ⇐ x1 ≈ y1, . . . ,xn ≈ yn | (c/n) ∈ C, n ≥ 0}

Note that strict equality does not have the reflexivity property t ≈ t for all terms t. When we
consider lazy narrowing, we assume that the equality symbol in the goal (and in the conditions of
program rules) is ≈.

In left linear, nonambiguous, CB programs, lazy narrowing is complete w.r.t. StrEq for
constructor substitutions [10]. In [9], Hanus showed how deterministic (lazy) simplification steps
can be performed between nondeterministic (lazy) narrowing steps without loosing completeness.
Example 1 in Section 4 shows how the integration of simplification into (lazy) narrowing derivations
is not only a main source for speedups but can also strengthen the specialization, with the added
benefit that the optimization is ‘compiled-in’ in the program.

3 Partial Evaluation of Functional Logic Programs

In this section, we recall a generic procedure for the PE of functional logic programs which appeared
in [2]. Our algorithm is generic w.r.t. 1) the narrowing relation that constructs search trees, 2)
the unfolding rule which determines when and how to terminate the construction of the trees, and
3) an abstract operator used to guarantee the finiteness of the PE process. We let ;ϕ denote
a generic (possibly normalizing) narrowing relation which uses the narrowing strategy ϕ. The
definitions of this section are quoted from [2].

Definition 3.1 (resultant) Let R be a program and s = y an equation, where the variable

y 6∈ Var(s). Let [(s = y)
θ ∗

;ϕ g, e] be a derivation in R. Let σ = mgu(e). Then the resultant of
the derivation is: ((s → y)θ ⇐ g)σ.

Definition 3.2 (partial evaluation of a term) Let τ be a finite (possibly incomplete) narrow-
ing tree for the goal s = y (y 6∈ Var(s)) in the program R containing at least one nonroot node.
Let {gi | i = 1, . . . ,k} be the nonfailing leaves1 of τ and R′ = {ri | i = 1, . . . ,k} the resultants

1A failing leaf is a goal which is not ⊤ and which does not have redexes.
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associated with the derivations {(s = y)
σi +

;ϕ gi | i = 1, . . . ,k}. Then, R′ is a PE of s in R
(using τ).

The above definition lifts in the natural way to partial evaluation of a set of terms S (which
are considered modulo variants). A partial evaluation of an equational goal s1 = t1, . . . , sn = tn
in R is the partial evaluation in R of the set {s1, t1, . . . , sn, tn}.

Following [20], we introduce a closedness condition which guarantees that all calls which might
occur during the execution of the resulting program are covered by some program rule. The
function terms(O) extracts the terms appearing in the syntactic object O.

Definition 3.3 (closedness) Let S and T be two finite set of terms. We say that T is S-closed
if closed(S,T), where the predicate closed is defined inductively as follows:

closed(S,O) ⇔






true if O ≡ Ø or O ≡ x ∈ V

closed(S, t1) ∧ . . . ∧ closed(S, tn) if O ≡ {t1, . . . , tn}
closed(S, {t1, . . . , tn}) if O ≡ c(t1, . . . , tn), c ∈ C

(∃s ∈ S. sθ = O) ∧ closed(S, terms(θ̂)) if O ≡ f(t1, . . . , tn), f ∈ F

We say that a program R is S-closed if closed(S, terms(R)).

Now we introduce an independence condition which guarantees that the derived program R′

does not produce additional answers.

Definition 3.4 (overlap) A term s overlaps a term t if there is a nonvariable subterm s|u of s
such that s|u and t unify. If s ≡ t, we require that t be unifiable with a proper nonvariable subterm
of s.

Definition 3.5 (independence) A set of terms S is independent if there are no terms s and t
in S such that s overlaps t.

Given a goal g and a program R, in general, there exists an infinite number of different partial
evaluations of g in R. A fixed rule for generating resultants called an unfolding rule is used, which
ensures that infinite unfolding is not attempted.

Definition 3.6 (unfolding rule) An unfolding rule Uϕ is a function which, when given a pro-
gram R, a term s and a narrowing transition relation ;ϕ, returns a finite set of resultants
Uϕ(s,R) that is a partial evaluation of s in R using ;ϕ.

This definition lifts naturally to a set of terms S.

Starting with the set of calls (terms) which appear in the initial goal g, we partially evaluate
them by using a finite unfolding strategy, and recursively specialize the terms which are introduced
dynamically during this process. Assuming that it terminates, the procedure computes a set of
partially evaluated terms S′ and a set of rules R′ (the PE of S′ in R) such that the closedness
condition for R′ ∪ {g} is satisfied.

We let c[S] ∈ State denote a generic configuration whose structure is left unspecified as it
depends on the specific PE algorithm, but which includes at least the set of partially evaluated
terms S. When S is clear from the context, c[S] will simply be denoted by c.

Definition 3.7 (PE transition relation 7−→P) We define the PE relation 7−→P⊆ State ×
State as the smallest relation satisfying

R′ = Uϕ(S,R)

c[S] 7−→P abstract(c[S], terms(R′))

where the function abstract(c,T) extends the current configuration c with (an abstraction of) the
set of terms T which are not closed w.r.t. S, giving a new PE configuration.

Similarly to [22], applying abstract in every iteration allows us to tune the control of poly-
variance as much as needed. Also, it is within the abstract operation that the progress towards
termination resides.

Definition 3.8 (behaviour of the 7−→P calculus) Let c0 be the “empty” PE state. We define
the function: P(R,g) = S if abstract(c0, terms(g)) 7−→∗

P c[S] and c[S] 7−→P c[S].
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The PE procedure in Definition 3.8 computes the set of partially evaluated terms S which
unambiguously determines its associated PE R′ in R (using Uϕ).

4 A call-by-name Partial Evaluator

In this section, we consider an instance of the generic PE procedure introduced in Definition 3.8.
We consider the (normalizing) lazy conditional narrowing  ◮ of Section 2 to construct search
trees. We define a hnf-PE R′ of s in R as a PE of s in R such that each derivation used to build
R′ has the form [(s = y)

θ ∗
 ◮ g, (s′ = y)], where the equality symbol of the original equation is not

narrowed using the rules StrEq. This restriction avoids that the term s is evaluated beyond the
form possibly demanded by a context.

In [2], we have developed a rather simple criterium for avoiding looping. Our strategy is
based on the intuitive notion of orderings in which a term that is “syntactically simpler” than
another is smaller than the other. The following definition extends the homeomorphic embedding
(“syntactically simpler”) relation [5] to nonground terms.

Definition 4.1 (embedding relation) [27] The homeomorphic embedding relation E on terms
in τ(Σ ∪ V) is defined as the smallest relation satisfying: x E y for all x,y ∈ V, and s ≡
f(s1, . . . , sm) E g(t1, . . . , tn) ≡ t, if and only if: 1) f ≡ g (and m ≡ n) and si E ti for all
i = 1, . . . ,n, or 2) s E tj, for some j, 1 ≤ j ≤ n.

The embedding relation E is a well-quasi ordering of the set τ(Σ ∪ V) for finite Σ [2], that
is, any infinite sequence of terms t1, t2, . . . with a finite number of operators is self-embedding,
i.e., there are numbers j,k with j < k and tj E tk. In order to avoid an infinite sequence of
“diverging” calls, we compare each narrowing redex of the current goal with the selected redexes
in the ancestor goals. When the compared calls are in the embedding relation, the derivation is
stopped. We consider here this nonembedding unfolding rule (instantiated with the lazy calculus
relation) UE ◮

to control the expansion of the trees. We also assume that resultants do not

We define a PEE configuration as a sequence of terms (t1, . . . , tn) ∈ StateE. Upon each
iteration of the algorithm in Definition 3.7, the current configuration q ≡ (t1, . . . , tn) is trans-
formed in order to ‘cover’ the set T of terms which result from the PE of q in R, that is,
T = terms(UE ◮

({t1, . . . , tn},R)). This transformation is done using a specific abstraction op-

eration abstractE [2]. Informally, this operator does the following. Let T be the set of new
terms introduced by the unfolding. They are compared to those already generated (recorded in
q) and, if the new term is not larger than any of the preceeding ones, it is just appended to q.
Otherwise, if the new term s is an instance of some term t = sσ in q, then the terms in σ are
recursively abstracted and introduced in q; else the two terms are slightly generalized by taking
their most specific generalization [19]. The abstraction operator abstractE guarantees the global
termination of the algorithm and the closedness of the partially evaluated program.

Our first example illustrates the fact that our method can eliminate intermediate data struc-
tures and turn multiple–pass programs into one–pass programs. It also shows that normalization
between narrowing steps can be used as a safe replacement for some ad-hoc optimizations used in
other methodologies for program transformation. This normalization does not risk looping and it
does not lose completeness, because alternative clauses are discarded only if no solutions are lost.

Example 1 (double-append) Consider the well-known, terminating, program append/2:

append(nil,ys) → ys

append(x : xs,ys) → x : append(xs,ys)

with initial query append(append(xs,ys), zs) ≈ y. This goal appends three lists by appending
the two first, yielding an intermediate list, and then appending the last one to that. We evaluate
the goal by using normalizing lazy narrowing. Starting with the sequence:
q = append(append(xs,ys), zs), and by using the procedure described in Definition 3.8, we com-
pute the trees depicted in Figure 1 for the sequence of terms:
q′ = append(append(xs,ys), zs),append(xs,ys). Note that “append” has been abbreviated to
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{xs/nil} {xs/x
′ : x′
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x′ : a(a(x′
s,ys), zs) ≈ y

a(x′ : a(x′
s,ys), zs) ≈ ya(ys, zs) ≈ y

a(a(xs,ys), zs) ≈ y

{ys/nil} {ys/y
′ : y′

s
}

P
P

P
P

P
P

P
PP

�
�

�
�

�
�

�
��

y′ : a(y′
s, zs) ≈ yzs ≈ y

a(ys, zs) ≈ y

Figure 1: Normalizing lazy narrowing trees for a(a(xs,ys), zs) ≈ y and a(xs,ys) ≈ y.

“a” in the picture. Then we get the following residual program R′:

append(append(nil,ys), zs) → append(ys, zs) % double-append

append(append(x : xs,ys), zs) → x : append(append(xs,ys), zs)
append(nil, zs) → zs

append(y : ys, zs) → y : append(ys, zs) % append

which is able to append the three lists by traversing its input only once. Note that the key to
success in this example is the use of normalization. Without the simplification step, the embedding
ordering would have been satisfied too early in the rightmost branch of the top tree of Figure 1. The
driving algorithms in [27] and [8, 26] achieve the same effect by means of some ad-hoc techniques
like the ‘transient reductions’ [27] and the ‘postunfolding transition compression’ [8, 26], which
can incur the risk of nontermination, as opposed to our method.

We note that the normalization of goals implements a strategy where we compute in a deter-
ministic way as long as possible, and it is thus comparable to Gallagher’s preference for unfolding
determinate goals [7, 27] in that it avoids the creation of superfluous choice points for alternative
rules. The ‘double-append’ example is a standard test of elimination of intermediate data struc-
tures. Deforestation [29] is also able to get the same optimization, whereas standard PE is not
[28].

Example 1 illustrates the fact that the resulting partially evaluated program is not guar-
anteed to be CB, which may prevent the lazy strategy from being able to narrow a goal in
the transformed, partially evaluated program. Example 1 also shows that the resulting set of
(partially evaluated) terms is not guaranteed to be independent. In our example, PE uses the
same function symbol for two different specializations of a definition (namely, for the procedures
append(append(xs,ys), zs) and append(xs,ys)). Some type of transformation is required to
guarantee that there is no interference between the corresponding sets of rules, as would be the
case if the definition of ‘double-append’ were used to narrow a nested call append( , ) in a goal
append(append( , ), ).

4.1 Post-Processing Renaming

In this section, we formalize a suitable renaming phase able to guarantee that lazy narrowing can
execute the goal in the transformed program and that different specializations of a function are
not confused, while the (lazy) computed answer semantics is preserved.

Definition 4.2 (independent renaming) Let S be a set of terms. We define an independent
renaming S′ of S as follows: S′ = {〈s, s′〉 | s ∈ S ∧ s′ = f s(x1, . . . ,xm)}, where {x1, . . . ,xm}
are the distinct variables in s in the order of their first occurrence, and the f s’s are new function
symbols, which are different from those in R and S.

The post-processing renaming can be formally defined as follows.
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Definition 4.3 (post-processing renaming) Let R be a program and S a set of terms. Let
R′ be a partial evaluation of R w.r.t. S, and S′ an independent renaming of S. We define the
post-processing renaming R′′ = ppren◮(R′,S′) of R′ w.r.t. S′ as follows:

ppren◮(R′,S′) =
⋃

〈s,s′〉∈S′{r′ | (sθ → ρ ⇐ C) ∈ R′, and

r′ ≡ (s′θ → ren(ρ,S′) ⇐ ren(C,S′))}

where the nondeterministic function ren(o,S′) is defined inductively as follows: ren(o,S′) =




ren(e1,S
′), . . . , ren(en,S′) if o ≡ (e1, . . . , en)

ren(s,S′) = ren(t,S′) if o ≡ (s = t)
x if o ≡ x ∈ V

c(ren(t1,S
′), . . . , ren(tn,S′)) if o ≡ c(t1, . . . , tn), c ∈ C, n ≥ 0

s′θ′ if o = sθ, 〈s, s′〉 ∈ S′, and
θ′ = {(x/ren(xθ,S′)) | x ∈ Dom(θ)}

Roughly speaking, in Definition 4.3 we derive specialized procedures for each term in S′, and
perform fold on every function call in R′ (replacing the original term by a call to the newly defined
function) using the corresponding renaming in S′, to produce the new, renamed, filtered program
R′′. The idea behind this transformation is that, for any S-closed query g, lazy narrowing computes
the same answers for g in R as for the goal which results from the renaming of g (according to
S′) in R′′. Note that the postunfolding terminates.

We note that, for a given set of terms S′, the filtered form of a program may depend on the
strategy which selects the term from S′ which is used to rename a given term o in S, since there
may exist, in general, more than one s in S′ that covers the call o. Hence, the specialized form
of a program is not unique. Some potential specialization might be lost due to an inconvenient
choice. The problem of defining some plausible heuristics able to produce the better potential
specialization is still pending research.

Renaming ensures independence of the specialized procedures, as stated in the following.

Proposition 4.4 Let R be a left linear CB program and S be a finite set of terms. Let R′ be a
hnf-PE of R w.r.t. S such that R′ is S-closed, and S′ be an independent renaming of S. Then,
1) A ≡ {s′ | 〈s, s′〉 ∈ S′} is independent, and 2) ppren◮(R′,S′) is CB, left-linear and A-closed.

We now state the correctness of the partial evaluator with the post-processing renaming.

Theorem 4.5 Let R be a left linear, nonambiguous, CB program, g a goal, and S be a finite
set of terms. Let R′ be a hnf-PE of R w.r.t. S such that R′ ∪ {g} is S-closed. Let S′ be an
independent renaming of S, R′′ be a renaming of R′ w.r.t. S′, and g′ = ren(g,S′). Then θ is a
computed answer substitution for g in R iff θ is a computed answer substitution for g′ in R′′.

We finally illustrate the power of the call-by-name PE procedure on the matching program
match of [17]. This example is discussed by [14, 27, 28], among others.

4.2 Pattern matching in strings

A standard example in the literature on PE is the derivation of an efficient string matcher by PE of
a (more or less) näıve pattern matcher w.r.t. a given pattern [8, 28]. The source program R listed
below checks whether a string pattern p occurs within another string s by iteratively comparing p
with a prefix of s. In the case of a mismatch, the first element of the target string s is cut off and
the process is restarted with the tail of s. The strategy is not optimal because the same elements
in the string may be tested several times. The power of a transformation can be made evident by
checking whether it automatically performs the optimization central to the Knuth-Morris-Pratt
(KMP) string matching algorithm which constructs a deterministic finite automaton. The ‘KMP
test’ is often used to compare the strength of specializers. This example is particularly interesting
because it is a kind of transformation that neither (conventional) PE nor deforestation can perform
automatically [28]. Partial deduction of logic programs and positive supercompilation of functional
programs can pass the test [28]. Our method also performs satisfactorily on the problem, as the
following example illustrates. We assume that matching is on bit-strings, i.e. strings containing
only zeroes and ones.
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Example 2 Let R be the näıve pattern matching program:

match(p, s) → loop(p, s,p, s)
loop(nil, ss,op,os) → true

loop(p : pp,nil,op,os) → false

loop(p : pp, s : ss,op,os) → loop(pp, ss,op,os) ⇐ p ≈ s % continue

loop(p : pp, s : ss,op,os) → next(op,os) ⇐ (p ≈ s) ≈ false % shift string

next(op,nil) → false

next(op, s : ss) → loop(op, ss,op, ss) % restart loop

Suppose that the fixed pattern 001 is given and we want to solve the pattern matching problem for
the subject string s. Applying the call-by-name evaluator to the term match(001, s), and subse-
quently evaluating new terms according to our method, gives the program R′2:

match(001, s) → loop(001, s, 001, s)
loop(001, 0 : ss, 001, 0 : ss) → loop(01, ss, 001, 0 : ss)
loop(001, s : ss, 001, s : ss) → loop(001, ss, 001, ss) ⇐ (0 ≈ s) ≈ false

loop(01, 0 : ss′, 001, 00 : ss′) → loop(1, ss′, 001, 00 : ss′)
loop(01, s′ : ss′, 001, 0 : s′ : ss′) → loop(001, s′ : ss′, 001, s′ : ss′) ⇐ (0 ≈ s′) ≈ false

loop(1, 1 : ss′′, 001, 001 : ss′′) → true

loop(1, s′′ : ss′′, 001, 00 : s′′ : ss′′) → loop(01, s′′ : ss′′, 001, 0 : s′′ : ss′′) ⇐ (1 ≈ s′′) ≈ false

After the post-processing renaming transformation, the specialized program R′′ is:

match′(s) → loop 001(s)
loop 001(0 : ss) → loop 01(ss) loop 001(s : ss) → loop 001(ss) ⇐ (0 ≈ s) ≈ false

loop 01(0 : ss) → loop 1(ss) loop 01(s : ss) → loop 001(s : ss) ⇐ (0 ≈ s) ≈ false

loop 1(1 : ss) → true loop 1(s : ss) → loop 01(s : ss) ⇐ (1 ≈ s) ≈ false

The amount of specialization obtained in this program is essentially analogous to that of the
rules produced by the algorithm in [27]. The complexity of the specialized algorithm is O(n), where
n is the length of the string. The näıve pattern matcher has complexity O(m×n), where m is the
length of the pattern. This is a KMP-style pattern matcher.

5 Conclusions

PE is a semantics-preserving program transformation based on unfolding and specializing proce-
dures. In this paper we have considered the case of normalizing lazy narrowing, which has been
shown to be a reasonable improvement over pure logic SLD resolution strategy [9]. The main
innovations in our work are: 1) our procedure applies to (lazy) functional logic languages such
as Babel whose (lazy narrowing) operational semantics corresponds to SLD resolution but with
the additional feature of exploiting determinism by the ‘dynamic cut’ [10], and 2) we present a
renaming transformation for guaranteeing: (a) the independence of the set of partially evaluated
terms, (b) that the partially evaluated program does not lose some of the basic requirements for
the completeness of lazy narrowing and (c) the equivalence of the computed answer substitution
semantics of the original and the partially evaluated programs for the intended queries.
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tation of a Functional Logic Language. In Proc. of ESOP’90, pages 279–290. Springer LNCS 432,
1990.

19. J.-L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In J. Minker, editor, Foundations
of Deductive Databases and Logic Programming, pages 587–625. Morgan Kaufmann, Los Altos, Ca.,
1988.

20. J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming. Journal of Logic
Programming, 11:217–242, 1991.
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