
Symbiotic Job Scheduling on the IBM POWER8

Josué Feliu1, Stijn Eyerman2, Julio Sahuquillo1, and Salvador Petit1

1 Dept. of Computer Engineering (DISCA), Universitat Politècnica de València, València, Spain
2 Dept. of Electronics and Information Systems (ELIS), Ghent University, Ghent, Belgium
Email: jofepre@fiv.upv.es, stijn.eyerman@elis.ugent.be, {jsahuqui,spetit}@disca.upv.es

ABSTRACT
Simultaneous multithreading (SMT) processors share most
of the microarchitectural core components among the co-
running applications. The competition for shared resources
causes performance interference between applications. The-
refore, the performance benefits of SMT processors heavily
depend on the complementarity of the co-running applica-
tions. Symbiotic job scheduling, i.e., scheduling applica-
tions that co-run well together on a core, can have a consid-
erable impact on the performance of a processor with SMT
cores. Prior work uses sampling or novel hardware support
to perform symbiotic job scheduling, which has either a non-
negligible overhead or is impossible to use on existing hard-
ware.

This paper proposes a symbiotic job scheduler for the IBM
POWER8 processor. We leverage the existing cycle account-
ing mechanism to predict symbiosis between applications,
and use that information at run-time to decide which appli-
cations should run on the same core or on separate cores. We
implement the scheduler in the Linux operating system and
evaluate it on an IBM POWER8 server running multipro-
grammed workloads. The symbiotic job scheduler signifi-
cantly improves performance compared to both an agnostic
random scheduler and the default Linux scheduler. With re-
spect to Linux, it achieves an average speedup by 8.8% for
workloads comprising 12 applications, and by 4.7% on av-
erage across all evaluated workloads.

1. INTRODUCTION
The current manycore/manythread era generates a lot of

challenges for computer scientists, going from productive
parallel programming, over network congestion avoidance
and intelligent power management, to circuit design issues.
The ultimate goal is to squeeze out as much performance
as possible while limiting power and energy consumption
and guaranteeing a reliable execution. A scheduler is an
important component of a manycore/manythread system, as
there are often a combinatorial amount of different ways to
schedule multiple threads or applications, each with a dif-
ferent performance due to interference among applications.
Picking an optimal schedule can result in substantial perfor-
mance gain.

Selecting which applications to run on which cores or
thread contexts has an impact on performance because cores
share resources for which threads compete. As such, threads
can interfere with each other, causing a performance degra-
dation or improvement for other threads. The level of shar-
ing is not equal for all cores or thread contexts: all cores on
a chip usually share the memory system, but a cache can be
shared by smaller groups of cores, and threads on an SMT-
enabled core share almost all of the core resources. Good
schedulers should reduce negative interference as much as
possible by scheduling complementary tasks close to each
other.

The most prevalent architecture for high-end processors
is a chip multicore processor (CMP) consisting of simulta-
neous multithreading (SMT) cores (e.g., Intel Xeon and IBM
POWER servers). Scheduling for this architecture is partic-
ularly challenging, because SMT performance is very sen-
sitive to the characteristics of the co-running applications.
When the number of available threads exceeds the core count,
the scheduler must decide which applications should run to-
gether on one core. Selecting the optimal schedule is an
NP-hard problem [10], and predicting the performance of
a schedule is a non-trivial task due to the high amount of
sharing in an SMT core.

This paper presents a new scheduler for the IBM POWER8
[18] architecture, which is a multicore processor on which
every SMT core can execute up to 8 threads. It provides both
high single-threaded performance by means of aggressive
out-of-order cores that can dispatch up to 8 instructions per
cycle, as well as high parallelism, with 80 available thread
contexts on our system (10 cores times 8 threads per core).
This recent architecture is chosen for this study because of
its high core count, which makes the scheduling problem
more challenging, and because of the availability of an ex-
tensive performance counter architecture, including a built-
in mechanism to measure CPI stacks.

Previous work on symbiotic job scheduling for SMT uses
sampling to explore the space of possible schedules [19], re-
lies on novel hardware support [6], or performs an offline
analysis to predict the interference between applications on
an SMT core [23]. In contrast, we perform online model-
based scheduling, without sampling, on an existing commer-
cial processor. To this end, we leverage the existing CPI
stack accounting mechanism on the IBM POWER8 to build

a model that predicts the interference among threads on an
SMT core. Using this model, we can quickly explore the
schedule space, and select the optimal schedule for the next
time slice. As the scheduler constantly monitors the CPI
stacks of all applications, it can also quickly adapt to phase
behavior.

We make the following important contributions.

• We propose an online scheduler for a CMP consisting
of SMT cores, without the need for sampling sched-
ules, and without requiring additional hardware.
• We develop a comprehensive SMT interference model

based on CPI stacks that takes into account contention
in all shared resources: processor pipeline width, func-
tional units, and cache and memory.
• We implement our scheduler in an existing Linux dis-

tribution and we evaluate it on an IBM POWER8 pro-
cessor executing multiprogram workloads.

Our scheduler performs 10.3% better than a random sched-
uler, and 4.7% better than the default Linux scheduler across
all evaluated workloads, consisting of 8 to 20 applications
and evaluated on two-way SMT mode. The highest speedups
with respect to Linux are achieved with workloads of 10
to 14 applications, where our scheduler reaches an average
speedup of 7.0% over Linux. The overhead of using a per-
formance model and exploring the possible schedules is neg-
ligible. As our scheduler is completely software-based, it
can be shipped without changes in future Linux distributions
targeted at the IBM POWER8. Furthermore, with appropri-
ate training of the model, the scheduler can also be used for
other architectures.

2. RELATED WORK
Simultaneous multithreading (SMT) was proposed by Tull-

sen et al. [22] as a way to improve the utilization and through-
put of a single core. Enabling SMT increases the area and
power consumption of a core (5% to 20% [2, 11]), mainly
due to replicating architectural and performance-critical struc-
tures, but it can significantly improve throughput. Recently,
Eyerman and Eeckhout [7] show that a multicore proces-
sor consisting of SMT cores has an additional benefit other
than increasing throughput. SMT is flexible when the thread
count varies: if thread count is low, per-thread performance
is high because only one or a few threads execute concur-
rently on one core, while if thread count is high, it can in-
crease throughput by executing more threads concurrently.
As such, a multicore consisting of SMT cores performs as
well as or even better than a heterogeneous multicore that
has a fixed proportion of fast big cores and slow small cores.

The importance of intelligently selecting applications that
should run together on an SMT core has been recognized
quickly after the introduction of SMT. The performance ben-
efit heavily depends on the characteristics of the co-running
applications, and some combinations may even degrade total
throughput, for example due to cache trashing [9]. Snavely
and Tullsen [19] were the first to propose a mechanism to
decide which applications should co-run on a core to obtain
maximum throughput. At the beginning of every scheduler
quantum, they shortly execute all (or a subset of) the possi-
ble combinations, and select the best performing combina-

tion for the next quantum. Because the number of possible
combinations quickly grows with the number of applications
and hardware contexts, the overhead of sampling the perfor-
mance quickly becomes large and/or the fraction of combi-
nations that can be sampled becomes small. To overcome
the sampling overhead, Eyerman and Eeckhout [6] propose
model-based coscheduling. A fast analytical model predicts
the slowdown each application encounters when cosched-
uled with other applications, and the best performing com-
bination is selected. However, the inputs for the model are
generated using complex new hardware, which is not avail-
able in current processors. Our proposal uses a similar model,
but it avoids sampling overhead and it uses existing perfor-
mance counters.

Other studies have explored the use of models and profil-
ing to estimate the SMT benefit. Moseley et al. [13] use
regression on performance counter measurements to esti-
mate the speedup of SMT when coexecuting two applica-
tions. Porter et al. [15] estimate the speedup of a multi-
threaded application when enabling SMT, based on perfor-
mance counter events and machine learning. Settle et al. [17]
predict job symbiosis using offline profiled cache activity
maps. Feliu et al. [8] propose to balance L1 cache band-
width requirements across the cores in order to reduce inter-
ference and improve throughput. Zhang et al. [23] propose
a methodology to predict the interference among threads on
an SMT core. They developed “rulers” that stress differ-
ent core resources, and by co-running each application with
each ruler in an offline profiling phase, the sensitivity of each
application to contention in each of the resources is mea-
sured. By combining resource usage and sensitivity to con-
tention, the interference can be predicted and used to guide
the scheduling. Our proposal does not require an offline pro-
filing phase for each new application, and it takes into ac-
count the impact of contention in all shared resources, not
only cache and memory contention.

3. PREDICTING JOB SYMBIOSIS
Our symbiotic scheduler for a CMP of SMT cores is based

on a model that estimates job symbiosis. The model predicts
for any combination of applications, how much slowdown
each of the applications would experience if they were co-
run on an SMT core. It is fast, which enables us to explore
all possible combinations. The model only requires inputs
that are readily obtainable using performance counters.

3.1 Interference model
The model used in our scheduler is based on the model

proposed by Eyerman and Eeckhout [6], which leverages
CPI stacks to predict job symbiosis. A CPI stack (or break-
down) divides the execution cycles of an application on a
processor into various components, quantifying how much
time is spent or lost due to different events, see Figure 1 at
the left. The base component reflects the ideal CPI in the
absence of miss events and resource stalls. The other CPI
components account for the lost cycles, where the processor
is not able to commit instructions due to different resource
stalls and miss events. The SMT symbiosis model uses the
CPI stacks of an application when executed in single-threaded
(ST) mode, and then predicts the slowdown by estimating

the increase of the components due to interference, see Fig-
ure 1 at the right. Eyerman and Eeckhout [6] estimate inter-
ference by interpreting normalized CPI components as prob-
abilities and calculating the probabilities of events that cause
interference. For example, if an application spends half of
its cycles fetching instructions, and the other application one
third of its execution time, there is a 1/6 probability that they
want to fetch instructions at the same time, which incurs
delay because the fetch unit is shared. However, Eyerman
and Eeckhout use novel hardware support [5] to measure the
ST CPI stack components during multi-threaded execution,
which is not available in current processors.

Interestingly, the IBM POWER8 has a built-in cycle ac-
counting mechanism, which generates CPI stacks both in
ST and SMT mode. However, this accounting mechanism
is different from the cycle accounting mechanisms proposed
by Eyerman et al. for SMT cores [5], which means that the
model in [6] cannot be used as it is. Some of the compo-
nents relate to each other to some extent (e.g., the number
of cycles instructions are dispatched in [5] versus the num-
ber of cycles instructions are committed for the POWER8),
but provide different values. Other counters are not con-
sidered a penalty component in one accounting mechanism,
while it is accounted for in the other mechanism, and vice
versa. For example, following [5], a long-latency instruc-
tion only has a penalty if it is at the head of the reorder
buffer (ROB) and the ROB gets completely filled (halting
dispatch), while for the IBM POWER8 accounting mech-
anism, the penalty starts from the moment that the long-
latency instruction inhibits committing instructions, which
could be long before the ROB is full. On the other hand, the
entire miss latency of an instruction cache miss is accounted
as a penalty in [5], while for the POWER accounting mech-
anism, the penalty is only accounted from the moment the
ROB is completely drained (which means that the penalty
could be zero if the miss latency is short and the ROB is al-
most full). Furthermore, some POWER8 CPI components
are not well documented, which makes it difficult to reason
about which events they actually measure.

Because of these differences, we develop a new model for
estimating the slowdown caused by co-running threads on
an SMT core. The model uses regression, which is more
empirical than the purely analytical model by Eyerman and
Eeckhout [6], but its basic assumption is similar: we nor-
malize the CPI stack by dividing each component by the to-
tal CPI, and interpret each component as a probability. We
then calculate the probabilities that interfering events occur
at the same time, which cause some delay that is added to the
CPI stack as interference. The components are divided into
three categories: the base component, resource stall com-
ponents and miss components. The model for each cate-
gory is discussed in the following paragraphs. For now, let
us assume that we have the ST CPI stacks at our disposal,
measured off-line using a single-threaded execution on the
POWER8 machine. This assumption will no longer be nec-
essary in Section 3.3. The stack is normalized by dividing
each component by the total CPI, see Figure 1. We denote B
the normalized base component, Ri the component for stalls
on resource i, and M j the component for stalls due to miss
event j (e.g., instruction cache miss, data cache miss, branch

0

0.5

1

1.5

2

2.5

App 1 App 2

Base

Resource

Miss

0

0.2

0.4

0.6

0.8

1

B R M

0

0.2

0.4

0.6

0.8

1

1.2

1.4

App 1 App 2

B' R' M'

Measured single-thread

CPI stacks

Predicted normalized

SMT CPI stacks

model

CPI

Predicted slowdown

ed
App 1 App 2

 Normalized single-

threaded CPI stacks

Figure 1: Overview of the model: first, measured CPI
stacks are normalized to obtain probabilities; then, the
model predicts the increase of the components and the
resulting slowdown (1.32 for App 1 and 1.25 for App 2).

misprediction). We seek to find the CPI stack when this ap-
plication is co-run with other applications in SMT mode, for
which the components are denoted with a prime (B′, R′i, M′j).

Base component.
The base component in the POWER8 cycle component

stack is the number of cycles (or fraction of time after nor-
malization) where instructions are committed. It reflects the
fraction of time the core is not halted due to resource stalls
or miss events. During SMT execution, the dispatch, execute
and commit bandwidth are shared between threads, meaning
that even without miss events and resource stalls, threads in-
terfere with each other and cause other threads to wait.

We find that the base component in the CPI stack increases
when applications are executed in SMT mode compared to
ST mode. This is because multiple (two for the POWER8)
threads can now commit instructions in the same cycle, so
each thread commits fewer instructions per cycle, meaning
that the number of cycles that a thread commits instructions
increases. The magnitude of this increase depends on the
characteristics of the other threads. If the other threads are
having a miss or resource stall, then the current thread can
use the full commit bandwidth. If the other threads can also
commit instructions, then there is interference in the base
component. So, the increase in the base component of a
thread depends on the base component fractions of the other
threads: if the base components of the other threads are low,
there is less chance that there is interference in this compo-
nent, and vice versa.

We model the interference in the base component using
Equation 1. For a given thread j, B j represents its base com-
ponent when running in ST mode (the ST base component),
while B′j identifies the SMT base component of the same
thread.

B′j = αB +βBB j + γB ∑
k 6= j

Bk +δBB j ∑
k 6= j

Bk (1)

The parameters αB through δB are determined using re-
gression, see Section 3.2. αB reflects a potential constant in-
crease in the base component in SMT mode versus ST mode,
e.g., through an extra pipeline stage. Because we do not
know if such a penalty exists, we let the regression model
find this out. The βB term reflects the fact that the original
ST base component of a thread remains in SMT execution. It
would be intuitive to set βB to one (i.e., the original ST com-
ponent does not change), but the next terms, which model the

interference, could already cover part of the original compo-
nent, and this parameter then covers the remaining part. It
can also occur that there is a constant relative increase in the
base component, independently of the other applications. In
that case βB is larger than 1. γB is the impact of the sum
of the base components of the other threads. δB specifically
models extra interactions that might occur when the current
thread (thread j) and the other threads have big base compo-
nents, similar to the probabilistic model of Eyerman et al. [6]
(a multiplication of probabilities). Although not all param-
eters have a clear meaning, we keep the regression model
fairly general to be able to accurately model all possible in-
teractions.

Resource stall components.
A resource stall causes the core to halt because a core re-

source (e.g., functional unit, issue queue, load/store queue)
is exhausted or busy. In the POWER8 cycle accounting, a
resource stall is counted if a thread cannot commit an in-
struction because it is still executing or waiting to execute
on a core resource (i.e., not due to a miss event). By far, the
largest component we see in this category is a stall on the
floating point unit, i.e., a floating point instruction is still ex-
ecuting when it becomes the oldest instruction in the ROB.
This can have multiple causes: the latency of the floating
point unit is relatively large, there are a limited number of
floating point units, and some of them are not pipelined. We
expect a program that executes many floating point instruc-
tions to present more stalls on the floating point unit, which
is confirmed by our experiments. In the same line, we ex-
pect that when co-running multiple applications with a large
floating point unit stall component, the pressure on floating
point units will increase even more. Our experiments show
that in this case, the floating point stall component per appli-
cation indeed increases. Therefore, we propose the follow-
ing model to estimate the resource stall component in SMT
mode (R j,i represents the ST stall component on resource i
for thread j):

R′j,i = αRi +βRiR j,i + γRi ∑
k 6= j

Rk,i +δRiR j,i ∑
k 6= j

Rk,i (2)

Similar to the base component model, α indicates a con-
stant offset that is added due to SMT execution (e.g., extra
latency). β indicates the fraction of the single-threaded com-
ponent that remains in SMT mode, while the term with γ

models the fact that resource stalls of the other applications
can cause resource stalls in the current application, even if
the current application originally had none. The last term
models the interaction: if the current application already has
resource stalls, and one or more of the other applications too,
there will be more contention and more stalls.

Miss components.
Miss components are caused by instruction and data cache

misses in all levels, as well as by branch mispredictions.
In contrast to resource stall components, a miss event of a
thread does not directly cause a stall for the other threads.
For example, if one thread has an instruction cache miss or
a branch misprediction, the other threads can still fetch in-
structions. Similarly, on a data cache miss for one thread,
the other threads can continue executing instructions and ac-

cessing the data cache. One exception is that a long-latency
load miss (e.g., a last-level cache (LLC) miss) can fill up the
ROB with instructions of the thread causing the miss, leav-
ing fewer or no ROB entries for the other threads. As pointed
out by Tullsen et al. [21], this is a situation that should be
avoided, and we suspect that current SMT implementations
(including POWER8) have mechanisms to prevent this to
happen.

However, misses can interfere with each other in the branch
predictor or cache itself. For example, a branch predictor en-
try that was updated by one thread can be overwritten by an-
other thread’s branch behavior, which can lead to higher or
lower branch miss rates. Similarly, a cache element belong-
ing to one thread can be evicted by another thread (negative
interference) or a thread can put data in the cache that is later
used by another thread if both share data (positive interfer-
ence). Furthermore, cache misses of different threads can
also contend in the lower cache levels and the memory sys-
tem, causing longer miss latencies. Because we only eval-
uate multiprogram workloads consisting of single-threaded
applications, which do not share data, we see no positive in-
terference in the caches.

To model this interference, we propose a model similar to
that of the previous two components:

M′j,i = αMi +βMiM j,i + γMi ∑
k 6= j

Mk,i +δMiM j,i ∑
k 6= j

Mk,i (3)

Although the model looks exactly the same, the underly-
ing reasoning is slightly different. α again relates to fixed
SMT effects (e.g., cache latency increase). The β term is
the original miss component of that thread, while the γ term
indicates that an application can get extra misses due to inter-
ference caused by misses of the other applications. We also
add a δ interaction term: an application that already has a lot
of misses will be more sensitive to extra interference misses
and contention in the memory subsystem if it is combined
with other applications that also have a lot of misses.

Parameter values.
Table 1 shows the parameter values for the some of the

most common components after performing regression (see
Section 3.2): the base component, fixed point (integer) re-
source stalls, floating point resource stalls and data cache
misses. The parameters are for 2 SMT threads (SMT2). For
most components, the highest weights are for the β and δ

terms, indicating that in general, a given SMT component
equals some fraction of the corresponding ST component
plus the interaction with ST components of the co-running
threads (δ).

For the base component, the interference terms (γ and δ)
are zero, meaning that there is no interference with the co-
running threads. Instead, the base component increases with
a constant 1.7 factor. To explain this, we need to look at how
the POWER8 commits instructions [18]. Instructions are not
committed individually, but in groups of consecutive instruc-
tions that are created at dispatch time (‘dispatch groups’). A
dispatch group can only be committed if all instructions in it
have finished. In ST mode, the dispatch groups consist of up
to 8 instructions, and only one group can be committed in a
cycle. In SMT mode, groups consist of up to 4 instructions,
and two groups can commit per cycle. As a result, there is

Component α β γ δ

Base -0.019 1.698 0 0
Fixed point 0.009 1.089 0 -0.859
Floating point 0.008 1.219 0 0.308
Data cache miss 0.031 1.173 0.072 0.615

Table 1: Model parameters for some of the most common
components.

no interference in SMT2 mode, because each thread is able
to commit instructions every cycle. The increase in the base
component is mainly caused by the reduction of the group
size from 8 to 4, almost doubling the number of dispatch
groups. The base component is not exactly doubled, because
in ST mode, not all groups contain 8 instructions, because of
instruction cache misses, taken branches, or structural limi-
tations (e.g., a group can contain only up to two branches).
Note that although we did not explicitly incorporate this be-
havior into the model, the regression was able to accurately
capture this.

The fixed point resource stall component has a negative δ .
We find that this component regularly decreases from ST to
SMT mode. Fixed point resource stalls mostly occur when
there are no other stalls and the core is continuously execut-
ing instructions. If there are other stall events, the core is
regularly halted and the short fixed point resource stalls are
‘hidden’ under these larger stalls. During SMT execution,
interference causes longer stall times for other resources and
miss events, hiding more fixed point stalls than in ST mode.
This causes the fixed point component to reduce. δ is neg-
ative, which means that this effect mainly occurs when all
threads have a large fixed point stall component (δ reflects
the interaction between the threads). In this case, all threads
have a large fraction of time without large stalls, causing a
high IPC, and a high utilization of the pipeline. When these
threads are combined in SMT, there is a larger chance for
pipeline conflicts (e.g, in the dispatch/execute/commit band-
width), causing an increase of the other components, and a
resulting decrease in the fixed point stall component.

3.2 Model construction and slowdown estima-
tion

The model parameters are determined by linear regression
based on experimental training data. This is a less rigorous
approach than the model presented in [6], which is built al-
most completely analytically, but as explained before, this is
due to the fact that the cycle accounting mechanism is differ-
ent and partially unknown. To train the model, we first run
all benchmarks in isolation and collect CPI stacks per sched-
uler quantum (100 ms). We also keep track of the instruc-
tion count per quantum, to know what part of the program is
executed in each quantum (we evaluate single-threaded pro-
grams with a fixed instruction count). We normalize each
stack to its total CPI.

Next, we execute all 2-program combinations of the eval-
uated benchmarks on a single core in SMT2 mode (see Sec-
tion 5 for the benchmarks we evaluate). We also collect per-
thread CPI stacks and instruction counts for each quantum.
Next, we normalize each SMT CPI stack to the CPI of ex-
ecuting the same instructions in single-threaded mode. We
normalize to the ST CPI because we want to estimate the
slowdown each application gets versus single-threaded exe-

cution, which equals the SMT CPI divided by the ST CPI
(see the last graph in Figure 1). This is also in line with the
methodology in [6]. The ST CPI is calculated using the ST
cycle and instruction counts measured in a ST profiling step.
Because the performance of an application differs between
ST and SMT modes, and the quanta are fixed time periods,
the instruction counts do not match between ST and SMT
profiles. To solve this problem, we interpolate the ST CPI
stacks between two quanta to ensure that ST and SMT CPI
stacks are covering approximately the same instructions.

Using all these data (normalized CPI stacks per quantum
for all applications in ST mode, and for all combinations of
applications in SMT mode), we determine the model param-
eters. There is one set of (α , β , γ , δ) parameters per com-
ponent. These parameters are tied to the component only,
and not to specific applications. So, provided the training set
is diverse enough, we do not need to retrain this model for
new applications. Due to the large set of training examples
and the limited set of parameters to fit, there is no danger of
overfitting the model.

Once the model has been constructed, we can use it to
estimate the SMT CPI stacks from the ST CPI stacks for
any combination of applications. We first calculate each of
the individual components using Equations 1 to 3, and then
add all of the components. The resulting number will be
larger than one, and indicates the slowdown the application
encounters when executed in that combination (see Figure 1
at the right). This information is used to select combinations
with minimal slowdown (see Section 4).

3.3 Obtaining ST CPI stacks in SMT mode
Up to now, we assumed that we have the ST CPI stacks

available. This is not a practical assumption, it would re-
quire that we execute each application in single-threaded
mode first, and keep all of the per-quantum CPI stacks in a
profile. This is a large overhead for a realistic scheduler. Al-
ternatively, we could periodically run each application in ST
mode (sampling), and assume that the measured CPI stack
is representative for the next quanta. Because programs ex-
hibit varying phase behavior, we need to resample at periodic
intervals to capture this phase behavior. Sampling ST exe-
cution involves a performance overhead, because we have to
temporarily stop other threads to allow a thread to run in ST
mode, and it can also be inaccurate if the program exhibits
fine-grained phase behavior.

Instead, we propose to estimate the ST CPI stacks during
SMT execution, similar to the cycle accounting technique
described in [5]. However, the technique in [5] requires
hardware support that is not available in current processors.
To obtain the ST CPI stacks during SMT execution on an ex-
isting processor, we propose to measure the SMT CPI stacks
and ‘invert’ the model: estimating ST CPI stacks from SMT
CPI stacks. Once these estimations are obtained, the sched-
uler applies the ‘forward’ model (i.e., the model described
in the previous sections) on the estimated ST CPI stacks per
application to estimate the potential slowdown for thread-to-
core mappings that are different from the current one. By
continuously rebuilding the ST CPI stacks from the current
SMT CPI stacks, the scheduler can detect phase changes and
adapt its schedule to improve performance.

0

0.5

1

1.5

2

2.5

3

App 1 App 2

Base
Resource
Miss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

App 1 App 2

(a) Measured SMT

CPI stacks

(b) Normalized

SMT CPI stacks

(c) Predicted normalized

SMT CPI stacks

forward

model

0

0.2

0.4

0.6

0.8

1

1.2

1.4

App 1 App 2

B' R' M'

(d) Adjusted normalized

SMT CPI stacks

estimated

slowdown

0

0.2

0.4

0.6

0.8

1

App 1 App 2

B R M

(e) Predicted normalized

inverse

model

x estimated

slowdown

CPI

0

0.2

0.4

0.6

0.8

1

App 1 App 2

B R M̂ ̂ ̂

̂ ̂ ̂ ̂ ̂ ̂

single-threaded CPI

stacks

Figure 2: Estimating the single-threaded CPI stacks
from the SMT CPI stacks. First, SMT CPI stacks (a)
are normalized to the SMT CPI (b); next, the forward
model is applied to get an estimate of the slowdown due
to interference (c); then the SMT CPI stacks are adjusted
using the estimated slowdown to obtain a more accurate
normalized SMT CPI stacks (d); lastly, the inverse model
is applied to obtain the normalized single-threaded CPI
stacks (e).

Inverting the model is not as trivial as it sounds. The
‘forward’ model calculates the normalized SMT CPI stacks
from the normalized ST CPI stacks. As stated in Section
3.1, both stacks are normalized to the single-threaded CPI.
However, without profiling, the ST CPI is unknown in SMT
mode, which means that the SMT components normalized
to the ST CPI (B′, R′i and M′j in Equations 1 to 3) cannot
be calculated. Nevertheless, we can calculate the SMT CPI
components normalized to the multi-threaded CPI (see Fig-
ure 2b). By definition, the sum of these components equals
to one, which means that they are not good estimates for the
SMT components normalized to the ST CPI, because the lat-
ter add to the actual slowdown number, which is higher than
one (see the last graph in Figure 1).

Because we do not know the ST CPI, the model cannot be
inverted in a mathematically rigorous way, which means we
have to use an approximate approach. We observe that the
SMT components normalized to SMT CPI are a rough esti-
mate for the ST components normalized to the ST CPI (B, Ri
and M j), because of two reasons. First, both normalized CPI
stacks add to one. Second, if all the components experience
the same relative increase between the ST and SMT mode
(e.g., all components are multiplied by 1.3), then the SMT
CPI stack normalized to the SMT CPI would be exactly the
same as the ST stack normalized to the ST CPI. Obviously,
this is usually not the case, but intuitively, if a ST stack has
a relatively large component, it is expected that this compo-
nent will also be a large in the SMT CPI stack, so the relative
fraction should be similar.

Therefore, a first-order estimation of the ST CPI stack
is to take the SMT CPI stack normalized to the SMT CPI
(see Figure 2b). The resulting ST CPI stack component es-
timations are however not accurate enough to be used in the
scheduler. Nonetheless, by applying the ‘forward’ model to
these first-order single-threaded CPI stack estimations (see
Figure 2c), a good initial estimation of the slowdown each
application has experienced in SMT mode can be provided.
This slowdown estimation can be used to renormalize the
measured SMT CPI stacks by multiplying them with the es-
timated slowdown (see Figure 2d). This gives new, more
accurate estimates for the SMT CPI stacks normalized to the
ST CPI (B′, R′i and M′j).

Next, we mathematically invert the model to obtain new
estimates for the ST CPI stacks (see Figure 2e). The math-
ematical inversion involves solving a set of equations. For
two threads, we have two equations per component (one for
each of the two threads), which both contain the two un-
known single-threaded components, so a set of two equa-
tions with two unknowns must be solved (similar to four
threads: four equations with four unknowns). Due to the
multiplication of the single-threaded components in the δ

term, the solution is in the form of the solution of a quadratic
equation. The sum of the resulting estimates for the single-
threaded normalized components (B, Ri and M j) usually does
not exactly equals one. Thus, the estimation can be further
improved by renormalizing them to their sum. We applied
this technique to a large set of random numbers and found
that it yields single-threaded component estimates that are
within 1% to 2% of the correct values.

4. SMT INTERFERENCE-AWARE SCHED-
ULER

In this section, we describe the implementation of the sym-
biotic scheduler that uses the interference model to improve
the throughput of the processor. The goal of our proposed
scheduler is to divide n applications over c (homogeneous)
cores, with n > c, in order to optimize the total through-
put. Each core supports at least d n

c e thread contexts using
SMT. Note that we do not consider the problem of selecting
n applications out of a larger set of runnable applications,
we assume that this selection has already been made or that
the number of runnable applications is smaller than or equal
to the number of available thread contexts. As described in
Section 5, we implement our scheduler in Linux, and eval-
uate its performance on an IBM POWER8 machine. The
scheduler implementation involves several steps which are
discussed in the next sections.

4.1 Reduction of the cycle stack components
The most detailed cycle stack that the PMU (Performance

Monitoring Unit) of the IBM POWER8 can provide involves
the measurement of 45 events. However, the PMU only im-
plements six thread-level counters. Four of these counters
are programmable, and the remaining two measure the num-
ber of completed instructions and non-idle cycles. Further-
more, most of the events have structural conflicts with other
events and cannot be measured together. As a result, 19 time
slices or quanta are required to obtain the full cycle stack.
Requiring 19 time slices to update the full cycle stack means

Counter Explanation
PM_GRP_CMPL Cycles where this thread committed instructions. This is the base component in our model.
PM_CMPLU_STALL Cycles where a thread could not commit instructions because they were not finished.

This counter includes functional unit stalls, as well as data cache misses.
PM_GCT_NOSLOT_CYC Cycles where there are no instructions in the ROB for this thread, due to instruction cache

misses or branch mispredictions.
PM_CMPLU_STALL_THRD Following a completion stall (PM_CMPLU_STALL), the thread could not commit instructions

because the commit port was being used by another thread. This is a commit port resource stall.
PM_NTCG_ALL_FIN Cycles in which all instructions in the group have finished but completion is still pending.

The events behind this counter are not clear in [1], but it is non-negligible for some applications.

Table 2: Overview of the measured IBM POWER8 performance counters to collect cycle stacks.
that, at the time the last components are updated, other com-
ponents contain old data (from up to 18 quanta ago). This is-
sue would make the scheduler less reactive to phase changes
in the best scenario, and completely unmeaningful in the
worst case.

An interesting characteristic of the CPI breakdown model
is that is built up hierarchically, starting from a top level con-
sisting of 5 components, and multiple lower levels where
each component is split up into several more detailed com-
ponents [1]. For example, the completion stall event of the
first level, which measures the completion stalls caused by
different resources, is split in several sub-events in the sec-
ond level, which measure, among others, the completion
stalls due to the fixed point unit, the vector-scalar unit and
the load-store unit. To improve the responsiveness of the
scheduler and to reduce the complexity of calculating the
model, we measure only the events that form the top level
of the cycle breakdown model. This reduces the number of
time slices to measure the model inputs to only two. The
measured events are indicated in Table 2. Note that the
PM_CMPLU_STALL covers both resource stalls and some
of the miss events. Because the underlying model for both
is essentially the same, this is not a problem. Although the
accuracy of the model could be improved by splitting up this
component, our scheduler showed worse performance be-
cause of having to predict job symbiosis with old data for
many of the components.

4.2 Correction factor
Because the model is developed based on insights, and be-

cause it is fit using a large range of benchmarks, the model
is relatively accurate across a large set of applications, as we
will show in Section 6. However, we find that the model
is somewhat more inaccurate for particular applications or
combinations of applications. This can have an impact on
scheduling decisions, because applications or program com-
binations for which performance is overestimated (relative
to the estimations of the other applications and combina-
tions) could be selected more often than better combina-
tions, whereas underestimations lead to a too small selection
chance.

Another issue is that the model is constructed using single-
threaded and SMT CPI stacks with only one active core.
However, during scheduling, the other cores also execute ap-
plications. This causes interference in the inter-core shared
resources (e.g., shared LLC, memory bandwidth), and thus
an increase in some of the components. The model we devel-
oped partially captures this interference. For example, high
memory bandwidth contention during a time slice could re-
sult in a higher number of stalls due to a data cache miss

in the SMT execution. These extra stalls would be carried
to the ST cycle stack of the application (by inverting the
model), and then they would be taken into account to pre-
dict the symbiosis of the applications for the next quantum.
Nonetheless, we notice that the model can be inaccurate when
there is a substantial impact of off-core interference, degrad-
ing the quality of the selected schedules.

To solve the model’s inaccuracy for some combinations
and to factor in the impact of off-core interference, we use
a dynamic correction factor. This mechanism records the
performance of a schedule after it has been selected and ex-
ecuted during a time slice, and checks the accuracy of the
prediction made during the selection. It then calculates a
correction factor defined as the actual performance divided
by the performance estimated by the model. For each appli-
cation we keep one correction factor per possible co-runner,
and we set the correction factor for unseen combinations to
one (no error). When doing a prediction for the next quan-
tum, we check the table of correction factors and we multiply
the predicted performance with this correction factor. This
way, we learn from previous observations and dynamically
make the model more accurate.

We update the correction factor using an exponential mov-
ing average. We do not just keep the most recent value, be-
cause a small correction factor (< 1) at some point in time
can prevent a combination from ever being selected again.
Thus, if due to phase changes, the actual correction factor
becomes closer to one, this is not detected and the combina-
tion is never considered during the whole execution. A mov-
ing average smooths out sudden changes, and makes the cor-
rection factor only big or small after a few subsequent under-
or over-estimations. Occasionally, the applications also ex-
perience very low performance during a time slice, resulting
in a very low factor. Even when using a moving average
for the correction factor, such a low factor could prevent the
combination from being selected again. To avoid this sce-
nario, the correction factor is not updated when the factor
for a combination is beneath 0.5. This situation occurs very
occasionally and sparsely, i.e., the next time slice usually has
a more ‘normal’ correction factor.

Calculating the correction factor requires knowledge of
the isolated performance, because the model predicts the in-
terference, i.e., the delay an application encounters by be-
ing coscheduled with other applications on one core. We
can measure the performance of each application in the cur-
rent schedule, but we do not know the isolated performance.
The isolated performance could be determined by an offline
run, but this introduces overhead and ignores phase behav-
ior. Instead, we very sparsely execute each application in
single-threaded mode on a core, and record its isolated per-

formance. In addition, a profiling time much shorter than a
normal time slice (20 ms instead of 100 ms) is used. Thus,
the sampling time is very limited: it equals the number of
SMT contexts times the profiling time, and it is done only
every 200 time slices (accounting for 0.2% of the time for 2-
way SMT). The performance overhead caused by this sam-
pling is low, since we keep all the cores running one appli-
cation in ST mode, achieving relatively good performance.
Note that this sampling phase is different from SMT sched-
ulers that use sampling [19]: we sample single-threaded ex-
ecution, while they sample the set of possible schedules. We
also use a much sparser sampling than used in per-thread
cycle accounting proposals for SMT [12]. We find that the
model has a certain bias for some applications, and once this
bias is detected (i.e., the correction factor), we do not need
fine-grained single-threaded execution times to obtain good
accuracy.

4.3 Selection of the optimal schedule
The scheduler uses the measured CPI stacks and the model

to divide the applications between the cores. To simplify the
scheduling decision, we make the following assumptions:

• All cores are homogeneous, and thus have the same
performance model. The scheduler could be extended
for heterogeneous multicores, by building a model per
core type.
• The interference in the resources shared by all cores

(shared last-level cache, memory controllers, memory
banks, etc.) is mainly determined by the characteris-
tics of all applications running on the processor, and
not so much by the way these applications are sched-
uled onto the cores. This observation is also made by
Radojković et al. [16]. As a result, with a fixed set
of runnable applications, scheduling has no impact on
the inter-core interference and the scheduler should not
take inter-core interference into account.

Even with these simplifications, the number of possible
schedules is usually too large to perform an exhaustive search,
even with our fast models. The number of different sched-
ules for dividing n applications onto c cores equals n!

c!(n
c !)

c

(assuming n is a multiple of c). For dividing 16 applications
on 8 cores, there are already more than 2 million possible
schedules. Evaluating each of them would take too much
time. Jiang et al. [10] prove this problem to be NP-complete
as soon as n

c > 2. To efficiently cope with the large num-
ber of possible schedules, we use a technique proposed by
Jiang et al. [10]. They model the scheduling problem as a
minimum-weight perfect matching problem, which can be
solved in polynomial time using the blossom algorithm [3].

In summary, the scheduler does the following at the be-
ginning of each time slice:

1. Collect the SMT CPI stacks for all applications over
the previous time slice.

2. Update the correction factor for the combinations that
were executed the previous time slice.

3. Use the inverted model to get an estimate of the CPI
stacks in isolated execution for each application.

4. Use the forward model and the correction factor to pre-
dict the performance of each combination, and use the
blossom algorithm to find the best schedule.

5. Run the best schedule for the next time slice.

5. EXPERIMENTAL SETUP
We perform all experiments on an IBM Power System

S812L machine, which is a POWER8 machine consisting of
10 cores. Each core can execute up to 8 hardware threads si-
multaneously. A core can be in single-threaded mode, SMT2
mode, SMT4 mode or SMT8 mode. Mode transitions are
done automatically, depending on the number of active threads.
Because we evaluate our scheduler on multiprogram SPEC
workloads, and the L1 cache of one core is limited to 64KB,
we only evaluate our scheduler for SMT2. Having 4 or 8
SPEC benchmarks running on one core puts too high pres-
sure on the L1 cache. The higher SMT modes are designed
for multithreaded scale-out applications that share a consid-
erable amount of code and have a low memory footprint.
Our setup uses an Ubuntu 14.04 Linux distribution.

We use all of the SPEC CPU 2006 benchmarks that we
were able to compile for the POWER8 to evaluate our sched-
uler (21 out of 29).We run all benchmarks with the reference
input set. For each benchmark, we measure the number of
instructions required to run during 120 seconds in isolated
execution and save it as the target number of instructions for
the benchmark. This reduces the amount of variation in the
benchmark execution times during the experiments. For the
multiprogram experiments, we run until the last application
completes its target number of instructions. When the appli-
cations reach their target number of instructions, their IPC
is saved and the application is relaunched. This method en-
sures that we compare the same part of the execution of each
application, and that the workload is uniform during the full
experiment. We measure total system throughput (STP) by
means of the weighted speedup metric [4]. More precisely,
we measure the time each application requires to execute
its target number of instructions in the multiprogram experi-
ment and then divide the isolated time (120 seconds) by the
multiprogram time, adding this number over all applications.
We evaluate 105 workloads, ranging from 8-program combi-
nations on 4 cores to 20-program combinations on 10 cores.

6. EVALUATION
We now evaluate how well the scheduler performs com-

pared to the default scheduler and prior work. Before show-
ing the scheduler results, we first evaluate the accuracy of
the interference prediction model.

6.1 Model accuracy

Regression model accuracy.
Figure 3 shows a histogram of the errors of the inter-

ference prediction model (the ‘forward’ model). It shows
the distribution of the error of predicting the per-application
slowdown given the ST CPI stacks of the applications to be
co-run. The results cover all possible combinations, and
multiple time slices per combination to capture phase be-
havior. Few errors are larger than 30% (less than 3% of all

0%

4%

8%

12%

16%
Fr

eq
u

en
cy

Error intervals

Figure 3: Forward model error distribution histogram.

0%

4%

8%

12%

16%

Fr
eq

u
en

cy

Error intervals

Figure 4: Inverse model error histogram.

points), but the majority of the errors are within 15%. The
average absolute error is 12.3%.

Inverse model accuracy.
The inverse model estimates the ST CPI stacks from the

SMT CPI stacks. Figure 4 shows the distribution of the
error for the inverse model. The average absolute error is
13.4%, which is similar to the error of the forward model.
The power of the inverse model is that it can estimate the
ST CPI of an application during SMT execution, for which
prior proposals require extra hardware [5] or extensive sam-
pling [12]. Note that the extreme errors for both the forward
and the inverse model are reduced by the dynamic correction
factor (not included in these results).

6.2 Scheduler performance
Now that we have shown that the interference prediction

model is relatively accurate, we evaluate the performance of
our proposed scheduler that uses the model to obtain better
schedules. We also analyze the impact of symbiotic schedul-
ing on fairness, we quantify the overhead of the scheduler,
and analyze the stability of the selected coschedules. Finally,
we show the impact of exploiting slight differences between
the cores.

6.2.1 Overall performance
To analyze the performance benefits provided by the sym-

biotic job scheduler, we compare four different schedulers:

1. Random scheduler: Applications are randomly distri-
buted across the cores. Every time slice, a new sched-
ule is randomly determined.

2. Linux scheduler: the default Completely Fair Sched-
uler (CFS) in Linux.

3. L1-bandwidth aware scheduler [8]: this scheduler is
the most recent and closest prior work to our sched-
uler. It balances the L1 bandwidth requirements of the
applications across the cores. It also executes on un-

modified hardware and we implement it as an alterna-
tive scheduler in Linux.

4. Symbiotic job scheduler: our proposal.

Figure 5 presents the speedups of the system throughput
achieved by the Linux scheduler, the L1-bandwidth aware
scheduler and the proposed symbiotic job scheduler rela-
tive to the random scheduler. Each set of bars represents
an individual workload (i.e., combination of applications),
and the workloads are grouped by the number of available
cores. The workloads comprise twice as many applications
as the number of available cores (e.g., the workloads evalu-
ated with five cores are composed of ten applications). The
results include the overhead of the schedulers, i.e., the time
needed to gather the event counts from the performance coun-
ters and update the scheduling variables, and the time needed
to take the scheduling decisions. For our symbiotic job sched-
uler, they also include the time consumed in the single-thread-
per-core sampling phases. The speedups shown for each
workload and scheduler represent the average speedup for
a set of 15 runs, plotting 95% confidence intervals.

The symbiotic job scheduler clearly outperforms all other
schedulers across all thread counts. Considering all the work-
loads, it performs on average 10.3% better than the ran-
dom scheduler, 4.7% better than the default Linux sched-
uler, and 4.1% better than the L1-bandwidth aware sched-
uler. If we only consider the middle workloads (from 5-
core workloads to 7-core workloads) the speedup over the
Linux scheduler is even 7.0%. Compared to smaller work-
loads, the middle workloads offer a much higher number of
possible combinations of applications, which increases the
difference between the best and worst coschedules, allow-
ing the symbiotic scheduler to find better coschedules. For
large core counts, the overall performance is mainly deter-
mined by off-core interference (shared cache, memory con-
troller), and less by selecting symbiotic job schedules. As we
will explain below, the Linux scheduler is apparently good
at controlling memory contention, which increases its per-
formance compared to the random scheduler, decreasing the
gap with our symbiotic scheduler.

The speedup of the Linux scheduler over the random sched-
uler tends to be higher for workloads with a higher number
of cores (see also Figure 7, which shows the average speedup
per core count). We surmise that the Linux scheduler some-
how monitors memory behavior and tries to reduce memory
contention, which is more beneficial when there are more
applications and therefore more possible contention. This
guess is further supported by the fact that the Linux sched-
uler sometimes decides to pause threads, especially on cores
that seem to have a lower memory performance (see Sec-
tion 6.2.5) and when there are a lot of memory-intensive ap-
plications. Our symbiotic scheduler also takes into account
memory contention (through the miss component interfer-
ence), and it does not put two memory-intensive applications
on the same core. However, it also considers interference
in the other components, which explains its superior perfor-
mance for lower core counts.

The speedups achieved by the L1-bandwidth aware sched-
uler are similar to those of the Linux scheduler. Neverthe-
less, they tend to higher than the Linux speedups for low core
counts. When the number of running applications is low,

0%

3%

6%

9%

12%

15%

18%

4
_1

4
_2

4
_3

4
_4

4
_5

4
_6

4
_7

4
_8

4
_9

4
_1

0
4

_1
1

4
_1

2
4

_1
3

4
_1

4
4

_1
5

5
_1

5
_2

5
_3

5
_4

5
_5

5
_6

5
_7

5
_8

5
_9

5
_1

0
5

_1
1

5
_1

2
5

_1
3

5
_1

4
5

_1
5

6
_1

6
_2

6
_3

6
_4

6
_5

6
_6

6
_7

6
_8

6
_9

6
_1

0
6

_1
1

6
_1

2
6

_1
3

6
_1

4
6

_1
5

7
_1

7
_2

7
_3

7
_4

7
_5

7
_6

7
_7

7
_8

4 cores 5 cores 6 cores 7 cores

Sp
e

e
d

u
p

Linux scheduler L1-bandwidth aware scheduler Symbiotic scheduler

0%

3%

6%

9%

12%

15%

18%

7
_9

7
_1

0

7
_1

1

7
_1

2

7
_1

3

7
_1

4

7
_1

5

8
_1

8
_2

8
_3

8
_4

8
_5

8
_6

8
_7

8
_8

8
_9

8
_1

0

8
_1

1

8
_1

2

8
_1

3

8
_1

4

8
_1

5

9
_1

9
_2

9
_3

9
_4

9
_5

9
_6

9
_7

9
_8

9
_9

9
_1

0

9
_1

1

9
_1

2

9
_1

3

9
_1

4

9
_1

5

1
0

_1

1
0

_2

1
0

_3

1
0

_4

1
0_

5

1
0_

6

1
0_

7

1
0_

8

1
0_

9

1
0_

1
0

1
0_

1
1

1
0_

1
2

1
0_

1
3

1
0_

1
4

1
0_

1
5

7 cores 8 cores 9 cores 10 cores

Sp
ee

d
u

p

Figure 5: Speedup of the Linux, L1-bandwidth aware and our symbiotic scheduler relative to a random scheduler.

memory interference is less significant and L1 interference
plays a more important role on the performance degradation.
However, with higher number of applications, memory con-
tention becomes the main bottleneck and the effectiveness of
the L1-bandwidth aware scheduler is reduced. Although we
faithfully implemented the L1-bandwidth aware scheduler as
described in [8], we do not see as big performance improve-
ments as in the original paper. We attribute this to the dif-
ferent hardware setup. For instance, the IBM POWER8 has
double the L1 cache size of the Intel Xeon processor, which
was used in their experiments. The larger cache should sig-
nificantly reduce the pressure on this resource.

6.2.2 Fairness
Although the main goal of the job symbiosis scheduler

is to maximize the system throughput, we also evaluate its
impact on fairness. Fairness quantifies how evenly the per-
formance benefits (or losses) are distributed across all the
applications of a workload. Unfair schedules can lead to
priority inversion or even starvation for a single applica-

1.0

1.3

1.6

1.9

2.2

2.5

2.8

4 cores 5 cores 6 cores 7 cores 8 cores 9 cores 10 cores

U
n

fa
ir

n
es

s

Random scheduler Linux scheduler
L1-bandwidth aware scheduler Symbiotic scheduler3.1

Figure 6: Average unfairness (lower is better) of the sym-
biotic and Linux schedulers.

tion, even if they increase total throughput. We calculate the
unfairness of a schedule as the maximum slowdown (com-
pared to ST execution) divided by the minimum slowdown
across all the applications of the workload. An unfairness
equal to 1 means that the system is completely fair.

Figure 6 depicts the unfairness achieved by the four eval-
uated schedulers. The different bars represent the average
unfairness across all the fifteen workloads evaluated for each
number of cores. The figure shows that the symbiotic sched-
uler reaches the lowest unfairness for workloads ranging from
4 to 9 cores, followed by the L1-bandwidth aware and Linux
schedulers. As expected, the worst unfairness is reached by
the random scheduler. With respect to Linux, the unfair-
ness decrease of the symbiotic scheduler is quite significant.
For instance, for 6-core workloads the symbiotic and Linux
schedulers have an unfairness of 1.75 and 2.11, respectively,
which means that Linux is 20% more unfair than our sched-
uler. Our scheduler tries to reduce interference as much as
possible, and therefore, as a side effect, it helps reduce un-
fairness.

For 10 cores, unfairness reduces for all schedulers. Be-
cause the processor is designed for 10 cores, we guess that
using all cores leads to the most balanced usage of the off-
core resources (memory controllers, various buffers, etc.),
resulting in better fairness. At this core count, our sched-
uler is slightly less fair than the Linux scheduler, supposedly
because the Linux scheduler is better at controlling memory
contention.

6.2.3 Scheduler overhead
Our scheduler has to perform a non-negligible amount of

computations at the beginning of each time slice: it has to
apply the inverse model to estimate the single-threaded cy-
cle stacks, and then it has to search for the optimal schedule
using the forward model. These computations are clearly

0%

2%

4%

6%

8%

10%

12%

4 cores 5 cores 6 cores 7 cores 8 cores 9 cores 10 cores

Sp
ee

d
u

p

L1-bandwidth aware speedup

Linux speedup

Symbiotic scheduler overhead

Symbiotic scheduler effective speedup

Figure 7: Effective average speedup and overhead of
the symbiotic scheduler, the Linux scheduler, and L1-
bandwidth aware scheduler, relative to the random
scheduler.

more complex than those of the other schedulers, introduc-
ing more scheduling overhead. Figure 7 shows the speedup
of the symbiotic scheduler over the random scheduler, with-
out taking the overhead into account, i.e., we assume zero
scheduling overhead (top of the stack). The top component
of the stack shows by how much the speedup is reduced
when considering the overhead, i.e., the bottom part is the
speedup including the overhead (which is equal to the re-
sults shown in the previous section). The figure also shows
the speedups of the Linux and L1-bandwidth aware sched-
ulers, which have no noticeable overhead for the evaluated
quantum length. The results are averaged over all evaluated
workloads per core count. It shows that the overhead of the
symbiotic scheduler is very small, and has only a marginal
impact on the speedup. The overhead slightly increases with
the core count, but scales relatively well due to the polyno-
mial time complexity of the matching algorithm.

6.2.4 Symbiosis patterns
The symbiotic scheduler constantly re-evaluates the opti-

mal schedule, which means that it adapts to phase behavior,
updating the couples of applications that are run together. If
there is no phase change behavior, a static schedule would
suffice, avoiding the overhead of recalculating the schedule.
Figure 8 presents a frequency matrix of the job coschedules
for two different 5-core workloads. The symmetric matrix
representsthe percentage of quanta where each combination
of jobs is coscheduled on one core. The darker the color of
the cell, the more frequently the associated pair of applica-
tions runs together on the same core.

Ap
p1
Ap
p2
Ap
p3
Ap
p4
Ap
p5
Ap
p6
Ap
p7
Ap
p8
Ap
p9
Ap
p1
0

App1

App2

App3

App4

App5

App6

App7

App8

App9

App10

Ap
p1
Ap
p2
Ap
p3
Ap
p4
Ap
p5
Ap
p6
Ap
p7
Ap
p8
Ap
p9
Ap
p1
0

App1

App2

App3

App4

App5

App6

App7

App8

App9

App10

Workload 5_3 Workload 5_4

Figure 8: Frequency matrices for two 5-core workloads.

The two matrices represent two distinct behaviors that we
have observed in the symbiotic scheduling runs. The fre-
quency matrix of workload 5_4 (at the right) shows a work-
load where two couples are scheduled very frequently (App2
is coscheduled with App5 and App4 with App7, in 66%
and 70% of the time slices, respectively). This high fre-
quency suggests that the applications present high symbiosis
(e.g., a memory-bound application with a cpu-bound appli-
cation) and a constant phase behavior. The opposite behav-
ior is observed in the matrix of workload 5_3. In this case,
there is not a predominant pair of applications that is usu-
ally coscheduled, but all the applications are coscheduled
with multiple corunners. This pattern occurs when the ap-
plications present phase behavior that changes the symbio-
sis of the applications, which makes it important to adapt the
coschedule to the current phase.

6.2.5 Core asymmetry
During our experiments, we notice that the characteris-

tics of the cores on our POWER8 processor are not homoge-
neous. In particular, 4 applications (mcf, milc, gemsFDTD,
and lbm) out of the 21 SPEC CPU 2006 benchmarks have
a clearly higher performance on the first 5 cores (cores 0
to 4) than on the last 5 cores (cores 5 to 9). For the other
applications, single-threaded performance is approximately
equal across all cores. The applications with different per-
formance are all memory-intensive, so we conjecture that
the asymmetry is in the memory subsystem. We could not
find any cause for this behavior in publications or in the pro-
cessor documentation. We guess that the last 5 cores might
be further away from the memory controller(s), incurring a
longer memory latency, or that there is some (possibly unin-
tentional) priority mechanism implemented in the centaurus
chip [20] that acts as memory controller and handles the ac-
cess sequence of the DRAM requests.

The Linux scheduler seems to be somehow aware of this
asymmetry in the memory resource division (or at least, aware
of the memory performance of the applications), as it more
frequently pauses one or more threads on the last 5 cores
when memory pressure is high. In contrast, our scheduler
does not pause threads, but it still achieves high through-
put by spreading the memory-intensive applications across
cores. In addition, one could exploit this asymmetry to op-
timize performance even more by putting the most memory-
intensive applications on the first 5 cores. Figure 9 shows
the performance of our proposed scheduler with and without

0%

3%

6%

9%

12%

15%

6 cores 7 cores 8 cores 9 cores 10 cores

Sp
ee

d
u

p

Symbiotic scheduler
Symbiotic scheduler aware of core asymmetry

Figure 9: Avg. speedup of the Symbiotic scheduler not
aware and aware of asymmetry over a random scheduler.

this machine-specific optimization. The performance indeed
increases a little bit on average (about 1%), but the small
difference shows that our scheduler is general enough that it
does not need to rely on these machine-specific features to
obtain good performance.

7. CONCLUSIONS AND FUTURE WORK
Scheduling has a considerable impact on highly threaded

processors because of the interference between threads in
shared resources. We propose a novel symbiotic job sched-
uler for a multicore processor consisting of multi-threaded
(SMT) cores. The scheduler uses a model based on cycle
component stacks, and it does not require extensive sam-
pling. Experiments on an IBM POWER8 server show that
our scheduler improves throughput by 11.0% and 8.8% ver-
sus the random and Linux kernel built-in schedulers, respec-
tively, for workloads composed of 12 applications, and by
10.3% and 4.7%, respectively, across all evaluated work-
loads. Due to the use of an analytical model, the overhead
of our scheduler is negligible.

Although our current implementation is designed for the
IBM POWER8, our scheduler can be adapted to other CMP
architectures with SMT cores that provide a similar cycle
accounting mechanism, e.g., an Intel Xeon server [14]. This
only requires a one-time training step. The scheduler can
also support heterogeneous architectures, by creating differ-
ent models for the various core types.

Acknowledgments
We thank the anonymous reviewers for their constructive
and insightful feedback. This work was supported in part
by the Spanish Ministerio de Economía y Competitividad
(MINECO) and Plan E funds, under grants TIN2015-66972-
C5-1-R and TIN2014-62246-EXP.

8. REFERENCES
[1] IBM Knowledge Center, Analyzing application performance on

Power Systems servers, 2015.

[2] J. Burns and J.-L. Gaudiot. SMT layout overhead and scalability.
IEEE Transactions on Parallel and Distributed Systems,
13(2):142–155, 2002.

[3] J. Edmonds. Maximum matching and a polyhedron with 0, l-vertices.
J. Res. Nat. Bur. Standards B, 69(1965):125–130, 1965.

[4] S. Eyerman and L. Eeckhout. System-level performance metrics for
multiprogram workloads. IEEE Micro, 28(3):42–53, 2008.

[5] S. Eyerman and L. Eeckhout. Per-thread cycle accounting in SMT
processors. In The International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
pages 133–144, Mar. 2009.

[6] S. Eyerman and L. Eeckhout. Probabilistic job symbiosis modeling
for SMT processor scheduling. In The International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 91–102, Mar. 2010.

[7] S. Eyerman and L. Eeckhout. The benefit of SMT in the multi-core
era: Flexibility towards degrees of thread-level parallelism. In
Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 591–606, 2014.

[8] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. L1-bandwidth aware
thread allocation in multicore SMT processors. In International
Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 123–132, 2013.

[9] S. Hily and A. Seznec. Contention on 2nd level cache may limit the
effectiveness of simultaneous multithreading. 1997.

[10] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and
approximation of optimal co-scheduling on chip multiprocessors. In
International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 220–229, 2008.

[11] Y. Li, K. Skadron, D. Brooks, and Z. Hu. Performance, energy, and
thermal considerations for SMT and CMP architectures. In
International Symposium on High-Performance Computer
Architecture (HPCA), pages 71–82, 2005.

[12] C. Luque, M. Moreto, F. J. Cazorla, and M. Valero. Fair CPU time
accounting in CMP+SMT processors. ACM Transactions on
Architecture and Code Optimization (TACO), 9(4):50, 2013.

[13] T. Moseley, J. Kihm, D. Connors, and D. Grunwald. Methods for
modeling resource contention on simultaneous multithreading
processors. In IEEE International Conference on Computer Design:
VLSI in Computers and Processors, pages 373–380, Oct 2005.

[14] A. Nowak, D. Levinthal, and W. Zwaenepoel. Hierarchical cycle
accounting: a new method for application performance tuning. In
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 112–123, March 2015.

[15] L. Porter, M. A. Laurenzano, A. Tiwari, A. Jundt, W. A. Ward, Jr.,
R. Campbell, and L. Carrington. Making the most of SMT in HPC:
System- and application-level perspectives. ACM Transactions on
Architecture and Code Optimization (TACO), 11(4):59:1–59:26, Jan.
2015.

[16] P. Radojkovic, V. Cakarevic, J. Verdu, A. Pajuelo, F. Cazorla,
M. Nemirovsky, and M. Valero. Thread assignment of multithreaded
network applications in multicore/multithreaded processors. IEEE
Transactions on Parallel and Distributed Systems,
24(12):2513–2525, Dec 2013.

[17] A. Settle, J. Kihm, A. Janiszewski, and D. Connors. Architectural
support for enhanced SMT job scheduling. In International
Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 63–73, 2004.

[18] B. Sinharoy, J. Van Norstrand, R. Eickemeyer, H. Le, J. Leenstra,
D. Nguyen, B. Konigsburg, K. Ward, M. Brown, J. Moreira,
D. Levitan, S. Tung, D. Hrusecky, J. Bishop, M. Gschwind,
M. Boersma, M. Kroener, M. Kaltenbach, T. Karkhanis, and
K. Fernsler. Ibm power8 processor core microarchitecture. IBM
Journal of Research and Development, 59(1):2:1–2:21, Jan 2015.

[19] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for
simultaneous multithreading processor. In Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 234–244, Nov.
2000.

[20] W. Starke, J. Stuecheli, D. Daly, J. Dodson, F. Auernhammer,
P. Sagmeister, G. Guthrie, C. Marino, M. Siegel, and B. Blaner. The
cache and memory subsystems of the ibm power8 processor. IBM
Journal of Research and Development, 59(1):3:1–3:13, Jan 2015.

[21] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a
simultaneous multithreading processor. In International Symposium
on Microarchitecture (MICRO), pages 318–327, 2001.

[22] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proceedings of
the 22nd Annual International Symposium on Computer Architecture
(ISCA), pages 392–403, June 1995.

[23] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang. SMiTe: Precise
QoS prediction on real-system SMT processors to improve
utilization in warehouse scale computers. In International
Symposium on Microarchitecture (MICRO), pages 406–418, 2014.

