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Abstract A new algorithm for the estimation 
of the atrial activity (AA) signal from the 
surface electrocardiogram during atrial 
fibrillation (AF) episodes is proposed. This 
algorithm has been based on blind source 
separation methods, and has been designed 
including statistical and temporal source 
information. With this new methodology, the 
estimation of the AA source is enhanced, 
comparing to the estimation obtained with 
other independent component analysis (ICA) 
algorithms. The validity of the proposed 
method is demonstrated with the analysis of 10 
AF recordings. A performance parameter based 
on the spectral concentration of the AA around 
its main frequency was employed. The 
spatiotemporal analysis provided AA signals 
with an spectral concentration that was in 
average 13% above those obtained with ICA 
methods. 
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1 Introduction 

Atrial fibrillation (AF) is the most frequent 
cardiac arrhythmia, and has a prevalence of 
10% in population over 70 years old. The 
interest of scientic community in the study and 
comprehension of AF has been increased 
considerably during the last years [1]. The 
analysis and characterization of AF from non-
invasive techniques requires the previous 
estimation of the actrial activity (AA) signal 
from the surface electrocardiogram (ECG). 
Several approaches have been proposed for this 
purpose, as QRST cancellation techniques [2], 

Blind Source Separation (BSS) [3], neural 
networks [4], etc. 
Regarding BSS, the proposed solutions exploit 
the spatial diversity of the ECG to recover the 
independent bioelectric sources (ventricular 
activity (VA), AA and other bioelectric 
artifacts). However, temporal information of 
sources is not used. In this contribution we 
demonstrate that the temporal information of 
sources is also relevant, allowing us to develop 
a new algorithm based on source separation 
which is adapted to the problem of the AA 
estimation.  
This paper is structured as it follows: next 
section reviews briefly the state of the art about 
AF and BSS techniques. Subsequently, the 
methods are described in detail, including a 
statistical analysis of the bioelectric sources as 
well as the proposed algorithm. The forth 
section describe the AF databases. The results 
obtained with both databases are shown in the 
fifth section, whose conclusions are discussed 
immediately after. 

2 State of the Art 

2.1 Atrial Fibrillation

Atrial fibrillation is an arrhythmia in which 
normal atrial electrical activation is substituted 
by aparently chaotic and continuous activation, 
with multiple wavelets depolarizing 
simultaneously the atria [5]. On the ECG, 
normal atrial activity (P wave) is no longer 
visible, being substituted by rapid oscillations 
or fibrillatory waves that vary in size, shape 
and timing. AF is also characterized by an 
irregular and frequently rapid ventricular rate 
(QRS complex). The ventricular response to 
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AF depends on electrophysio-logical properties 
of the atrioventricular node, and the R-R 
interval becomes more irregular. 

2.2 Blind Source Separation

The fact that the AA and the VA appear mixed 
at the ECG, allow us to model the extraction of 
the AA as a blind source separation (BSS) 
problem. Following a BSS formulation [6], 

x A s ,     (1) 
where s are the bioelectric sources (AA, VA, 
respiration, muscular movement, etc.), A is the 
mixing matrix and x are the observations, i.e. 
the multilead ECG. The main advantage of a 
BSS model is the so few restrictions that must 
be fulfilled in order to be able to recover the 
original sources from the exclusive knowledge 
of the observations. Indeed, only two 
conditions must be accomplished: statistical 
independence of sources and linear mixing 
matrix. VA and AA are independent, since 
they arise from independent bioelectric 
phenomena. Furthermore, from the torso model 
as a resistor network, the mixing matrix can be 
assumed to be linear and instantaneus, and 
therefore, BSS techniques are appropriate for 
the estimation of the AA. 
Several BSS techniques have been developed:  
principal component analysis (PCA) for 
Gaussian sources, independent component 
analysis for non-Gaussian sources and second 
order blind identification (SOBI) for sources 
with different spectra. Notice that PCA and 

ICA techniques only use spatial information, 
whereas SOBI also takes into account temporal 
source information. 
In order to select or design a suitable 
separation algorithm, a previous statistical 
analysis of sources must be performed. 

3 Methods 

3.1 Statistical Source Analysis 

The sources contained in an ECG recording 
can be divided in three classes with different 
nature. VA sources are the ECG components 
with highest energy, with high amplitudes 
during ventricular activity periods (QRST 
interval), and with values close to zero the rest 
of the time. A statistical analysis of VA 
sources reveals a supergaussian behaviour, 
with typical kurtosis values of 30. In AF 
episodes, AA consists of small and continuous 
wavelets with a cycle around 160ms. A 
statistical analysis of sources shows that AA 
have sub-Gaussian distributions, but with 
kurtosis values very close to zero (typically 
around –0.5). Figures 1a and 1b show 
examples of VA and AA sources and their 
histograms respectively. Supergaussianity of 
VA sources is always accomplished, but in 
occasions the AA is closer to a Gaussian 
model. However, AA waves have a 
characteristic spectrum, with a main peak due 
to the refractory period, which can be located 
between 5 and 8 Hz depending on the patient.

0 1 2 3 4 5
 -0.2

    0

 0.2

seconds

-0.3 -0.2 -0.1 0 0.1 0.2 0.30

  5

10

15

-4 -2 0 2 4  0

40

80

120

0 1 2 3 4 5
 -6
 -3

0

3

 seconds

      Fig. 1a.: Example of VA and its histogram.         Fig.1b.: Example of AA and its histogram.



3.2 Two Step Strategy 

The fact that VA present supergaussian 
distributions can be profitable to remove 
ventricular components in a first stage. The 
non-ventricular components (AA mixed with 
artifacts and noise) will be the inputs of a 
second stage. In this stage, the characteristic 
spectrum of the AA source will be exploited in 
order to enhance AA estimation. 

3.3 First Stage: ICA 

As it has been stated above, ICA techniques 
are the most suitable to separate independent 
non-Gaussian sources. They are able to 
estimate the independent sources from the 
analysis of the higher order statistics (HOS) of 
the multilead signal [7]. Most ICA methods are 
based on the optimization of a contrast 
function that maximizes non-Gaussianity. 
Indeed, from the Central Limit Theorem it 
follows that maximization of non-Gaussianity 
is equivalent to maximization of independence. 
Considering the model in (1), ICA methods 
estimate the separation matrix B that recovers 
the independent sources: 

ŝ B x , (2) 
where ŝ  are the estimated sources. Among all 
existing ICA algorithms, in this study we have 
chosen a fixed-point algorithm that estimates 
non-Gaussianity from an approximation of 
negentropy which combines the calculus 
simplicity of kurtosis with the robustness of 
negentropy, and provides very fast 
convergence [8].
ICA algorithms are able to separate all non-
Gaussian sources, but can not estimate 
Gaussian sources. Consequently, all Gaussian 
sources will appear mixed. The real effect over 
AF recordings is that VA sources will be 
correctly separated. Regarding AA source, in 
AF episodes where AA behaves statistically as 
a subgaussian random variable, its estimation 
is also achievable. In this cases, AA estimation 
is optimal by means of ICA methods, and little 
more can be done. However, in AF episodes 
where the statistical behaviour of the AA is 
Gaussian, ICA methods are not able to separate 
AA from other Gaussian sources like noise and 

other artifacts. Separation of AA not only from 
VA but also from other bioelectric sources is 
also desired. This task will be carried out in the 
second stage. 

3.3 Second Stage: SOBI 

SOBI techniques consist of separating a 
mixture of independent sources with different 
spectral content through second order analysis 
considering also temporal information of 
sources. For this purpose, SOBI methods aim 
to find a transformation that diagonalizes 
several correlation matrices at different lags 
simultaneously. Since there may exist none 
transformation which accomplish that 
condition, a function that measures the joint 
diagonalization at different lags must be 
defined in order to maximize independence of 
sources.
Considering a simple case of two sources and 
two observations, the correlation matrix C of
the observations at a lag i is: 

i = i i

i i

a b
c d

C  (4) 

The real sources s and the whitened 
observations are related through a Givens 
rotation: 

cos sin
sin cos

z s , (5) 

where  is the rotation angle. The correlation 
matrix of the sources at a lag i is: 

i = i i

i i

a b
c d

C  (6) 

The goal is to find independent sources, which 
is equivalent to find an orthogonal 
transformation that diagonalizes C
simultaneously at different lags. Since there 
may exist none solution that satisfies that 
condition, a joint diagonalization criterion 
must be defined. Assuming that N different 
lags will be employed, in [9] is derived the 
following contrast function for measuring joint 
diagonalization:

F u u  (7) 

cos 2 sin 2
2

b cu a d , (8) 



where a, b, c, d and u are column vectors with 
N elements. The contrast function F depends 
only on the rotation angle. Hence, the 
independence criterion has been transformed 
into a maximization problem of (7). For more 
than two sources and two observations, the 
problem can be solved by iterations of each 
pairwise until convergence. 
Concerning our specific problem of AA 
estimation, the inputs of this second stage are 
the non ventricular components that were 
obtained in the first stage. The decision of 
which components belong to the ventricular 
subspace and which components belong to the 
non-ventricular subspace can be done 
automatically by means of a kurtosis-based 
threshold. Empirical experiments show that a 
conservative kurtosis threshold around  1.5 let 
us include the AA in the non-ventricular 
subspace and reject all sources that contain 
QRS complexes. Figure 2 shows a block 
diagram of the two-step methodology.  
Since the AA has a narrow-banded spectrum, a 
SOBI algorithm is appropriate for estimating 
the AA. In this study we consider 17 
correlation matrices at equispaced lags of 
20ms.  

4 Databases 

10 AF 12-lead ECGs digitised at a sampling 
rate of 1Khz and 14 bits, and with a duration of 
30 seconds were employed for our study. The 
recordings were obtained at a 
electrophysiological laboratory from patients 
that suffer persistent AF. All patients were 

under treatment of amiodarona in order to 
increase the refractory period.  

5 Results 

When several AA estimation techniques are 
applied to real AF ECGs, performance is very 
difficult to be measured from an objective 
point of view, because it is not known a priori 
which is the signal to be estimated. One 
possible parameter that could be used to 
evaluate the results would be spectral 
concentration around the main peak. The 
reason lays on the fact that the AA spectrum 
has a main frequency, whereas other 
components as VA or noise have spectral 
content in all the range. If the estimated AA 
signal is contaminated with other non-desired 
components, the spectral content out of the 
main frequency peak will be higher, and thus, 
the estimated AA will suffer a decrease of the 
spectral concentration around the main peak. 
Hence, the method that provides an AA signal 
with higher spectral concentration will be 
selected as the technique with higher 
performance.  
ICA and ICA-SOBI have been applied to the 
database of real AF ECGs. In all cases it was 
possible to estimate the AA source. Spectral 
analysis was done in order to detect the main 
frequency. The AA source estimated with ICA 
provided the same frequency as the AA source 
estimated with ICA-SOBI. However, the AA 
source obtained with ICA-SOBI had higher 
spectral concentration around the main 
frequency. Table 1 sumarizes the spectral 
analysis of the AA. 
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Figure 2.: Block diagram of the AA estimation methodology 



 Spectral concentration  Frequency 
(Hz) ICA ICA-SOBI

Patient  1 7.17 21.4% 37,0% 
Patient  2 5.68 51.6% 57.6% 
Patient  3 5.26 18.4% 47.6% 
Patient  4 6.09 57.1% 71.8% 
Patient  5 7.29 50.6% 58.3% 
Patient  6 6.45 43.9% 44.3% 
Patient  7 6.45 34.9% 55.1% 
Patient  8 7.12 27.2% 31.8% 
Patient  9 7.05 40.7% 49.6% 
Patient 10 5.62 34.5% 56.7% 

Table 1. Spectral analysis of estimated AA

The higher spectral concentration of the AA 
signal obtained after SOBI processing indicates 
that partly of the noise present in the AA signal 
after ICA has been removed. Figure 3 shows 
an example were ICA-SOBI overperforms 
ICA. The signal at the top is the AA estimated 
with ICA and its spectrum. The signal at the 
bottom is the estimated AA after the second 
stage.

6 Conclusions 

A special feature of ICA techniques is that are 
able to estimate independent sources by 
exploiting only spatial information from 
multilead signals. Temporal information is not 
considered, and this may be a virtue or a 
limitation depending on each application. In 
this paper it has been proven that the temporal 
information of sources is also relevant in the 
estimation of the AA, and a separation 
algorithm adapted to this specific problem has 
been designed and implemented. Results with 
synthesized AF signals show the improvement 
of the performance in the estimation of the AA, 
and a study with real AF signals confirms and 
validates the suitability of the proposed 
method. 
As it can be observed in the results, the AA 
estimation was always improved with the 
second stage. Even in some ECGs where ICA 
estimates the AA accurately, the second step 
maintain the quality already achieved.  
This contribution gives solution to an 
important step in the AF analysis. Once the AA 
has been extracted, the AA can be further 

analyzed for spectral characterization, pattern 
recognition, etc., as a helpful tool in clinical 
diagnosis.
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