
Fast and Accurate Strong Termination Analysis
with an Application to Partial Evaluation?

Michael Leuschel1, Salvador Tamarit2, and Germán Vidal2

1 Institut für Informatik, Universität Düsseldorf, D-40225, Düsseldorf, Germany
leuschel@cs.uni-duesseldorf.de

2 DSIC, Technical University of Valencia, E-46022, Valencia, Spain
{stamarit,gvidal}@dsic.upv.es

Abstract. A logic program strongly terminates if it terminates for any
selection rule. Clearly, considering a particular selection rule—like Pro-
log’s leftmost selection rule—allows one to prove more goals terminating.
In contrast, a strong termination analysis gives valuable information for
those applications in which the selection rule cannot be fixed in advance
(e.g., partial evaluation, dynamic selection rules, parallel execution). In
this paper, we introduce a fast and accurate size-change analysis that can
be used to infer conditions for both strong termination and strong quasi-
termination of logic programs. We also provide several ways to increase
the accuracy of the analysis without sacrificing scalability. In the experi-
mental evaluation, we show that the new algorithm is up to three orders
of magnitude faster than the previous implementation, meaning that we
can efficiently deal with programs exceeding 25,000 lines of Prolog.

1 Introduction

Analysing the termination of logic programs is a challenging problem that has
attracted a lot of interest (see, e.g., [5, 7, 23, 29] and references therein). However,
strong termination analysis (i.e., termination for any selection rule) has received
little attention, a notable exception being the work by Bezem [2], who introduced
the notion of strong termination by defining a sound and complete characterisa-
tion (the so called recurrent programs). Also, we can find a well established line
of research on termination of logic programs with dynamic selection rules (e.g.,
[25, 4, 24, 27, 26]). In these works, however, there are a number of assumptions,
like the use of local selection rules (a slight extension of the left-to-right selection
rule), input-consuming derivations (i.e., derivations where input arguments are
not instantiated by SLD resolution steps [3]), etc., which are not useful in our
context.

In this work, we consider strong (quasi-)termination3 so that our results can
be applied to any application domain where the selection rule is not known in
? This work has been partially supported by the Spanish Ministerio de Ciencia e In-

novación under grant TIN2008-06622-C03-02, by the Generalitat Valenciana under
grant GVPRE/2008/001, and by the UPV (Programs PAID-05-08 and PAID-06-08).

3 A computation quasi-terminates if it reaches finitely many different states. This is
an essential property in many contexts since it allows one to construct a finite rep-
resentation of the search space, thus allowing for finite analysis and transformation.

advance or should be dynamically defined, e.g., partial evaluation, resolution
with dynamic selection rules, parallel execution, etc.

Consider, for instance, the case of partial evaluation [14], a well-known tech-
nique for program specialisation. Within the so-called offline approach to partial
evaluation, there is a first stage called binding-time analysis (BTA) that should
analyse the termination of the program and also propagate known data follow-
ing the program’s control flow. In this context, one of the main limitation of
previous approaches to the offline partial evaluation of logic programs like, e.g.,
[6], is that the associated BTA is usually rather expensive and does not scale
up well to medium-sized programs. Intuitively speaking, this is mainly due to
the fact that the termination analysis and the algorithm for propagating known
information are interleaved, so that every time a call is annotated as “not un-
foldable”, the termination analysis has to be re-executed to take into account
that some bindings will not be propagated anymore.

In recent work [17, 30], we have shown that this drawback can be overcome
by using instead a strong termination analysis based on the size-change princi-
ple [15, 28]. In this case, both tasks—termination analysis and propagation of
known information—are kept independent, so that the termination analysis is
done once and for all before the propagation phase, resulting in major efficiency
improvements over the previous approach of [6].

The new BTA scheme of [17], however, still had some shortcomings concern-
ing both efficiency and accuracy. In particular, the size-change analysis involves
computing the transitive closure of the so-called size-change graphs of the pro-
gram. This is often an expensive process with a worst case exponential growth
factor [15].

In order to overcome this drawback, in this work we introduce an efficient
algorithm for the size-change analysis based on the insight that many size change
graphs are irrelevant for inferring strong termination and quasi-termination con-
ditions. In particular, we introduce an ordering for size-change graphs, so that
only the weakest graphs need to be kept without compromising correctness nor
accuracy.

Then, we consider the application of the new analysis to the particular do-
main of offline partial evaluation (cf. Sect. 4) and empirically evaluate the new
algorithm. In summary, the empirical results demonstrate the usefulness and
scalability of our proposals in practice, meaning that we can efficiently deal with
realistic interpreters and systems exceeding 25,000 lines of Prolog.

Finally, in Sect. 5 we develop a further improvement of our new algorithm
in the context of partial evaluation. Indeed, the fact that the size-change anal-
ysis considers strong termination may involve a significant loss of accuracy. For
instance, given the clauses

p(X)← q(X,Y), p(Y).
q(s(X), X).

the size-change analysis infers no relation between the sizes of p(X) and p(Y) in
the first clause (while, in contrast, one can easily determine that the argument of

p decreases from one call to the next one by assuming Prolog’s leftmost selection
rule). Clearly, this makes the size change analysis independent of the selection
rule and, particularly, of whether q(X,Y) is unfolded before selecting p(Y) or
not. However, in many cases, some partial knowledge is available (e.g., one can
safely assume that all facts can be unfolded no matter the available information)
and could be used to improve the accuracy of the analysis. For this purpose, we
develop an extension of the size-change analysis that allows us to propagate some
size information from left to right.

2 Fundamentals of Size-Change Analysis

The size-change principle [15] was originally aimed at proving the termination
of functional programs. This analysis was adapted to the logic programming
setting in [30], where both termination and quasi-termination were analysed. The
main difference w.r.t. previous termination analyses for logic programs is that
[30] considers strong termination, i.e., termination for all computation rules. As
mentioned in the introduction, this makes the output of the analysis less accurate
but allows the definition of much faster analyses that can be successfully applied
in a number of application domains (e.g., for defining a scalable binding-time
analysis; see [17] for more details).

For conciseness, in the remainder of this paper, we write “(quasi-)termination”
to refer to “strong (quasi-)termination.”

Size-change analysis is based on constructing graphs that represent the de-
crease of the arguments of a predicate from one call to another. For this purpose,
some ordering on terms is required. Analogously to [28], in [30] reduction pairs
(%,�) consisting of a quasi-order and a compatible well-founded order (i.e.,
% ◦ �⊆� and � ◦ %⊆�), both closed under substitutions, were used. The
orders (%,�) are induced from so called norms. Here, we only consider the well-
known term-size norm || · ||ts [9] which counts the number of (non-constant)
function symbols. The associated induced orders (%ts,�ts) are defined as fol-
lows: t1 �ts t2 (resp. t1 %ts t2) if ||t1σ||ts > ||t2σ||ts (resp. ||t1σ||ts > ||t2σ||ts)
for all substitutions σ that make t1σ and t2σ ground. For instance, we have
f(s(X), Y) �ts f(X, a) since ||f(s(X), Y)σ||ts > ||f(X, a)σ||ts for all σ that
makes X and Y ground.

We produce a size-change graph G for every pair (H,Bi) of every clause
H ← B1, . . . , Bn of the program. Formally,

Definition 1 (size-change graph). Let P be a program and (%,�) a reduction
pair. We define a size-change graph for every clause p(s1, . . . , sn)← Q of P and
every atom q(t1, . . . , tm) in Q (if any).

The graph has n output nodes marked with {1p, . . . , np} and m input nodes
marked with {1q, . . . ,mq}. If si � tj holds, then we have a directed edge from
output node ip to input node jq marked with �. Otherwise, if si % tj holds, then
we have an edge from output node ip to input node jq marked with %.

A size-change graph is thus a bipartite labelled graph G = (V,W,E) where
V = {1p, . . . , np} and W = {1q, . . . ,mq} are the labels of the output and input
nodes, respectively, and E ⊆ V ×W × {%,�} are the edges.

Example 1. Consider the following program MLIST :

(c1) mlist(L, I, [])← empty(L).
(c2) mlist(L, I, LI)← nonempty(L), hd(L,X), tl(L,R),ml(X,R, I, LI).

(c3) ml(X,R, I, [XI|RI])← mult(X, I,XI), mlist(R, I,RI).

(c4) mult(0, Y, 0). (c5) mult(s(X), Y, Z)← mult(X,Y, Z1), add(Z1, Y, Z).
(c6) add(X, 0, X). (c7) add(X, s(Y), s(Z))← add(X,Y, Z).

(c8) hd([X |],X). (c9) empty([]).

(c10) tl([|R],R). (c11) nonempty([|]).

which is used to multiply all the elements of a list by a given number. The
program is somewhat contrived in order to better illustrate our technique.

Here, the size-change graphs associated to, e.g., clause c3 are as follows:4

1ml

%ts // 1mult

2ml 2mult

3ml

%ts 44iiiiiii
3mult

4ml

�ts 44iiiiiii

1ml 1mlist

2ml

%ts 44iiiiiii
2mlist

3ml

%ts 44iiiiiii
3mlist

4ml

�ts 44iiiiiii

using a reduction pair (%ts,�ts) induced from the term-size norm.

In order to identify the program loops, we should compute roughly a transitive
closure of the size-change graphs by composing them in all possible ways.

Definition 2 (graph concatenation, idempotent multigraph). A multi-
graph of P is inductively defined to be either a size-change graph of P or the
concatenation (see below) of two multigraphs of P . Given two multigraphs:

G = ({1p, . . . , np}, {1q, . . . ,mq}, E1) and H = ({1q, . . . ,mq}, {1r, . . . , lr}, E2)

w.r.t. the same reduction pair (%,�), then the concatenation

G • H = ({1p, . . . , np}, {1r, . . . , lr}, E)

is also a multigraph, where E contains an edge from ip to kr iff E1 contains an
edge from ip to some jq and E2 contains an edge from jq to kr. If some of the
edges are labelled with �, then so is the edge in E; otherwise, it is labelled with
%.

We say that a multigraph G of P is idempotent when G = G • G. Intuitively
speaking, an idempotent multigraph represents a chain of multigraphs.
4 In general, we denote with p/n a predicate symbol of arity n. However, in the ex-

amples, we simply write p for predicate p/n when no confusion can arise.

Example 2. For the program MLIST of Example 1, we have the following four
idempotent multigraphs:

1mlist 1mlist

2mlist

%ts // 2mlist

3mlist
�ts // 3mlist

1ml 1ml

2ml 2ml

3ml

%ts // 3ml

4ml
�ts // 4ml

1mult
�ts // 1mult

2mult

%ts // 2mult

3mult 3mult

1add

%ts // 1add

2add
�ts // 2add

3add
�ts // 3add

that represent how the size of the arguments of the four potentially looping
predicates changes from one call to another.

The main termination results from [17, 30] can be summarised as follows:

– A predicate p/n terminates if every idempotent multigraph for p/n contains
at least one edge ip

�−→ ip, 1 ≤ i ≤ n, such that the i-th argument of every
call to this predicate is ground.5

– A predicate p/n quasi-terminates if every idempotent multigraph for p/n
contains edges j1p

R1−→ 1p, . . . , jn
p

Rn−→ np, Ri ∈ {�,%}, and the arguments
j1, . . . , jn are ground in every call to p/n. Additionally, the considered quasi-
order % should be well-founded and finitely partitioning [8, 29], i.e., there
should not be infinitely many “equal” ground terms under %.

These conditions, though in principle undecidable, can be approximated in a
number of ways. For instance, in the context of partial evaluation, the computed
binding-times—static for definitely known arguments and dynamic for possibly
unknown arguments—can easily be used for this purpose (cf. Sect. 4.1).

3 A Procedure for Size-Change Analysis

In this section, we introduce a fast and accurate procedure for the size-change
analysis of logic programs. In principle, a naive procedure for computing the set
of idempotent multigraphs of a program may proceed as follows:

1. First, the size-change graphs of the program are built according to Def. 1.
2. Then, after initialising a set M with the computed size-change graphs, one

proceeds iteratively as follows:
(a) compute the concatenation of every pair of (not necessarily different)

multigraphs of M;
(b) update M with the new multigraphs.
This process is repeated until no new multigraphs are added to M.

Unfortunately, such a naive algorithm is unacceptably expensive and does not
scale up to even simple programs. Therefore, in the following, we introduce
a much more efficient procedure. Intuitively speaking, it improves the naive
procedure by taking into account the following observations:
5 A more relaxed condition based on the notion of instantiated enough w.r.t. a norm

[22] can be found in [17].

– Firstly, not all size-change graphs need to be constructed, but only those in
the path of a (potential) loop. For instance, in Example 1, the size-change
graph from mlist to empty cannot contribute to the construction of any
idempotent multigraph.

– Secondly, in many cases, computing the idempotent multigraphs for a single
predicate for each loop suffices. For instance, in Example 2, the idempotent
multigraphs for both mlist and ml actually refer to the same loop. This is
somehow redundant since either the two multigraphs will point out that both
predicates terminate or that both of them may loop.

– Finally, when we have multigraphs G1 and G2 for a given predicate p/n such
that termination of p/n using G1 always implies termination of p/n using
G2, then we can safely discard G2.

These observations allow us to design a faster procedure for size-change analysis.
It proceeds in a stepwise manner as follows:

a) Identifying the program loops. In order to identify the (potential) pro-
gram loops, we first construct the call graph of the program, i.e., a directed graph
that contains the predicate symbols as vertices and an edge from predicate p/n
to predicate q/m for each clause of the form6 p(tn) ← B1, . . . , q(sm), . . . , Bk,
k ≥ 1, in the program.

For instance, the call graph of program MLIST in Example 1 is as follows:

mlist
**

rreeeeeeeeeeeeeeeeeee
uukkkkkk

�� ''OOOOOO mlll // multRR
// addRR

empty nonempty hd tl

Then, we compute the strongly connected components (SCC) of the call graph
and delete both trivial SCCs (i.e., SCCs with a single predicate symbol which is
not self-recursive) and edges between SCCs. We denote the resulting graph with
scc(P) for any program P . E.g., for program MLIST , scc(MLIST) is as follows:

mlist
**
mlll multRR addRR

b) Determining the initial set of size-change graphs. We denote by
sc graphs(P) a subset of the size-change graphs of program P that fulfils the
following condition: there is a size-change graph from atom p(tn) to atom q(sm)
in sc graphs(P) iff there is an associated edge from p/n to q/m in scc(P). E.g.,
for program MLIST of Example 1, sc graphs(MLIST) contains only four size-
change graphs, while the naive approach would have constructed ten size-change
graphs.

In principle, only the size-change graphs in sc graphs(P) need to be con-
sidered in the size-change analysis. This refinement is correct since idempotent

6 We use tn to denote the sequence t1, . . . , tn.

multigraphs can only be built from the concatenation of a sequence of size-change
graphs that follows the path of a cycle in the call graph (i.e., a path of scc(P)).

Furthermore, not all concatenations between these size-change graphs are ac-
tually required. As mentioned before, computing a single idempotent multigraph
for each (potential) program loop suffices. In the following, we say that S is a
cover set for scc(P) if S contains at least one predicate symbol for each loop in
scc(P). We denote by CS(P) the set of cover sets for scc(P).

Definition 3 (initial size-change graphs). Let P be a program and S ∈
CS(P) be a cover set for scc(P). We denote by i sc graphs(P, S) the size-change
graphs from sc graphs(P) that start from a predicate of S.

Intuitively, the size-change graphs in i sc graphs(P, S) will act as the seeds of
our iterative process for computing idempotent multigraphs. As a consequence,
only idempotent multigraphs for the predicates of S are produced. Therefore,
the termination result of Sect. 2 should be rephrased as follows:

A predicate p/n terminates if there exists some (not necessarily different)
predicate q/m in the same cycle of scc(P) and every idempotent multigraph
of q/m contains at least one edge iq

�−→ iq, 1 ≤ i ≤ m, such that the i-th
argument of every call to this predicate q/m is ground.

(∗)

A similar condition could be given for quasi-termination. Proving the correctness
of this refinement is not difficult and relies on the fact that either all predicates
in a loop are terminating or none.

Example 3. Given the program MLIST of Ex. 1, both S1 = {mlist/3,mult/3, add/3}
and S2 = {ml/4,mult/3, add/3} are cover sets for scc(MLIST). For instance,
the set i sc graphs(P, S1) contains only the three size-change graphs starting
from mlist/3, mult/3 and add/3.

c) Computing the idempotent multigraphs. The core of our improved
procedure for size-change analysis is shown in Fig. 1. The algorithm considers
the following ordering on multigraphs:

Definition 4 (weaker multigraph). Given two multigraphs G1 = 〈V1,W1, E1〉
and G2 = 〈V2,W2, E2〉, we say that G1 is weaker than G2, in symbols G1 v G2,
iff the following conditions hold:

– the output and input nodes coincide, i.e., V1 = V2 and W1 = W2, and
– for every edge i R1−→ j ∈ E1, R1 ∈ {�,%}, there exists an edge i R2−→ j ∈ E2,
R2 ∈ {�,%}, such that R1 v R2

where �v�, %v% and %v�, but � 6v%.

Basically, if a multigraph G is weaker than another multigraph H, then we have
that whenever termination can be proved with G only, it could also be proved
with both G and H. Indeed, if G v H and G′ v H′ then G •G′ v H•H′. Thus, by
induction, we can prove that for every size change graph derivable from H there

is a corresponding weaker graph derived from G. Therefore, one can safely discard
H from the computed sets of multigraphs. Intuitively speaking, an idempotent
multigraph represents a chain of multigraphs, and this chain is only as strong as
its weakest segment.

Example 4. Consider the following four clauses extracted from the regular ex-
pression matcher from [18]:

generate(or(X,), H, T)← generate(X, H, T).
generate(or(, Y), H, T)← generate(Y, H, T).
generate(star(), T, T).
generate(star(X), H, T)← generate(X, H, T1), generate(star(X), T1, T).

Here, we have the following three size-change graphs:7

1gen
�ts // 1gen

2gen

%ts // 2gen

3gen

%ts // 3gen

1gen
�ts // 1gen

2gen

%ts // 2gen

3gen 3gen

1gen

%ts // 1gen

2gen 2gen

3gen

%ts // 3gen

using a reduction pair based on the term-size norm, where generate is abbrevi-
ated to gen in the graphs. Here, both the second and third size-change graphs
are weaker than the first one, hence the first graph can be safely discarded and
also does not have to be concatenated with other graphs.

The algorithm of Fig. 1 follows these principles:
– In every iteration, we only consider concatenations of the form G1 •G2 where
G1 belongs to the current set of multigraphsMi and G2 is one of the original
size-change graphs in sc graphs(P).

– Also, those graphs that are stronger than some other graphs are removed
from the computed multigraphs in every iteration. Here, Madd denotes the
weakest multigraphs that should be added toMi, whileMdel keeps track of
the already computed graphs (i.e., fromMi ∪Madd) that should be deleted
because a weaker multigraph has been produced.

Example 5. Consider again program MLIST of Example 1. By using the im-
proved procedure with the cover set {mlist/3,mult/3, add/3}, only five concate-
nations are required to get the fixpoint (actually, three of them are only needed
to check that a graph is indeed idempotent) and return the final set of idempo-
tent multigraphs (i.e., the first, third and fourth graphs shown in Example 2).
With the original algorithm, 48 concatenations were required. This is a simple
example, but gives an idea of the speedup factor associated to the new algorithm
(more details can be found in Sect. 4).

The following result formally states the correctness of keeping only the weakest
multigraphs during the iterative process:
7 Note that the first two clauses produce the same size-change graph, otherwise we

would have four size-change graphs, one for each body atom in the program.

1. Input: a program P and a cover set S ∈ CS(P)
2. Initialisation:

i := 0; Mi := i sc graphs(P, S); SC := sc graphs(P)
3. repeat

– Madd := ∅; Mdel := ∅
– for all G1 ∈Mi and G2 ∈ SC such that G1 • G2 is defined

(a) G := G1 • G2

(b) if 6 ∃H ∈ (Mi ∪Madd) \Mdel such that G v H or H v G
thenMadd := Madd ∪ {G}

(c) if ∃H ∈ (Mi∪Madd)\Mdel such that G v H thenMadd :=Madd∪{G}
and Mdel := Mdel ∪ {H ∈ (Mi ∪Madd) \Mdel) | G v H}

– Mi+1 := (Mi ∪Madd) \Mdel

– i := i + 1
untilMi =Mi+1

Fig. 1. An improved algorithm for size-change analysis

Theorem 1. Let P be a logic program and M be the set of idempotent multi-
graphs of P computed using the naive algorithm shown at the beginning of this
section. LetM′ be the set of idempotent multigraphs computed with the algorithm
of Fig. 1 using a cover set S. Then, a predicate p/n ∈ S is (quasi-)terminating
w.r.t. M iff it is (quasi-)terminating w.r.t. M′.

As a straightforward corollary, we have that proving termination using the naive
algorithm is equivalent to proving termination according to (∗) above using the
improved algorithm of Fig. 1 for all program predicates (and not only for those
predicates in the cover set).

4 Application to Partial Evaluation and Experiments

In this section, we apply our new algorithm to the case of offline partial eval-
uation of logic programs, both to show the usefulness of the technique in that
setting and also to evaluate its scalability in realistic applications.

4.1 Offline Partial Evaluation of Logic Programs

There are two basic approaches to partial evaluation, differing in the way termi-
nation issues are addressed [14]. Online specializers include a single, monolithic
algorithm, while offline partial evaluators contain two clearly separated stages:
a binding-time analysis (BTA) and the proper partial evaluation. A BTA nor-
mally includes both a termination analysis and an algorithm for propagating
static (i.e., known) information through the program. The output of the BTA is
an annotated version of the source program where every call is decorated either

with unfold (to be evaluated) or memo (to be residualized, i.e., the call will be-
come part of the residual program); also, every procedure argument is annotated
either with static (definitely known at partial evaluation time) or dynamic (pos-
sibly unknown at partial evaluation time). Typically, offline partial evaluators
are faster but less precise than online partial evaluators.

In the following, patterns are expressions of the form p(b1, . . . , bn), with p/n
a predicate symbol of arity n and b1, . . . , bn binding-times. Here, we consider
a simple domain of binding-times with two elements: static and dynamic; more
refined domains can be found in, e.g., [6].

An offline partial evaluator takes an annotated program and an initial set of
atoms and proceeds iteratively as follows:

– First, the initial atoms are unfolded as much as possible according to the
program annotations. This is called the local level of partial evaluation.

– Then, every atom in the leaves of the incomplete SLD trees produced in the
local level are added—perhaps generalising some of their arguments—to the
set of (to be) partially evaluated atoms. This is called the global level of
partial evaluation.

Similarly, termination issues can be split into local and global termination, i.e.,
termination of the local and global levels, respectively. Following the (quasi-
)termination results sketched at the end of Sect. 2, source programs are anno-
tated as follows:8

Local termination. If all idempotent multigraphs for a predicate p/n include
an edge ip

�−→ ip and the i-th argument of p/n is static, then all calls to p/n
are annotated with unfold; otherwise, they are annotated with memo.

Global termination. If all idempotent multigraphs for a predicate p/n include
an edge jp

R−→ ip such that R ∈ {�,%} and its j-th argument is static,
then the i-th argument of p/n can be kept as static; otherwise, it should be
annotated as dynamic so that it will be generalised at the global level.

4.2 Prolog Implementation and Empirical Evaluation

We have implemented our new algorithm from Fig. 1 (cf. Sect. 3) for size-change
analysis in SICStus Prolog. To be able to measure the effectiveness of the re-
striction to SCCs (i.e., the restriction to sc graphs(P)) and the restriction to
only consider one predicate per loop (i.e., the restriction to i sc graphs(P, S) for
some cover set S), we have provided a way to turn these optimisations off. We
also compare to the old implementation from [17], which includes none of the
new ideas presented in this paper.

An interesting implementation technique, which all three versions consider
(not described in [17]), is the use of hashing9 to more quickly identify which
size-change graphs already exist and which ones can be concatenated with each

8 The groundness of an argument is now replaced by the argument being static.
9 We note that, in earlier versions of SICStus, term hash generates surprisingly many

collisions; a problem which we reported and which has been fixed in version 4.0.5.

other. All these three algorithms are integrated into the same BTA from [17],
which provides a command-line interface. The BTA is by default polyvariant
(but can be forced to be monovariant) and uses a domain with the following
values: static, list nv (for lists of non-variable terms), list, nv (for non-variable
terms), and dynamic. The user can also provide hints to the BTA (see below).
The implemented size-change analysis uses a reduction pair induced from the
term-size norm.

Evaluation of Efficiency. Figure 2 contains an overview of our empirical results,
where all times are in seconds. A value of 0 means that the timing was below our
measuring threshold. The experiments were run on a MacBook Pro with a 2.33
GHz Core2 Duo Processor and 3 GB of RAM. Our BTA was run using SICStus
Prolog 4.0.5. The first six benchmarks come from the DPPD [18] library, vanilla,
ctl and lambdaint come from [16]. The picemul program is the PIC processor
emulator from [11] with 137 clauses and 855 lines of code. javabc and javabc heap
are Java Bytecode interpreters from [10] with roughly 100 clauses. peval are over
2500 lines of Prolog from a partial evaluator for the ground representation from
[20]. self app are the 1925 lines of our size-change analysis and BTA itself. dSL
is an interpreter of 444 lines for the dSL specification language [31]. csp is the
core interpreter for full CSP-M from [21], consisting of 1771 lines of code. prob
is the core interpreter of ProB [19] for B machines, not containing the kernel
predicates or the model checker. It consists of 1910 lines of code and deals with
B expressions, predicates and substitutions. promela is an interpreter for the full
Promela language (see, e.g., [13]), consisting of 1148 lines of code. Finally, goedel
is the source code of the Gödel system [12] consisting of 27354 lines of Prolog.10

The “noentry” annotation in Fig. 2 means that no entry point was provided,
hence only the size-change analysis was performed (and no propagation of static
information).

The output of the new BTA (without SCC) and the old BTA from [17] are
identical as far as local and global annotations are concerned.

In summary, the new size change analysis is always faster and we see improve-
ments of roughly three orders of magnitude on the most complicated examples
(up to a factor of 3500 for prob (noentry)). We are able to deal with realistic
interpreters and systems exceeding 25K lines of code. For goedel, a small part
of the inferred termination conditions are as follows:

is_not_terminating(parse_language1, 6, [d,_,_,_,_,_]).

global_binding_times(parse_language1, 6, [s,d,s,s,d,s]).

is_not_terminating(build_delay_condition, 4, [d,d,_,_]).

global_binding_times(build_delay_condition, 4, [s,s,d,d]).

In particular, this means that the analysis has inferred that the predicate parse language1

can be unfolded if the first argument is static, and that the first, third, fourth
and last argument do not need to be generalised to ensure quasi-termination.
10 Downloaded from http://www.cs.bris.ac.uk/Research/LanguagesArchitecture/goedel/

and put into a single file, removing module declarations and adapting some of the
code for SICStus 4.

Benchmark Old BTA New BTA New BTA
from [17] (without SCC) (with SCC)

contains.kmp 0.01 0.00 0.00
imperative-power 2.35 0.03 0.02
liftsolve.app 0.02 0.01 0.01
match-kmp 0.00 0.00 0.00
regexp.r3 0.01 0.00 0.00
ssuply 0.01 0.01 0.01

vanilla 0.01 0.00 0.00
lambdaint 0.17 0.02 0.02
picemul 0.31 0.15 0.15
picemul (noentry) 0.18 0.01 0.01
ctl 0.03 0.02 0.02
javabc 0.03 0.03 0.03
javabc heap 0.09 0.09 0.09
peval 0.48 0.15 0.06
self app (noentry) 0.34 0.20 0.05
dSL 0.03 0.01 0.01
csp (noentry) 5.16 0.21 0.09
prob 387.12 1.41 0.61
prob (noentry) 386.63 0.79 0.11
promela (noentry) 330.05 0.35 0.34
goedel (noentry) 1750.90 13.32 2.61

Fig. 2. Empirical results

Compared to the BTA from [6] using binary clauses rather than size-change
analysis, the difference is even more striking. This BTA is in turn, e.g., 200 times
slower than the old BTA for the picemul example; see [17]. We have also tried
the latest version of Terminweb,11 based upon [5]. However, the online version
failed to terminate successfully on, e.g., the picemul example (for which our size-
change analysis takes 0.01 s). We have also tried TermiLog,12 but it timed out
after 4 minutes (the maximum time that can be set in the online version).

Evaluation of Precision. Without the use of the SCC optimisations in the al-
gorithm of Fig. 1, the precision remains unchanged w.r.t. [17], and as such the
same specialisations can be achieved as described in [17] using hints: e.g., Jones-
optimal specialisation for vanilla, reproducing the decompilation from Java byte-
code to CLP from [10] or automatically generating the generated code from [11]
for picemul.

With the SCC optimisations, we reduce the number of predicates that are
memoised. This in turn also reduces the number of hints that a user has to
provide to obtain the desired specialisation.

For example, the vanilla example required two hints in [17] and now only
one hint is required to obtain a good specialisation. For lambdaint 6 hints were
11 http://www.cs.bgu.ac.il/∼mcodish/TerminWeb/
12 http://www.cs.huji.ac.il/∼naomil/termilog.php

required in [17] to get good performance. Now only two hints are required,
expressing the fact that the expression being evaluated and the list of bound
variable names are expected to be static and should not be generalised away
by the BTA.13 In the following section we show how the precision of the size-
change analysis can be further improved in the setting of partial evaluation,
further reducing the need for hints.

5 Propagating Partial Left-To-Right Information

In this section, we extend the size-change analysis in order to right-propagate
size information in some cases. Consider, e.g., clause (c2) in Example 1:

(c2) mlist(L, I, LI)← nonempty(L), hd(L,X), tl(L,R),ml(X,R, I, LI).

Since our size-change analysis considers strong termination, we compare the size
of the head of the clause with the size of each atom in the body independently.
Therefore, we get no relation between the sizes of list L in the head and its head
X and tail R in the call to ml .

In some cases, however, one might assume some additional restrictions. For
instance, in many partial evaluators a left-to-right selection rule is used with
the only exception that those calls which are annotated with memo are never
selected. Therefore, if we know that some calls can be fully unfolded without
entering an infinite loop (the case, e.g., of non-recursive predicates), then one can
safely propagate the size relationships for the success patterns of these calls to the
subsequent atoms in the clause. In principle, these “fully unfoldable” calls can
be detected using a standard left-termination analysis (i.e., one that considers a
standard left-to-right computation rule), e.g., [5], while size relations of success
patterns can be obtained from the computation of the convex hull of [1]. Here,
though, we consider that this information is provided by the user by means
of hints of the form ’$FULLYUNFOLD’(p,n,size relations) where size_relations

are the interargument size relations for the success patterns of p/n. For instance,
for the program MLIST of Ex. 1, we may have the following hints:

’$FULLYUNFOLD’(hd,2,[1>2]). ’$FULLYUNFOLD’(tl,2,[1>2]).

which should be read as “when the call to hd (resp. tl) succeeds, the size of its
first argument is strictly greater than the size of its second argument”. We note
that, in order to be safe, the interargument size relations should be based on the
same norm used induce the reduction pair considered in the size-change graphs.

Let us now describe how the size-change analysis can be improved by using
this new kind of hints. Consider a clause of the form

P ← Q1, . . . , Qi−1, p(t1, . . . , tn), Qi+1, . . . , Qm.

13 This does not give exactly the same result; the solution with 6 hints memoises on
eval if, which in this case leads to a more efficient version than memoising on eval.

together with the hint ’$FULLYUNFOLD’(p,n,I). Then, we first replace this clause
by the following ones:

P ← Q1, . . . , Qi−1, pentry(x1, . . . , xk, t1, . . . , tn).
pentry(x1, . . . , xk, y1, . . . , yn)← p(y1, . . . , yn), pexit(x1, . . . , xk, y1, . . . , yn).
pexit(x1, . . . , xk, y1, . . . , yn)← Qi+1, . . . , Qm.

where {x1, . . . , xk} = (Var(P,Q1, . . . , Qi−1)∩Var(Qi+1, . . . , Qm))\Var(p(t1, . . . , tn)).
This transformation is clearly safe w.r.t. SLD resolution since the original clause
can be obtained by just unfolding both pentry and pexit.

Now, the size-change graphs of the first and third clauses are computed as
usual. For the second clause, however, we assume that the atom p(y1, . . . , yn)
could be fully unfolded producing the set of clauses

pentry(x1, . . . , xk, y1, . . . , yn)σ1 ← pexit(x1, . . . , xk, y1, . . . , yn)σ1.
. . .
pentry(x1, . . . , xk, y1, . . . , yn)σj ← pexit(x1, . . . , xk, y1, . . . , yn)σj .

where σ1, . . . , σj are the computed answers and the set of interargument size
relations I safely approximates the size relations between the arguments of pentry

and pexit. Note that we do not need to fully unfold p/n to construct the size-
change graphs (it is rather a device to show the correctness of our approach).
Formally, for every relation i > j (resp. i > j) in the interargument size relations

for p/n, we should add an edge ipentry

�7−→ jpexit
(resp. ipentry

%7−→ jpexit
) to the

size-change graph from pentry to pexit. Moreover, we add an edge of the form

ipentry

%7−→ ipexit
since both pentry and pexit are actually the same predicate.

For instance, by considering the previous hints for program MLIST , the
clause (c2) is transformed into

(c21) mlist(L, I, LI)← nonempty(L), hdentry(L,X, I, LI).
(c22) hdentry(L,X, I, LI)← hd(L,X), hdexit(L,X, I, LI).
(c23) hdexit(L,X, I, LI)← tlentry(L,R,X, I, LI).
(c24) tlentry(L,R,X, I, LI)← tl(L,R), tlexit(L,R,X, I, LI).
(c25) tlexit(L,R,X, I, LI)← ml(X,R, I, LI).

Now, by using the interargument size relations for hd and tl , we construct the
following size-change graphs associated to clauses c22 and c24:

1hdentry �ts

**TTTTTTT
%ts // 1hdexit

2hdentry

%ts // 2hdexit

3hdentry

%ts // 3hdexit

4hdentry

%ts // 4hdexit

1tlentry �ts

**UUUUUUU
%ts // 1tlexit

2tlentry

%ts // 2tlexit

3tlentry

%ts // 3tlexit

4tlentry

%ts // 4tlexit

5tlentry

%ts // 5tlexit

Finally, by constructing the size-change graphs for clauses c21, c23 and c25 as
usual, the size-change analysis can now infer the right relation between the sizes
of list L in the atom mlist(L, I, LI) and the head X and tail R in the atom
ml(X,R, I, LI).

6 Discussion and Conclusion

In this paper, we have presented a new algorithm to perform strong termina-
tion and quasi-termination inference using size-change analysis. The experiments
have shown that we can analyse the full 25K lines of source code of the Gödel
system in under three seconds. The main application of this algorithm is for
offline partial evaluation of large programs. In the experimental evaluation we
have shown that, with our new algorithm, we can now deal with realistic inter-
preters, such as the interpreter for the full B specification language from [19].
Together with the selective use of hints [17], we have obtained both a scalable
and an effective partial evaluation procedure. The logical next step is to bring
this work to practical fruition, by, e.g., optimising the interpreter from [19] for
particular specifications, speeding up the animation and model checking process.
This challenge has been on our research agenda for quite a while, and we now
believe that the goal can be achieved in the near future. One remaining technical
hurdle is the treatment of meta predicate annotations (the B interpreter uses
meta-predicates to implement delaying versions of negation and findall).

References

1. F. Benoy, A. King, and F. Mesnard. Computing convex hulls with a linear solver.
TPLP, 5(1-2):259–271, 2005.

2. M. Bezem. Strong Termination of Logic Programs. Journal of Logic Programming,
15(1&2):79–97, 1993.

3. Annalisa Bossi, Sandro Etalle, and Sabina Rossi. Properties of input-consuming
derivations. TPLP, 2(2):125–154, 2002.

4. Annalisa Bossi, Sandro Etalle, Sabina Rossi, and Jan-Georg Smaus. Termination
of simply moded logic programs with dynamic scheduling. ACM Trans. Comput.
Log., 5(3):470–507, 2004.

5. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. Journal of Logic Programming, 41(1):103–123, 1999.

6. S.-J. Craig, J. Gallagher, M. Leuschel, and K.S. Henriksen. Fully Automatic Bind-
ing Time Analysis for Prolog. In Proc. of LOPSTR’04, pages 53–68. Springer
LNCS 3573, 2005.

7. Danny De Schreye and Stefaan Decorte. Termination of logic programs: The never
ending story. The Journal of Logic Programming, 19 & 20:199–260, May 1994.

8. S. Decorte, D. De Schreye, M. Leuschel, B. Martens, and K.F. Sagonas. Termi-
nation Analysis for Tabled Logic Programming. In Proc. of LOPSTR’97, pages
111–127. Springer LNCS 1463, 1998.

9. Allen Van Gelder. Deriving constraints among argument sizes in logic programs.
Ann. Math. Artif. Intell., 3(2-4):361–392, 1991.

10. Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla. Improving the de-
compilation of Java bytecode to Prolog by partial evaluation. Electr. Notes Theor.
Comput. Sci., 190(1):85–101, 2007.

11. K.S. Henriksen and J. Gallagher. Abstract interpretation of pic programs through
logic programming. In SCAM, pp. 184–196. IEEE Computer Society, 2006.

12. Patricia Hill and John W. Lloyd. The Gödel Programming Language. MIT Press,
1994.

13. Gerard J. Holzmann. The model checker Spin. IEEE Trans. Software Eng.,
23(5):279–295, 1997.

14. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

15. C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The Size-Change Principle for Pro-
gram Termination. SIGPLAN Notices (Proc. of POPL’01), 28:81–92, 2001.

16. M. Leuschel, S.-J. Craig, M. Bruynooghe, and W. Vanhoof. Specialising Inter-
preters Using Offline Partial Deduction. In Program Development in Computa-
tional Logic, pages 340–375. Springer LNCS 3049, 2004.

17. M. Leuschel and G. Vidal. Fast Offline Partial Evaluation of Large Logic Programs.
In Proc. of LOPSTR’08, pages 119–134. Springer LNCS 5438, 2009.

18. Michael Leuschel. The ecce partial deduction system and the dppd library of
benchmarks. Obtainable via http://www.ecs.soton.ac.uk/~mal, 1996-2002.

19. Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro
Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
LNCS 2805, pages 855–874. Springer-Verlag, 2003.

20. Michael Leuschel and Danny De Schreye. Creating specialised integrity checks
through partial evaluation of meta-interpreters. The Journal of Logic Program-
ming, 36(2):149–193, August 1998.

21. Michael Leuschel and Marc Fontaine. Probing the depths of CSP-M: A new FDR-
compliant validation tool. In Proceedings ICFEM 2008, LNCS, pages 278–297.
Springer-Verlag, 2008.

22. N. Lindenstrauss and Y. Sagiv. Automatic Termination Analysis of Logic Pro-
grams. In Proc. of Int’l Conf. on Logic Programming (ICLP’97), pages 63–77. The
MIT Press, 1997.

23. Naomi Lindenstrauss, Yehoshua Sagiv, and Alexander Serebrenik. Proving Ter-
mination for Logic Programs by the Query-Mapping Pairs Approach. In Program
Development in Computational Logic, pages 453–498, 2004.

24. Elena Marchiori and Frank Teusink. Termination of Logic Programs with Delay
Declarations. J. Log. Program., 39(1-3):95–124, 1999.

25. Lee Naish. Coroutining and the construction of terminating logic programs. Aus-
tralian Computer Science Communications, 15(1):181–190, 1993.

26. Jan-Georg Smaus. Termination of Logic Programs Using Various Dynamic Selec-
tion Rules. In Bart Demoen and Vladimir Lifschitz, editors, ICLP, volume 3132
of Lecture Notes in Computer Science, pages 43–57. Springer, 2004.

27. J.-G. Smaus, P.M. Hill, and A. King. Verifying termination and error-freedom of
logic programs with block declarations. TPLP, 1(4):447–486, 2001.

28. R. Thiemann and J. Giesl. The Size-Change Principle and Dependency Pairs for
Termination of Term Rewriting. Applicable Algebra in Engineering, Communica-
tion and Computing, 16(4):229–270, 2005.

29. S. Verbaeten, K. Sagonas, and D. De Schreye. Termination Proofs for Logic Pro-
grams with Tabling. ACM Transactions on Computational Logic, 2(1):57–92, 2001.

30. G. Vidal. Quasi-Terminating Logic Programs for Ensuring the Termination of
Partial Evaluation. In Proc. of PEPM’07, pages 51–60. ACM Press, 2007.

31. Bram De Wachter, Alexandre Genon, Thierry Massart, and Cédric Meuter. The
formal design of distributed controllers with dsl and Spin. Formal Asp. Comput.,
17(2):177–200, 2005.

