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1. INTRODUCTION José Duato

Multicore processors are the common implementation for high performance microprocessors. The current industry trend
increases the core count in each new microprocessor generation, so stressing the pressure on the main memory

bandwidth, which conforms one of the major performance bottlenecks of these processors. 3 . P RO POS E D SC H E D U L E R

In addition, multithreading is also becoming the common processor implementation. The different processes running The performance degradation analysis shows the suitability of using a bandwidth-aware scheduling algorithm to mitigate contention and improve performance. The
concurrently on an SMT core can issue instructions in the same cycle, which are executed sharing some of the core proposed algorithm consists of two main sections: process selection and process allocation.
resources. Among them, the L1 cache and, particularly, the L1 bandwidth are critical for the overall processor performance.

In short, most research work regarding scheduling has tackled: Algorithm 1 Bandwidth-Aware Scheduler

) main memory and LLC bandwidth contention, or 1 Calculate: N AV G TRP . wTP Before running a workload, the scheduler calculates the WK_AVG_TR_MM, which represents the
i) resource sharing on SMT cores. WK _AVG.TRyy = &p=0' — MM ) «# CPUs overall target TRy, that should be achieved by the processes running each quantum to balance the
However, to the best of our knowledge, this is the first proposal that combines both approaches to deal with bandwidth Zp= o TP main memory transactions over the workload execution.
contention in multithreaded CMPs. 2: while there are unfinished processes do | | |
o . o 3: Gather TRy M and TRy ¢ of the processes run the last Main memory and L1 bandwidth of the processes are updated each quantum using performance
The performance evaluation is performed in an Intel Xeon E5645 processor, which implements six dual-threaded SMT quantum counters.
cores, with private L1 and L2 caches per core and a shared LLC. The system runs a Linux distribution with kernel 3.11.4. 4: [Select the process p at the process queue head and set: | _ _ _ _ _
BW,emain = WK_AVG_ TRy w - TRP, The process selection policy deals with main memory bandwidth contention, selecting the
CPU;emain = #CPUs- 1 proper set of processes that will run the following quantum with the goal of balancing the
2 CAUSES OF PERFORMANCE DEG RADATI ON 5. |while # selected process < # CPl:Js .do overall memory requests over the execution time of the workload to minimize the contention.
" ) Select the processes p that maximizes: First, the process not executed for longer is selected to avoid process starvation. Then, the
: : : : FITNESS(p) = 1 remaining processes are selected using the fitness function. This function quantifies the gap
I\/Ialn-memory bandwidth contention anaIySIS ) CBF’WURReeTnaa'.nn " TR between the TRy required by a given process and the average bandwidth remaining for each
0% . rl: Update BWRremain and CPUrem ain unallocated hardware thread.
S e0% Lo M | _ 8. |lend while
k. e 0 8 1 | Experiment 1: | - O: [Sort the selected processes in ascending T R 1 The process allocation policy assigns each selected process to a core dealing with L1
"I I BT | . | Each benchmark is concurrently launched with five instances 9f 10: |while there are unallocated processes do bandwidth contention. The goal of the policy is to balance the L1 requests that each L1 cache
2 om a memory-hungry microbenchmark with a standalone main 11: Select the processes Phead and Piai) with maximum and| |has to serve each quantum. In this way, the L1 bandwidth contention is minimized and the
S oo memory transaction rate (TR,,,) of 55 t/usec. . minimum bandwidth requirements performance enhanced.
s o wllin HR000 00 .1 .1 1] | % '3\33|%r_]lphead and Pi4i) to the same core Since the experimental platform implements dual-threaded cores, the processes can be easily
T ow Observation 1: , 4j 3” r:N I L1 allocated by sorting the processes according to its TR ; and then, reiteratively, assigning the
383 5 25 £ Half of the benchmarks suffer a performance degradation - ohd Whte processes with highest and lowest bandwidth utilization to the same core.
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above 30% due to main memory bandwidth constraints.

Fig. 1: IPC degradation d.ue to main memory bandwidth contention. 4 . SC H E D U L E R EVAL UATI O N

The devised algorithm has been implemented in a user-level scheduler, which uses: |) the Linux system calls to determine the processes that will run the next
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be observed until second 50.
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L1 bandwidth contention analysis quantum, and Il) the core affinity attributes to determine the target core of each process. To evaluate the performance of the proposal, a set of ten 24-benchmark
_ et eacruenom eret octian Experiment 2: mixes was designed. The performance of the devised algorithm is compared with that achieved by the Linux scheduler.
|y The IPC and transaction rate in L1 (TR, 4) of two
T benchmarks are compared when they run: T Rl | R = P - T - R ;
g”"" """""""""""""""""""""""""""""""""""""""""""""""""""""""""" i) in stand-alone execution (Figure 2a) 7R SRS NN = NN R - IR
pcThan R TV TV TV i) simultaneously on the same core (Figure 2b) SL7ANN I DU | D Y NI - DU ) IR R I . ~
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Fig. 3: Speedup of the average IPC relatlve to L|nux. Fig. 4. Speedup of the harmonlc mean of welghted IPC relatlve to Linux.
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Observation 3:

There is a connection between the L1
| | | | | | | | | | | | | - bandwidth and IPC of the co-runners [1]. For
e S e 7 instance, when cactusADM reduces its TR,
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Figure 3 presents the speedups achieved by the proposed scheduler using the average IPC metric with respect to Linux. The proposed scheduler improves Linux
in all the mixes, with speedups ranging between 4% to above 6%. Since the average IPC metric measures throughput, the results show that the devised scheduler

(a) Standalone execution (b) Simultaneous execution on the same core (Implicit in its behavior), more bandwidth is mitigates the bandwidth contention, which results in a significant performance increase.
available to h264ref, resulting in a growth of its ’

TR 4 and IPC.

Figure 4 presents the speedups of the harmonic mean of weighted IPC metric* achieved by the proposed scheduler with respect to Linux. Note that this metric
considers fairness additionally to performance since the harmonic mean tends to decrease quickly as the gap between the speedups grows. Thus, the achieved
speedups, ranging from around 2.5% to above 4%, demonstrate that the devised scheduler not only reaches greater performance, but also works fairer than the

Linux scheduler. *UM W IPC = 3 Sinql\lle BE [1] J. Feliu, J. Sahuquillo, S. Petit, J. Duato , "L 1-Bandwidth Aware Thread Allocation in Multicore SMT Processors", PACT 2013.
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Fig. 2: L1 bandwidth and IPC of h264ref and cactusADM.
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