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Abstract

In this paper we establish some results relating star, left-star, right-star, minus ordering
and the reverse order law under certain conditions on Moore-Penrose invertible elements
of C*-algebras.
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1 Introduction

*

Let o7 be a C*-algebra with unit 1. An element p € o7 is said to be a projection if p = p? = p*.
Let a € &7, consider the equations:

(1) aba = a, (2) bab = b, (3) (ab)* = ab, (4) (ba)* = ba.

For any a € <7, let a{i,j,...,k} denote the set of elements b € &/ which satisfy equations
(1),(4), ..., (k) from among equations (1)-(4). In this situation, the element b will be called
a {i,7,...,k}-inverse of a. It is well known that a{1,2,3,4} is or empty or a singleton and
when a{1,2,3,4} is a singleton, its unique element is called the Moore-Penrose inverse of a,
denoted by af. The subset of </ consisting of elements of &7 that have a Moore-Penrose
inverse will be denoted by «7T. For an arbitrary C*-algebra 7, it may happen that o7 # /.
In [15] it was proved that if a{1} # 0, then a € &/T (see also [13]).

The following formulae are well known in the theory of generalized inverses in C*-algebras
and they will be useful in the sequel.

*Email: xiaojiliu72@yahoo.com.cn.
fCorresponding author. Email: jbenitez@mat.upv.es
'Email: zhongjin1984@126.com.



Lemma 1.1. Let o7 be a C*-algebra. For any a € /1, the following statements are satisfied:
(i
(ii

(iii

(i

) at € ot and (Nt = a.

) a* € 1 and (a*)t = (ah)*.
) at = daf(at)*a* = a*(a)*al
v) a* = a'aa* = a*aal.

The set of complex n X n matrices can be considered a C*-algebra, but let us remark
that any complex matrix has a Moore-Penrose inverse. Recall that a matrix A is called EP
when AAT = AT A and there are many characterizations of EP matrices (see [5, 8]). Recently,
many researchers pay their attention to EP elements in C*-algebras and rings and present
several equivalent characterizations of elements of a C*-algebra that commute with their
Moore-Penrose inverse (see [6, 10, 12]). In this paper, for a C*-algebra &7, we will denote
AP ={a € o1 :aa’ =ala}.

For future use we need the following Theorem 1.1 (see [6, Th 2.1] and [13, Th. 3.1]) and
some notation. For any a € &/ we define the nullspace ideals (also called the two annihilators
of a)

a® ={r e :ax =0}, °a={z € o :xa=0}

It is simple to prove from items (iii) and (iv) of Lemma 1.1 that (a*)° = (af)° and
°(a*) = °(a') hold for any a € </.

Theorem 1.1. Let o/ be a C*-algebra with unit 1 and a € o/. Then the following conditions
are equivalent:

(i

) There exists a unique projection p such that a +p € /% and ap = pa = 0.
(ii) a € FP.

(iii) a® = (a*)°.

) a="°(a").

Following [12], we denote by a™ the unique projection satisfying condition (i) of Theo-
rem 1.1 for a given a € &/FP. It is proved that

(iv

a® =1—aa' and a' =(a4a™)"t —d".

The projector a™ will be named the spectral idempotent of a corresponding to 0.
Inspired by matrix theory, for a € @71, we will define two projectors aj and a; by

ale—aTa, a,’le—aaT,

respectively. Obviously, when a € &7FF then af = ay.

Matrix partial orderings have been an area of intense research in the past few years (see
[1, 2, 3, 4]). Analogously to the definition introduced by Drazin [11], we define the star
ordering in an arbitrary C*-algebra by

*

a<b <<= a*a=a"b and aa* = ba*.



Let us remark that if a € </, then the conditions a*a = a*b and aa* = ba* are equivalent to
a'a = a'b and aa® = bal, respectively since (a*)° = (af)° and °(a*) =° (al).

Inspired in a paper of Baksalary and Mitra [1], we define left-star and right-star partial
ordering of Moore-Penrose invertible elements a, b of a C*-algebra by

ax<b <= aa=a"b and bla =0,

and
a<xb <= aa*=0ba" and ab] =0,

respectively. It can easily be proved that when A and B are n X n complex matrices, then
BI'A = 0 if and only if Z(A) C Z(B); and AB]' = 0 if and only if Z(A*) C Z(B*), where
Z(-) denotes the range space. These inclusions are part of the original definition of the
left-star and right-star partial ordering in the set composed of n x n complex matrices.

Furthermore, we will consider the minus ordering defined in [16]. An extension to 27T of
an equivalent form of this ordering (see [18] or [9]) is the following:

a<b = ablb=a, bbla=a, abla=a.

The purpose of this paper is to establish some results on the star, left-star, right-star, and
minus orderings of two Moore-Penrose invertible elements of C*-algebras, when one of them
commutes with its Moore-Penrose inverse.

The reverse order law is one of the most important properties of the Moore-Penrose
inverse that have been studied, that is under what condition the equation (ab)’ = bfa’ holds
for a,b e &/T. In [14], T.N.E. Greville gave equivalent conditions on a pair of square complex
matrices A and B for (AB) = BTA" holds. However, it is worth noticing that the proofs
work in the more general context of C*-algebras. An algebraic proof of the reverse order
law for the Moore-Penrose inverse (in a ring with involution) is given in [17]. The interested
reader can also consult [7, 19].

2 Star ordering and the reverse order law

Next, for two Moore-Penrose invertible elements of a C*-algebra, say a and b, we study the

*
relation a < b and the reverse order law for the products ab and ba when a or b commute
with its Moore-Penrose inverse.

Theorem 2.1. Let &/ be a unital C*-algebra and a, b elements of </ that have a Moore-

Penrose inverse. Assume that a € /¥ . The following affirmations are equivalent:
(i)
(i) ab = ba = a>.
)
)

*
a <b.

(iii) ab has a Moore-Penrose inverse, (ab)l = blal = a'b" and aa'd = a.

(iv) ab has a Moore-Penrose inverse, (ab)’ = bla’ = a'd’ and baa® = a.



Proof. (i) = (ii): From a*a = a*b and aa® = ba™*, we have
a*(a—b)=(a—0b)a" =0.
Since a € #FF «— a* € &FF and a™ = (a*)", then by item (i) of [6, Theorem 3.6], we

have
a"(a—b)=a—b=(a—b)a".

Hence, a(a — b) = aa™(a — b) =0, i.e., a®> = ab and (b — a)a = (b — a)a"a = 0, i.e., ba = a.

(ii) = (iii): It is easy to see that a € &/FF implies a®> € &7 and (a®)! = (a!)?. Since
ab = a?, then ab has a Moore-Penrose inverse. It is easy to check that aa’d = afab = afa? =
aata = a. Next we will prove that (ab)’ = bfal = a'df. By using ab = ba = a® we have

a(b—a)=(b—a)a=0.

By item (i) of [6, Theorem 3.6], we have
a"b=a"(b—a)=b—a=(b—a)a"™ = ba".

Thus, we obtain

b=a+a"b=a+ba". (1)
From (1) and [6, Lemma 3.5] we get

a™bt = bla™. (2)
Now, by doing a little algebra we obtain
a™ba™b'a™b = a™b and a™b'a"ba™b' = a™ b

Moreover, recall that a” is a projection and commutes with b and b, hence (a”ba”bT)* =
(a™bb")* = (bbF)*a™ = bbTa™ = a™ba™bl, and thus, a™ba™b' is self-adjoint. In the same way, we
prove that a™bfa™b is self-adjoint. We have proved

(a™b)t = a™bf, (3)

in particular a™b € /. Since aa™b = a"ba = 0 by item (iv) of [6, Theorem 3.6], we get that
a+a™b is Moore-Penrose invertible and (a4 a™b)" = af + (a™b)!. Using this last identity, (1),
(3), and (2) we obtain

b = (a+a™b)  =a 4 (a"b)T = a 4+ a™b = ol + bTa™
Therefore, b' — af = a™bf = bfa™ and thus
at(b' —a’) = a’a™b" =0, (b" —ahal = bla™a’ = 0.

Hence, a'b’ = blat = (ah)? = (a®)' = (ab)'.

(iii) = (i): Noting that a € P = af € &*F and (a')™ = @™, since a'b’ = blal,
then by [6, Corollary 3.3] we get bfa™ = a™bf. Further, by [6, Lemma 3.5], we also have
ba™ = a™b. By aa'd = a, we have ba™ = a™b = (1 — aaT)b =b—aa'b = b—a. Now,
a*(b—a) = a*a™b = (a"a)*b = 0, ie., a*b = a*a. In a similar way, from the equality
ba™ = b — a, we get ba* = aa*.

(ii) = (iv) and (iv) = (i): This has the same proof as (ii) = (iii) and (iii) = (i), and
thus, the theorem is demonstrated. ]



Recall that, in addition to the standard properties of involution x — x* we have ||z*| =
||z|| for all z € o, and the B*-condition

]| = |||

Theorem 2.2. Let o/ be a unital C*-algebra, a € o7, and b € o/ then

(i) If a % b, then ab™ = b"a = 0.

(i) Let a € o1, if ab™ = b"a, then aTb™ = b"af, aTb™ = b"a¥, blal € (ab){1,2,3},

atvl € (ba){1,2,4}.
Proof. (i) Since a*ab™ = a*bb™ = 0 we get ||ab™||?> = ||(ab™)*(ab™)| = ||b"a*ab™|| = 0, and
therefore, ab™ = 0. On the other hand, we have
1al? = [|(b7a)*|[* = 07 ||* = [I(a"b™)* (a*b7)|| = b7 aa™b™|| = [[bTba*b"|| = 0,

which proves b"a = 0.

(ii) If ab™ = b™a, from item (i) of [6, Lemma 3.5], we have a'b™ = b7af, and thus,
aa’d™ = ab™a' = b"aal, i.e, aTb" = b"a’. Similarly, from a'ab™ = a'b"a = b"ala, we have
afb™ =b"af.

Next, we shall prove from ab™ = b"a and a'b™ = bv™a' that blal € (ab){1,2,3}.

abblatab = bbtaa’ab = bbab = abb’b = ab,
biatabblal = blatbblaa’ = bTbbTataal = blal,
and
(abb'a")* = (bbTaa)* = (aa’)*(bb")* = aa'bb’ = bbTaa’ = abb'al.

The proof of afb! € (ba){1,2,4} is similar and we will not give it. O
Theorem 2.3. Let o/ be a unital C*-algebra and a,b € /1. If b € /FF and ab™ = b™a, then

(i) (ab)" =b'a’ if and only if bb*al = aTbb*.

(ii) (ba)t = a'b if and only if b*bal = aFb*b.

Proof. We shall prove the first equivalence, and we will not give the proof of the other because
its proof is similar. By Theorem 2.2, we have that (ab)’ = bal if and only if bfalab is self-
adjoint. In order to prove (bfafab)* = bfatab, we will use a consequence of item (ii) of Theorem
2.2, specifically, afb™ = b"a]. Since bf = (b+ ™)1 — b™, we have

blatab = (b'a'ab)*

blaTb = (b'a[b)*

blaTb = b*al (b)*

(b4 ™)1 = b™]aTb = b*al[(b+ b™) " — b"]
(b+0")"taTb = b*aT (b +b") "

afb(b+0")" = (b+b")b"a]

afb(b* +b") = (b+b")b"a]

a;bb* = bb*af.

biatab is self-adjoint

[ A A



3 The left and right star orderings and the reverse order law

In this section we study the relation between a * < b and a <+ b and reverse law of ab and
ba when a and b are elements in a C*-algebra that have a Moore-Penrose inverse.

Lemma 3.1. Let &/ be a unital C*-algebra. Let a € /T and assume that there exists a
projection p such that a = pa, then o' = a'p.

Proof. Tt is evident aa’pa = a, a'paa’p = afp, and a'pa = a'a is self-adjoint. Since (aalp)* =
p*(aat)* = paa’ = aa' is also self-adjoint, we obtain af = afp. O

The following observation will be useful in the sequel: Let .7 be a C*-algebra and a € &7,
be .
a'b=a"a = a'b = ala. (4)

This equivalence follows from (a*)° = (a')°.

Theorem 3.1. Let o/ be a unital C*-algebra. Assume that a,b € /T with a € FP. If
a *x<b, then

(i) ab=a?.

(ii) a'b’ = (ab)'.

(iii) bal € (ab){1,2,3}.
(iv) afbl € (ba){1,2,4}.

Proof. (i): By using Theorem 1.1 we have a° = (a*)°. Since a*a = a*b, then (a —b) € (a*)° =
a®, so a(a —b) =0, i.e., ab = a.

(ii): Observe that (a?)" = (a')? because a € &FF and from item (i) of this theorem, it
only remains to prove that a'b’ = (a')2. Since bTa = 0, or equivalently,

bbla = a, (5)
then by Lemma 3.1, we get
a’ = a'bb! (6)
and from (4) we have
al = alab'. (7)

Then a” (bl — a') = a™b! = b — aa’dl = bT — af, which implies that aa(b! — a') = 0. Now,
premultiplying aa(b! — a') = 0 by af, we get af(b" — al) =0, i.e., albl = (al)2.
(iii) We shall prove this item by the definition of (ab){1,2,3}: Recall that one hypothesis
is aa’ = a'a. By using (5)
abb'a’ab = abb'aa’b = aaa’d = ab.

Now we use (6)
biatabblal = blaabblal = bTaatal = bldal,

and finally, from (5)
abb'a’ = abbTalaa’ = abbTaa’a’ = aaa’a’ = aal is self-adjoint.

(iv) The proof is similar as in (iii), and we will not give it. O



Next result characterizes the reverse law for the product ab when a commutes with its
Moore-Penrose inverse and a * < b. It is remarkable that one of these equivalent conditions

. *
isa <b.

Theorem 3.2. Let o/ be a unital C*-algebra. Assume that a,b € /T with a € F/FF. If
a *< b, then the following affirmations are equivalent:

(i) brat = (ab)'.
(ii) ab = ba.
(iii) a < b.

(iv) albt = (ba)'.

Proof. By item (i) of Theorem 3.1, if a € &/FF and a * < b, then ab = a?. Also recall
(a®)T = (a")? because aa' = ala.

(i) = (ii): The hypothesis bfa’ = (ab)" implies 0 = (b' —al)al = (b' —a")[(a+a™)~! —a"],
then (b — af)(a + a™)~! = bfa™ and thus, bt — af = bTa™(a + a™) = bla™. Now, we have

a' =b'(1—a"™) =blaa (8)

Postmultiplying the equality (8) by a?, we get a = bfa?, premultiplying by b and using
bbfa = a (obtained in (5)) we get ba = bbfa® = a? = ab.

(ii) = (iii) By the definitions of the different orderings involved in this implication, it is
enough to prove aa* = ba*. For the proof of aa* = ba*, we will use item (iv) of Theorem 1.1:

a>=ab=ba = (a—ba=0 = a—beE®="a") = (a—ba*=0 = aa* =ba*.
(iii) = (iv): By items (iii) and (iv) of Theorem 1.1 we get

a%b@{aa:ab <:>{a—b€(a) {a—bEa e g2

aa* = ba* a—be°(a") a—be°a
By using item (ii) of Theorem 3.1 we have (ba)" = (ab)’ = afbf.

(iv) = (ii): From item (ii) of Theorem 3.1 and hypothesis we have (ba)’ = afb" = (ab)T.
Now, the conclusion follows from item (i) of Lemma 1.1.

(ii) = (i): By item (iii) of Theorem 3.1, it is enough to prove that bfalab is self-adjoint.
By [6, Corollary 3.3] and [6, Lemma 3.5] we get a™b = bfa™. Moreover we will need a'b = afa
(obtained in the observation given in (4)), and the relation (7). Thus

blaTab = blaa’d = blaata = bTa = (1 — a™)bTa = alabla = ala,
which proves that bfafab is self-adjoint. O

Theorem 3.3. Let &/ be a unital C*-algebra. Assume that a,b € /1 with b € /PP, If
a *x<b, then

(i) a'bl € (ba){1,2,4}.
(ii) btal € (ab){1,2,3}.



(iii) a'bt = (ba)t if and only if b*b commutes with aa’. Moreover, btal = (ab)T if and only
if bb* commutes with a'a.

Proof. (i): Note that b € &7 F" implies bTa = b™a = 0, i.e., bbla = blba = a. Now,
baa'btba = baata = ba, a'bTbaa’dt = ataaldt = a'dT, a'bfba = a'a is self-adjoint.

For the rest of the proof we will need ab™ = 0. In fact, since a * < b we have a*a = a*b,
and thus
[ab™||* = [[bTa*ab™ || = [|b7a*bb"|| = O,

which, obviously implies ab™ = 0, or equivalently, a = abb'.
(ii): We have

abblalab = aatab = ab, blaTabblal = blalaa’ = bTal, abblal =aa is self-adjoint.
(iii): It is a trivial consequence of Theorem 2.3 since b"a = ab™ = 0. O

Having in mind that a *< b <= a* <x b*, we can obtain similar results for the right-star
ordering.

Theorem 3.4. Let &/ be a unital C*-algebra. Assume that a,b € /1 with a € FP. If
a <x b, then

(i) ba =

(ii) bla® = (ba)l.

(iii) afbl € (ba){1,2,4}.
(iv)

Theorem 3.5. Let o/ be a unital C*-algebra. Assume that a,b € /T with a € F/FF. If
a <x b, then the following affirmations are equivalent:

bial € (ab){1,2,3}.

(i) afbt = (ba).
(ii) ab = ba.
(i) a < b.

(iv) bfal = (ab)t.

Theorem 3.6. Let o/ be a unital C*-algebra. Assume that a,b € /1 with b € FP. If
a <x b, then

(i) a'bl € (ba){1,2,4}.
(ii) bfal € (ab){1,2,3}.

(iii) afdt = (ba)' if and only if b*b commutes with aa®. Moreover, bial = (ab)t if and only
if bb* commutes with ala.



4

The minus ordering and the reverse order law

As we made in the previous sections, we link the minus ordering with the reverse law.

Firstly, let us remark that if &7 is a unital C*-algebra, and @ € &7, b € o1 satisfy abla = a,

then [15, Theorem 6] assures that a € o7T.

Theorem 4.1. Let o/t be a unital C*-algebra and a € o7, b € 1 satisfy a ; b. Then

(i) a'bl € (ba){1,2,4}.

(ii) Ifb € o/ FF, then blat € (ab){1,2,3}.

Proof. (i): The equalities baa'btba = ba, a’bTbaa’d’ = ab', and a'biba = a'a follow directly
from b'ba = a.

(ii): The equalities abbfatab = ab, biafabblal = blat, and abbla’ = aal follow from

ab’b = a and bb' = bTb. O
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