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Abstract

In this paper we establish some results relating star, left-star, right-star, minus ordering
and the reverse order law under certain conditions on Moore-Penrose invertible elements
of C∗-algebras.
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1 Introduction

Let A be a C∗-algebra with unit 1. An element p ∈ A is said to be a projection if p = p2 = p∗.
Let a ∈ A , consider the equations:

(1) aba = a, (2) bab = b, (3) (ab)∗ = ab, (4) (ba)∗ = ba.

For any a ∈ A , let a{i, j, . . . , k} denote the set of elements b ∈ A which satisfy equations
(i), (j), . . . , (k) from among equations (1)-(4). In this situation, the element b will be called
a {i, j, . . . , k}-inverse of a. It is well known that a{1, 2, 3, 4} is or empty or a singleton and
when a{1, 2, 3, 4} is a singleton, its unique element is called the Moore-Penrose inverse of a,
denoted by a†. The subset of A consisting of elements of A that have a Moore-Penrose
inverse will be denoted by A †. For an arbitrary C∗-algebra A , it may happen that A 6= A †.
In [15] it was proved that if a{1} 6= ∅, then a ∈ A † (see also [13]).

The following formulae are well known in the theory of generalized inverses in C∗-algebras
and they will be useful in the sequel.
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Lemma 1.1. Let A be a C∗-algebra. For any a ∈ A †, the following statements are satisfied:

(i) a† ∈ A † and (a†)† = a.

(ii) a∗ ∈ A † and (a∗)† = (a†)∗.

(iii) a† = a†(a†)∗a∗ = a∗(a†)∗a†.

(iv) a∗ = a†aa∗ = a∗aa†.

The set of complex n × n matrices can be considered a C∗-algebra, but let us remark
that any complex matrix has a Moore-Penrose inverse. Recall that a matrix A is called EP
when AA† = A†A and there are many characterizations of EP matrices (see [5, 8]). Recently,
many researchers pay their attention to EP elements in C∗-algebras and rings and present
several equivalent characterizations of elements of a C∗-algebra that commute with their
Moore-Penrose inverse (see [6, 10, 12]). In this paper, for a C∗-algebra A , we will denote
A EP = {a ∈ A † : aa† = a†a}.

For future use we need the following Theorem 1.1 (see [6, Th 2.1] and [13, Th. 3.1]) and
some notation. For any a ∈ A we define the nullspace ideals (also called the two annihilators
of a)

a◦ = {x ∈ A : ax = 0}, ◦a = {x ∈ A : xa = 0}.

It is simple to prove from items (iii) and (iv) of Lemma 1.1 that (a∗)◦ = (a†)◦ and
◦(a∗) = ◦(a†) hold for any a ∈ A †.

Theorem 1.1. Let A be a C∗-algebra with unit 1 and a ∈ A . Then the following conditions
are equivalent:

(i) There exists a unique projection p such that a + p ∈ A −1 and ap = pa = 0.

(ii) a ∈ A EP .

(iii) a◦ = (a∗)◦.

(iv) ◦a = ◦(a∗).

Following [12], we denote by aπ the unique projection satisfying condition (i) of Theo-
rem 1.1 for a given a ∈ A EP . It is proved that

aπ = 1− aa† and a† = (a + aπ)−1 − aπ.

The projector aπ will be named the spectral idempotent of a corresponding to 0.
Inspired by matrix theory, for a ∈ A †, we will define two projectors aπl and aπr by

aπl = 1− a†a, aπr = 1− aa†,

respectively. Obviously, when a ∈ A EP , then aπl = aπr .
Matrix partial orderings have been an area of intense research in the past few years (see

[1, 2, 3, 4]). Analogously to the definition introduced by Drazin [11], we define the star
ordering in an arbitrary C∗-algebra by

a
∗
≤ b ⇐⇒ a∗a = a∗b and aa∗ = ba∗.
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Let us remark that if a ∈ A †, then the conditions a∗a = a∗b and aa∗ = ba∗ are equivalent to
a†a = a†b and aa† = ba†, respectively since (a∗)◦ = (a†)◦ and ◦(a∗) =◦ (a†).

Inspired in a paper of Baksalary and Mitra [1], we define left-star and right-star partial
ordering of Moore-Penrose invertible elements a, b of a C∗-algebra by

a ∗≤ b ⇐⇒ a∗a = a∗b and bπr a = 0,

and
a ≤∗ b ⇐⇒ aa∗ = ba∗ and abπl = 0,

respectively. It can easily be proved that when A and B are n × n complex matrices, then
Bπ
r A = 0 if and only if R(A) ⊂ R(B); and ABπ

l = 0 if and only if R(A∗) ⊂ R(B∗), where
R(·) denotes the range space. These inclusions are part of the original definition of the
left-star and right-star partial ordering in the set composed of n× n complex matrices.

Furthermore, we will consider the minus ordering defined in [16]. An extension to A † of
an equivalent form of this ordering (see [18] or [9]) is the following:

a
−
≤ b ⇐⇒ ab†b = a, bb†a = a, ab†a = a.

The purpose of this paper is to establish some results on the star, left-star, right-star, and
minus orderings of two Moore-Penrose invertible elements of C∗-algebras, when one of them
commutes with its Moore-Penrose inverse.

The reverse order law is one of the most important properties of the Moore-Penrose
inverse that have been studied, that is under what condition the equation (ab)† = b†a† holds
for a, b ∈ A †. In [14], T.N.E. Greville gave equivalent conditions on a pair of square complex
matrices A and B for (AB)† = B†A† holds. However, it is worth noticing that the proofs
work in the more general context of C∗-algebras. An algebraic proof of the reverse order
law for the Moore-Penrose inverse (in a ring with involution) is given in [17]. The interested
reader can also consult [7, 19].

2 Star ordering and the reverse order law

Next, for two Moore-Penrose invertible elements of a C∗-algebra, say a and b, we study the

relation a
∗
≤ b and the reverse order law for the products ab and ba when a or b commute

with its Moore-Penrose inverse.

Theorem 2.1. Let A be a unital C∗-algebra and a, b elements of A that have a Moore-
Penrose inverse. Assume that a ∈ A EP . The following affirmations are equivalent:

(i) a
∗
≤ b.

(ii) ab = ba = a2.

(iii) ab has a Moore-Penrose inverse, (ab)† = b†a† = a†b† and aa†b = a.

(iv) ab has a Moore-Penrose inverse, (ab)† = b†a† = a†b† and baa† = a.
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Proof. (i)⇒ (ii): From a∗a = a∗b and aa∗ = ba∗, we have

a∗(a− b) = (a− b)a∗ = 0.

Since a ∈ A EP ⇐⇒ a∗ ∈ A EP and aπ = (a∗)π, then by item (i) of [6, Theorem 3.6], we
have

aπ(a− b) = a− b = (a− b)aπ.

Hence, a(a− b) = aaπ(a− b) = 0, i.e., a2 = ab and (b− a)a = (b− a)aπa = 0, i.e., ba = a2.
(ii) ⇒ (iii): It is easy to see that a ∈ A EP implies a2 ∈ A † and (a2)† = (a†)2. Since

ab = a2, then ab has a Moore-Penrose inverse. It is easy to check that aa†b = a†ab = a†a2 =
aa†a = a. Next we will prove that (ab)† = b†a† = a†b†. By using ab = ba = a2 we have

a(b− a) = (b− a)a = 0.

By item (i) of [6, Theorem 3.6], we have

aπb = aπ(b− a) = b− a = (b− a)aπ = baπ.

Thus, we obtain
b = a + aπb = a + baπ. (1)

From (1) and [6, Lemma 3.5] we get

aπb† = b†aπ. (2)

Now, by doing a little algebra we obtain

aπbaπb†aπb = aπb and aπb†aπbaπb† = aπb†.

Moreover, recall that aπ is a projection and commutes with b and b†, hence (aπbaπb†)∗ =
(aπbb†)∗ = (bb†)∗aπ = bb†aπ = aπbaπb†, and thus, aπbaπb† is self-adjoint. In the same way, we
prove that aπb†aπb is self-adjoint. We have proved

(aπb)† = aπb†, (3)

in particular aπb ∈ A †. Since aaπb = aπba = 0 by item (iv) of [6, Theorem 3.6], we get that
a + aπb is Moore-Penrose invertible and (a + aπb)† = a†+ (aπb)†. Using this last identity, (1),
(3), and (2) we obtain

b† = (a + aπb)† = a† + (aπb)† = a† + aπb† = a† + b†aπ

Therefore, b† − a† = aπb† = b†aπ and thus

a†(b† − a†) = a†aπb† = 0, (b† − a†)a† = b†aπa† = 0.

Hence, a†b† = b†a† = (a†)2 = (a2)† = (ab)†.
(iii) ⇒ (i): Noting that a ∈ A EP ⇐⇒ a† ∈ A EP and (a†)π = aπ, since a†b† = b†a†,

then by [6, Corollary 3.3] we get b†aπ = aπb†. Further, by [6, Lemma 3.5], we also have
baπ = aπb. By aa†b = a, we have baπ = aπb = (1 − aa†)b = b − aa†b = b − a. Now,
a∗(b − a) = a∗aπb = (aπa)∗b = 0, i.e., a∗b = a∗a. In a similar way, from the equality
baπ = b− a, we get ba∗ = aa∗.

(ii) ⇒ (iv) and (iv) ⇒ (i): This has the same proof as (ii) ⇒ (iii) and (iii) ⇒ (i), and
thus, the theorem is demonstrated.
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Recall that, in addition to the standard properties of involution x 7→ x∗ we have ‖x∗‖ =
‖x‖ for all x ∈ A , and the B*-condition

‖x∗x‖ = ‖x‖2.

Theorem 2.2. Let A be a unital C∗-algebra, a ∈ A , and b ∈ A EP , then

(i) If a
∗
≤ b, then abπ = bπa = 0.

(ii) Let a ∈ A †, if abπ = bπa, then aπl b
π = bπaπl , aπr b

π = bπaπr , b†a† ∈ (ab){1, 2, 3},
a†b† ∈ (ba){1, 2, 4}.

Proof. (i) Since a∗abπ = a∗bbπ = 0 we get ‖abπ‖2 = ‖(abπ)∗(abπ)‖ = ‖bπa∗abπ‖ = 0, and
therefore, abπ = 0. On the other hand, we have

‖bπa‖2 = ‖(bπa)∗‖2 = ‖a∗bπ‖2 = ‖(a∗bπ)∗(a∗bπ)‖ = ‖bπaa∗bπ‖ = ‖bπba∗bπ‖ = 0,

which proves bπa = 0.
(ii) If abπ = bπa, from item (i) of [6, Lemma 3.5], we have a†bπ = bπa†, and thus,

aa†bπ = abπa† = bπaa†, i.e, aπr b
π = bπaπr . Similarly, from a†abπ = a†bπa = bπa†a, we have

aπl b
π = bπaπl .
Next, we shall prove from abπ = bπa and a†bπ = bπa† that b†a† ∈ (ab){1, 2, 3}.

abb†a†ab = bb†aa†ab = bb†ab = abb†b = ab,

b†a†abb†a† = b†a†bb†aa† = b†bb†a†aa† = b†a†,

and
(abb†a†)∗ = (bb†aa†)∗ = (aa†)∗(bb†)∗ = aa†bb† = bb†aa† = abb†a†.

The proof of a†b† ∈ (ba){1, 2, 4} is similar and we will not give it.

Theorem 2.3. Let A be a unital C∗-algebra and a, b ∈ A †. If b ∈ A EP and abπ = bπa, then

(i) (ab)† = b†a† if and only if bb∗aπl = aπl bb
∗.

(ii) (ba)† = a†b† if and only if b∗baπr = aπr b
∗b.

Proof. We shall prove the first equivalence, and we will not give the proof of the other because
its proof is similar. By Theorem 2.2, we have that (ab)† = b†a† if and only if b†a†ab is self-
adjoint. In order to prove (b†a†ab)∗ = b†a†ab, we will use a consequence of item (ii) of Theorem
2.2, specifically, aπl b

π = bπaπl . Since b† = (b + bπ)−1 − bπ, we have

b†a†ab is self-adjoint ⇐⇒ b†a†ab = (b†a†ab)∗

⇐⇒ b†aπl b = (b†aπl b)
∗

⇐⇒ b†aπl b = b∗aπl (b†)∗

⇐⇒ [(b + bπ)−1 − bπ]aπl b = b∗aπl [(b + bπ)−∗ − bπ]
⇐⇒ (b + bπ)−1aπl b = b∗aπl (b + bπ)−∗

⇐⇒ aπl b(b + bπ)∗ = (b + bπ)b∗aπl
⇐⇒ aπl b(b

∗ + bπ) = (b + bπ)b∗aπl
⇐⇒ aπl bb

∗ = bb∗aπl .
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3 The left and right star orderings and the reverse order law

In this section we study the relation between a ∗≤ b and a ≤∗ b and reverse law of ab and
ba when a and b are elements in a C∗-algebra that have a Moore-Penrose inverse.

Lemma 3.1. Let A be a unital C∗-algebra. Let a ∈ A † and assume that there exists a
projection p such that a = pa, then a† = a†p.

Proof. It is evident aa†pa = a, a†paa†p = a†p, and a†pa = a†a is self-adjoint. Since (aa†p)∗ =
p∗(aa†)∗ = paa† = aa† is also self-adjoint, we obtain a† = a†p.

The following observation will be useful in the sequel: Let A be a C∗-algebra and a ∈ A †,
b ∈ A .

a∗b = a∗a ⇐⇒ a†b = a†a. (4)

This equivalence follows from (a∗)◦ = (a†)◦.

Theorem 3.1. Let A be a unital C∗-algebra. Assume that a, b ∈ A † with a ∈ A EP . If
a ∗≤ b, then

(i) ab = a2.

(ii) a†b† = (ab)†.

(iii) b†a† ∈ (ab){1, 2, 3}.

(iv) a†b† ∈ (ba){1, 2, 4}.

Proof. (i): By using Theorem 1.1 we have a◦ = (a∗)◦. Since a∗a = a∗b, then (a− b) ∈ (a∗)◦ =
a◦, so a(a− b) = 0, i.e., ab = a2.

(ii): Observe that (a2)† = (a†)2 because a ∈ A EP , and from item (i) of this theorem, it
only remains to prove that a†b† = (a†)2. Since bπr a = 0, or equivalently,

bb†a = a, (5)

then by Lemma 3.1, we get
a† = a†bb† (6)

and from (4) we have
a† = a†ab†. (7)

Then aπ(b† − a†) = aπb† = b† − aa†b† = b† − a†, which implies that aa†(b† − a†) = 0. Now,
premultiplying aa†(b† − a†) = 0 by a†, we get a†(b† − a†) = 0, i.e., a†b† = (a†)2.

(iii) We shall prove this item by the definition of (ab){1, 2, 3}: Recall that one hypothesis
is aa† = a†a. By using (5)

abb†a†ab = abb†aa†b = aaa†b = ab.

Now we use (6)
b†a†abb†a† = b†aa†bb†a† = b†aa†a† = b†a†,

and finally, from (5)

abb†a† = abb†a†aa† = abb†aa†a† = aaa†a† = aa† is self-adjoint.

(iv) The proof is similar as in (iii), and we will not give it.
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Next result characterizes the reverse law for the product ab when a commutes with its
Moore-Penrose inverse and a ∗≤ b. It is remarkable that one of these equivalent conditions

is a
∗
≤ b.

Theorem 3.2. Let A be a unital C∗-algebra. Assume that a, b ∈ A † with a ∈ A EP . If
a ∗≤ b, then the following affirmations are equivalent:

(i) b†a† = (ab)†.

(ii) ab = ba.

(iii) a
∗
≤ b.

(iv) a†b† = (ba)†.

Proof. By item (i) of Theorem 3.1, if a ∈ A EP and a ∗ ≤ b, then ab = a2. Also recall
(a2)† = (a†)2 because aa† = a†a.

(i)⇒ (ii): The hypothesis b†a† = (ab)† implies 0 = (b†−a†)a† = (b†−a†)[(a+aπ)−1−aπ],
then (b† − a†)(a + aπ)−1 = b†aπ and thus, b† − a† = b†aπ(a + aπ) = b†aπ. Now, we have

a† = b†(1− aπ) = b†aa† (8)

Postmultiplying the equality (8) by a2, we get a = b†a2, premultiplying by b and using
bb†a = a (obtained in (5)) we get ba = bb†a2 = a2 = ab.

(ii) ⇒ (iii) By the definitions of the different orderings involved in this implication, it is
enough to prove aa∗ = ba∗. For the proof of aa∗ = ba∗, we will use item (iv) of Theorem 1.1:

a2 = ab = ba ⇒ (a− b)a = 0 ⇒ a− b ∈ ◦a = ◦(a∗) ⇒ (a− b)a∗ = 0 ⇒ aa∗ = ba∗.

(iii)⇒ (iv): By items (iii) and (iv) of Theorem 1.1 we get

a
∗
≤ b ⇐⇒

{
a∗a = a∗b
aa∗ = ba∗

⇐⇒
{

a− b ∈ (a∗)◦

a− b ∈ ◦(a∗) ⇐⇒
{

a− b ∈ a◦

a− b ∈ ◦a ⇐⇒ a2 = ab = ba.

By using item (ii) of Theorem 3.1 we have (ba)† = (ab)† = a†b†.
(iv) ⇒ (ii): From item (ii) of Theorem 3.1 and hypothesis we have (ba)† = a†b† = (ab)†.

Now, the conclusion follows from item (i) of Lemma 1.1.
(ii) ⇒ (i): By item (iii) of Theorem 3.1, it is enough to prove that b†a†ab is self-adjoint.

By [6, Corollary 3.3] and [6, Lemma 3.5] we get aπb† = b†aπ. Moreover we will need a†b = a†a
(obtained in the observation given in (4)), and the relation (7). Thus

b†a†ab = b†aa†b = b†aa†a = b†a = (1− aπ)b†a = a†ab†a = a†a,

which proves that b†a†ab is self-adjoint.

Theorem 3.3. Let A be a unital C∗-algebra. Assume that a, b ∈ A † with b ∈ A EP . If
a ∗≤ b, then

(i) a†b† ∈ (ba){1, 2, 4}.

(ii) b†a† ∈ (ab){1, 2, 3}.
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(iii) a†b† = (ba)† if and only if b∗b commutes with aa†. Moreover, b†a† = (ab)† if and only
if bb∗ commutes with a†a.

Proof. (i): Note that b ∈ A EP implies bπr a = bπa = 0, i.e., bb†a = b†ba = a. Now,

baa†b†ba = baa†a = ba, a†b†baa†b† = a†aa†b† = a†b†, a†b†ba = a†a is self-adjoint.

For the rest of the proof we will need abπ = 0. In fact, since a ∗≤ b we have a∗a = a∗b,
and thus

‖abπ‖2 = ‖bπa∗abπ‖ = ‖bπa∗bbπ‖ = 0,

which, obviously implies abπ = 0, or equivalently, a = abb†.
(ii): We have

abb†a†ab = aa†ab = ab, b†a†abb†a† = b†a†aa† = b†a†, abb†a† = aa† is self-adjoint.

(iii): It is a trivial consequence of Theorem 2.3 since bπa = abπ = 0.

Having in mind that a ∗≤ b⇐⇒ a∗ ≤∗ b∗, we can obtain similar results for the right-star
ordering.

Theorem 3.4. Let A be a unital C∗-algebra. Assume that a, b ∈ A † with a ∈ A EP . If
a ≤∗ b, then

(i) ba = a2.

(ii) b†a† = (ba)†.

(iii) a†b† ∈ (ba){1, 2, 4}.

(iv) b†a† ∈ (ab){1, 2, 3}.

Theorem 3.5. Let A be a unital C∗-algebra. Assume that a, b ∈ A † with a ∈ A EP . If
a ≤∗ b, then the following affirmations are equivalent:

(i) a†b† = (ba)†.

(ii) ab = ba.

(iii) a
∗
≤ b.

(iv) b†a† = (ab)†.

Theorem 3.6. Let A be a unital C∗-algebra. Assume that a, b ∈ A † with b ∈ A EP . If
a ≤∗ b, then

(i) a†b† ∈ (ba){1, 2, 4}.

(ii) b†a† ∈ (ab){1, 2, 3}.

(iii) a†b† = (ba)† if and only if b∗b commutes with aa†. Moreover, b†a† = (ab)† if and only
if bb∗ commutes with a†a.
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4 The minus ordering and the reverse order law

As we made in the previous sections, we link the minus ordering with the reverse law.
Firstly, let us remark that if A is a unital C∗-algebra, and a ∈ A , b ∈ A † satisfy ab†a = a,

then [15, Theorem 6] assures that a ∈ A †.

Theorem 4.1. Let A † be a unital C∗-algebra and a ∈ A , b ∈ A † satisfy a
−
≤ b. Then

(i) a†b† ∈ (ba){1, 2, 4}.

(ii) If b ∈ A EP , then b†a† ∈ (ab){1, 2, 3}.

Proof. (i): The equalities baa†b†ba = ba, a†b†baa†b† = a†b†, and a†b†ba = a†a follow directly
from b†ba = a.

(ii): The equalities abb†a†ab = ab, b†a†abb†a† = b†a†, and abb†a† = aa† follow from
ab†b = a and bb† = b†b.
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[10] D. S. Djordjević, J. J. Koliha, I. Straškraba, Factorization of EP elements in C∗-algebras,
Linear Multilinear Algebra 57 (2009) 587-594.

[11] M.P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc.
84 (1978) 139-141.

9



[12] J. J. Koliha, Elements of C∗-algebras commuting with their Moore-Penrose inverse, Stu-
dia Math. 139 (2000) 81-90.

[13] J. J. Koliha, The Drazin and Moore-Penrose inverse in C∗-algebras, Math. Proc. R. Ir.
Acad. 99A (1999) 17-27.

[14] T.N.E. Greville, Note on the generalized inverse of a matrix product, J. Soc. Indust.
Appl. Math. 9 (1966) 109-115.

[15] R. Harte, M. Mbekhta, On generalized inverses in C∗-algebras, Studia Math. 103 (1992)
71-77.

[16] R. E. Hartwig, How to partially order regular elements, Math. Japon 25 (1980) 1-13.
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