Understanding Cache Hierarchy
Contention in CMPs to Improve Job
Scheduling

J. Feliu, Julio Sahuquillo, S. Petit and J. Duato

Universitat Politecnica de Valencia
Spain

Outline

* Introduction
* Experimental platform

 Benchmark characterization and performance
degradation analysis

e Cache-hierarchy bandwidth aware scheduler
* Methodology and evaluation
* Conclusions

Introduction

e Multi-core processors have

become the common Main memory
implementation for high-

/¢
L2

e CMPs main performance E%ﬂ

bottleneck lies in the main

L1 | | L1
memory latency. 6
e

performance microprocessors.

Main memory latency

Introduction

As the number of cores and
multithreading capabilities
increase, the available
memory bandwidth s
becoming a major concern.

Requests from
4 processes

Main memory

Introduction

As the number of cores and

]) o Requests from
multithreading capabilities 16 threads
increase, the available
memory bandwidth s

becoming a major concern.

Main Memory
— ' -
L3 L3
_ ' . _ v _
] ————
: L))
L2 L2 L2 L2
v v v '
m—— :I l:f————=—rﬂ = : 1:7 ——

sége seoe

Introduction

¢ Memory bandwidth aware Main Memory
schedulers can help to —— Attached with memory- ~ —
. [—— bandwidth aware schedulers —]
reduce memory contention : :
by avoiding the concurrent
execution of memory-hungry : ¢ :
applications. ¢ i] ¢

L3 L3

Introduction

Main Memory
—— Attached with memory- —
What about other [bandwidth aware schedulers ——
contention points? L3 L3
[— Requests from —] — Requests from =]
—— 8 threads — —— 8 threads S

¢ ¢]]

Introduction

Main contributions

e Two main contributions:

— Characterize the sensitiveness of the SPEC
CPU2006 benchmarks to each contention point in
the memory hierarchy of a quad-core Intel Xeon
which claims the necessity of the proposal.

— Propose a scheduling approach for multi-core
processors with shared caches to improve the
performance.

Experimental platform

Specifications

Hardware specifications Software specifications

CPU InteI Xeon X3320 Operating system | Fedora Core 10

Frequency 2.5 GHz Linux

Number of cores 4 Kernel 2.6.29 with
perfmon patch

Multithreading No ,

Software pfmon, libpfm
L1 cache Code L1: 4 x 32 KB _
Data L1: 4 x 32 KB Benchmarks Sp(.ec FPU2006 with

train input

L2 cache 2x3 MB

Main memory 4 GB DDR2

Experimental platform

Performance counters

* A set of special-purpose registers built into modern processors.

 Store the counts of hardware-related activities within computer
systems.

* Keep track of the events in a per process basis.

Monitored event Information___

UNHALTED_CORE_CYCLES Cycles
INSTRUCTIONS RETIRED Instructions
L2 _RQSTS:MESI L1 misses

LAST_LEVEL_CACHE_MISSES L2 misses

10

Experimental platform
Intel Xeon X3320

Main memory

L2 L2
{ ,
—— 1 |

Xeon X3320 memory hierarchy

11

Experimental platform
Intel Xeon X3320

Main memory

MM bandwidth—>

\
[

\
[

L2

L2

'

L2 bandmdthﬁQl

]

\ \
/ /

Contention points related to the memory subsystem in the Xeon X3320

12

Cache hierarchy in the IBM Power 5

“ “ “ 00

Power 5 memory hie

Cache hierarchy in the IBM Power 5

Main Memory
MM bandwidth—>| — ' ——
L3 L3
L3 bandwidth ——————— 5
I ———

Contention points related to the memory subsystem in the IBM Power 5

Cache hierarchy in the IBM Power 5

Main Memory
MM bandwidth—>| — ' ——
L3 L3
L3 bandwidth ————— ;
T o

The more contention points, \ /£
the more performance enhancement L1 bandwidth

is expected.
Contention points related to the memory subsystem in the IBM Power 5

15

Benchmark characterization and
performance degradation analysis

e Benchmark characterization

— Classify the benchmarks as
memory-bounded or L2-bounded.

— Build “interesting” mixes.
e Estimation of the performance degradation
due to main memory and L2 contention

— Degradation over 60% due to main memory and
around 13% due to L2 contention.

— Motivate the work.

Benchmark characterization
L1 MPKI & L2 MPKI

100 - 100
80 80
- —
= 60 = 60
S G
g 2
s 40 s 40
20 + I 20
S P & & o & & & & R B & ¥ & o N R &)
(\(' 1>Q % & v& <& '\Qr‘\ > S é}-Q S q@ 'oo .-53 & (\‘\ s,@ GRS Y rb@ <&
& © g & 2 & & & & Q‘Lé &g T & F& TP
g \{QQ [s) +'b 53 g
(a) integer (b) floating-point
L1 MPKI for each SPEC CPU2006 benchmark
25 25
20 20
N 3
w 15 o« 15
5] s}
< =
S 10 S 10
; : I
0 —_ =] m |:| I:I — = — — p— I:l — 0 ‘ m —_ ‘ H —_ |-| M —_
' 3 <) N A 5y S N o O o > D
Qé\c, &€ <& B (&\6& Q'\e’(\% &9& g & &&9 &S é,bob“\ & S?@Q & 30@‘;\\& g
g é\ B & \‘\o o?’b o 06\ +'b\,b(\ G)Q?/ O @ A& Qéo ’bo'\) &
(a) integer (b) floating-point

L2 MPKI for each SPEC CPU2006 benchmark

17

Benchmark characterization
L1 MPKI & L2 MPKI

199 2-boundeds 1991 2 boundeds
80 80
- —
- -
'-_5 60 %5 60
3 0 g 0
s 4 S 4
20 - I 20 I I I
S T - S S T T - : ¥ & o ¢ o 0 N g A & Qo & o
& \°1>Q ¢ & Qg;o& &5\2’ c’,\q"\ ,bé'\) "L@.‘ @(\e',& fb‘:-»@ (\EP@ @é’bo 4{3\6 ,bé‘é, & Q,O‘,@QG o 4?9 g ,\\%@ 8&& 509\6(204@ Igc}\ 30« .@6‘ i‘)& * &\'\@-
A N AN 2 A & W < B
& \{o°‘ o & B & d)\ b"’&
(a) integer (b) floating-point
L1 MPKI for each SPEC CPU2006 benchmark
25 M
Memory-bounded Memory-bounded
20 20
~ a
w 15 w 15
o o
< =
<10 < 10
= =
5 5
0 —_ = m ‘ ﬂ _— = J— —_ — |_| —_ o - m — H |_| —_ H m _ - |_| = - ﬂ = H
A - T~ Y S YR S SR - S S ¥ P& O W Q& & d D N & A & QO .o &
\Qé@ & ¢ & @,@ & & @@& = 05’@ & &*"%@e" «*&,«*‘ O@a" ‘7@‘“\ & & a"'QOQ@ @\@\‘ ép\ & & Q\;\&
< A o O < N & <
e .\‘\00\ & .‘g}'b & @ VoG (?é. N (32'6\ S
(a) integer (b) floating-point

L2 MPKI for each SPEC CPU2006 benchmark

18

Performance degradation analysis

Microbenchmark

Listing 1. Microbenchmark code
int A[N][CACHE_LINE_SIZE];
int B[N][CACHE_LINE_SIZE];
while (1) {
for (1=0; 1< (#misses/2); 1++)

{

}

for (i=0; i< (#nops; i++) {
asm (" nop”);

}

A[1][0] = B[1]1[0]:

Mimic the behavior of both
memory-bounded and L2-
bounded.

Setting the CACHE_LINE_SIZE
and N parameters according to
the target cache

19

Performance degradation analysis

Degradation due to memory contention (l)

IPC degradation (%)

D42 MPKI @23MPKI B10MPKI @3 MPKI 042 MPKI E23MPKI B10MPKI B3 MPKI
70 70
60 60
50 - £ 50
< -
40 = 40
B
30 w 30
g
‘ H‘ H‘L H[E l H&
; WL p il Il
0 H-"—. SRR TR H_'- H_. H-"- 0 LT o TR e P L [T e (e . M T 110N
o o 2 o & d £ & o > O A o
& ¢ & 35‘5‘ {;&@ bb\ & & & & & @Q > v"&\\é” & be,%\ Q° a""\\\‘ *Q & S ‘-\@&
Py % ~o &3?’ Y °<°° \m° & & 1?' ¢;° & & N K
Q RS & 9 f..'b %
(a) integer (b) floating-point

IPC degradation due to memory contention varying the MPKI of the co-runners

* Commonly, the lower the MPKI of the benchmark, the lower IPC degradation.

20

Performance degradation analysis

Degradation due to memory contention (l)

O42MPKI @23MPKI ®10MPKI m@3MPKI O042MPKI O23MPKI E10MPKI @3 MPKI
70 70
60 i 60
£ 50 £ 50 w
5 S I
£ 40 = 40 1
B B
& 30 & 30
L S I
g 20 g 20
P [ﬂ. . [N [
0 Dl_ i e D] D]-_ o1 o AN | [l . , [Hh.”'.
S . N
‘\«‘Q @b ‘<> S @“ ‘&Q é& @(\6 'S‘Q:’ @é? t“\\ ¢ =§° ® 'bd-, Q‘!\ \Q?Jb 'b@b Q?\\ Q\é A@A c)S\\ N <§‘\k ‘0@ “;{\ &
§° Y 6\ ’bo’\, 'b(\ & & 2 & & XS F R & F
& A 6‘? o & P &L 9 o LA S L 4
< ¥ g & &
(a) integer (b) floating-point

IPC degradation due to memory contention varying the MPKI of the co-runners

* Commonly, the lower the MPKI of the benchmark, the lower IPC degradation.
* Performance degradation is over 50% in some benchmarks and high MPKI of the
co-runners.

21

Performance degradation analysis

Degradation due to memory contention (l)

O42MPKI @23MPKI ®10MPKI m@3MPKI O042MPKI O23MPKI E10MPKI @3 MPKI
70 70
60 B 60
£ 59 - £ 59 - }
5 5
= 40 = 40 I [
B B
& 30 & 30
L S I
g 20 g 20
. m- . i i DA T
0 I:Il_ Ll [I:IL I:I:. D:h_ 0 [. ”‘-_‘ Mo ﬂ_h I_l—h.
s < >
<& & R A @ & & ¥ R &SN G
m\Q & ~<§° & ‘ov‘ & L FFESSFTE L@ S & .
e§° ¢ “6\ c;>°° & \'a“ & ¢ F T C TSP &
< ¥ g & &
(a) integer (b) floating-point

IPC degradation due to memory contention varying the MPKI of the co-runners

* Commonly, the lower the MPKI of the benchmark, the lower IPC degradation.
* Performance degradation is over 50% in some benchmarks and high MPKI of the

co-runners.
* A few benchmarks are poorly affected by contention.

22

Performance degradation analysis

Degradation due to memory contention (l)

O42MPKI @23MPKI ®10MPKI m@3MPKI O042MPKI O23MPKI E10MPKI @3 MPKI
70 70
60 - 60
£ 50 " £ 50
c c
Q Q
= 40 = 40
E ¥
& 30 & 30
(7] 1]
3 S I
© 20 o 20
a a
. [ﬂ. [LL . l ﬂu l J Hi. Il
U:u_ i [rine D] [h._ 0 ma LM [0 P [(O [[
& R 2 N &
.\)Q & ‘<><° N u\ R & L & &S FO ¥« 3 N)
o © ks ¢ g & & &Y R R AC)
e}{o & .(\6‘ d)@ & & \,b(\ r’q’c ‘0“?\ @ o o;o é‘)" & ° ¥ 0 S @ LY xS ,_,Q‘Q
< N ® & &
(a) integer (b) floating-point

IPC degradation due to memory contention varying the MPKI of the co-runners

* Commonly, the lower the MPKI of the benchmark, the lower IPC degradation.
* Performance degradation over 50% in some benchmarks and high MPKI of the co-

runners.
* A few benchmarks are poorly affected by contention.
* Performance degradation is over 20% in most benchmarks and different MPKI of

the co-runners.

23

Performance degradation analysis

Degradation due to memory contention (1)

Emem-benl @Emem-ben2 ®Emem-benl+2 Omem-ben 1+2+3 Bmem-benl M@Emem-ben2 MEmem-benl+2 DOmem-ben 1+2+3
70
60
= =
2 o
= =
X :
g &
o ©
4 4
(a) integer (b) floating point
IPC degradation due to memory contention varying the number of co-runners
] Memory-bounded
Four scenarios are analyzed: . Benchmark . microbanchmark
‘ Main memory ‘ ‘ Main memory ‘ | Main memory ‘ | Main memory |
3MBL2 3MBL2 3MBL2 3MBL2 3MBL2 3MBL2 3MBL2 3MBL2
mem-b inl mem-b in 2 mem-b in 1+2 mem-b in 1+2+3

24

Performance degradation analysis

Degradation due to memory contention (1)

Emem-benl @Emem-ben2 @®mem-ben 142 Omem-ben 1+2+3 Bmem-benl @Emem-hen2 BEmem-ben1l+2 DOmem-hen 1+2+3

70

60

§50
£ 40 -

;30
J-’ —§20 :

10

- H ol _I]J] A,
-&Q

3 o & o d D N g o+ o el
((\ ’b&‘)& ,Lbb:\ ’b‘;\? 5’ é’b‘\ “\'b‘k © ((\Q:’ é\ \}f-.vé\q (Qb v9® \\ﬁ; 6\ b@% Q\Q’ -\"8\\0\)\\ QQ«Q\O&' ‘\06\ “\{\ ‘(\\(‘*’
N 3 Q & <] 3 X
AN ‘00\:) AN 0(0 +’§b ‘:‘Q?‘ A & Q} 'bé‘\) & C e((\ K
A <

(a) integer (b) floating point

IPC degradation due to memory contention varying the number of co-runners

* Some benchmarks suffer higher IPC degradation when the co-runner runs in
the other bi-core, since memory is more frequently accessed.

25

Performance degradation analysis

Degradation due to memory contention (1)

Emem-benl @Emem-ben2 @®mem-ben 142 Omem-ben 1+2+3 Bmem-benl @Emem-hen2 BEmem-ben1l+2 DOmem-hen 1+2+3

%)

IPC degradation (%

*HJIJI - j.ﬂ LAl l

& > O & & A QR & DA XD oA Qw0
& ¢ & & S TS FFT L PSS &,
& & © P & @ & S W @ L & & Q&N S
« & N FFE T FETE TS F S =
¥ + 1%d [C:d
(a) integer (b) floating point

IPC degradation due to memory contention varying the number of co-runners

* Some benchmarks suffer higher IPC degradation when the co-runner runs in
the other bi-core, since memory is more frequently accessed.

» Other benchmarks suffer higher IPC degradation when the co-runner runs in
the same bi-core. This can be caused by L2 cache conflicts or L2 bandwidth.

26

Performance degradation analysis

Degradation due to memory contention (1)

70

%)

IPC degradation (¢

Emem-benl @Emem-ben2 @®mem-ben 142 Omem-ben 1+2+3 Bmem-benl @Emem-hen2 BEmem-ben1l+2 DOmem-hen 1+2+3
70
60
£ 50
c
k=]
< 40 -
'U
nn30 ‘
U
©
v 20 -
EL
I 10
L
<(\ é‘% ‘\@6‘ b"‘ (\‘_QQ -31@ 5} ‘é\b @\e." &Qg—f’ é\\ ,76&@("’ @ ..,;é \\ \e"" ‘\(b"\ \\QQ«Q & & A\(\-\?’
AN RN S &t @ & & FF & € & & &
& d & & © M & °
(a) integer (b) floating point

IPC degradation due to memory contention varying the number of co-runners

* Some benchmarks suffer higher IPC degradation when the co-runner runs in
the other bi-core since memory is more frequently accessed.

» Other benchmarks suffer higher IPC degradation when the co-runner runs in
the same bi-core. This can be caused by L2 cache conflicts or L2 bandwidth.

* In the common case, both degradations are similar.

27

Performance degradation analysis

Degradation due to L2 contention

IPC degradation (%)

O133MPKI O80MPKI E40MPKI E10MPKI @133MPKI @80MPKI m40MPKlI m 10 MPKI
14 — 14
12 12 -
10 £ 10 -
<]
8 S 8
®
6 S 6
3 4
4 4
. | o M o ko | ha i
5 s & s * & N) I T o & {\ >
& Q' (o4 < & & F &£ & R P & RS & &L Q, > \0 <& \)\ Q & oF
80?5\ o © € %S’ Q®& &% o’b& \@,@v @(\Q‘ ¥ ,bo‘? Qeé *‘-p @ 6\ 2’& %06\ ‘? \g}\ bq‘ S (?\ @é’(® 9‘3‘\\
X &
Q?» \\\Qo. o 2 o 1
(a) integer (b) floating-point

IPC degradation due to memory contention varying the MPKI of the co-runners

* Only the benchmark and one co-runner are involved.

28

Performance degradation analysis

Degradation due to L2 contention

O133MPKI O80MPKI E40MPKI E10MPKI @133MPKI @80MPKI m40MPKlI m 10 MPKI
14 — 14
12 12 |»
= 10 I =10
E c
2 <]
5 8 5 8
3 E
@ 6 % 6 -
L] 9
- S 4
g 4 4
: | M o ko | ha il
N 'y 5 < +)) O N &G A T QO &P
F @ ¢ & ¥ S LELdFLLES S NS FTPEE S S
& A % & & @ & M & S o & @ & & \\‘f» & ¥ K & QS &
?1‘@ ° ¢ ‘0@ ’ o\."’b(\ o 0‘5\(\ \'b& ¢ ‘oq‘\ ¢ @ %o C‘Q‘: & K g & - =
Q ¥ 2 <)
(a) integer (b) floating-point

IPC degradation due to memory contention varying the MPKI of the co-runners

* Only the benchmark and one co-runner are involved.
* Three benchmarks present high IPC degradation with an L2-bounded co-
runner over 10%.

29

Performance degradation analysis

Degradation due to L2 contention

O133MPKI O80MPKI BE40MPKI E10MPKI @133 MPKI @80MPKI m40MPKlI m10 MPKI
14 — 14
12 12
=10 =10 n
S 5
z 8 5 8
B B
Eﬂ 6 = 6
-] S 4
g 4 g
'] o B B
o | — [T [h. . h Ta
5 S -] Q < O N G A & Q0 «© @ {\
& ¢ &8 & é‘« R 0‘\‘?‘2’“"@'&“0-"’@’3\@@0\«0 g
& > % & N '\- & > (5 &) &
«F v %gé & o,b&' \Q,Lb“ & Y q>° & @.‘@ o?& & %06‘ 0,.}?‘ S ¥R Qo db\ &Y @ 450‘
Q?» \\\Qo. o +-‘3.\ & «®
(a) integer (b) floating-point

IPC degradation due to memory contention varying the MPKI of the co-runners

* Only the benchmark and one co-runner are involved.

* Three benchmarks present high IPC degradation with an L2-bounded co-
runner over 10%.

» About half of the benchmarks present an IPC degradation close (or over) 5%
due to L2 bandwidth.

30

Performance degradation analysis

Degradation due to L2 contention

0133 MPKI O80MPKI BE40MPKI H10MPKI O133MPKI @80OMPKI m40MPKI m10MPKI
14 — 14
12 12
= 10 £ 10
| = c
2 o
5 8 5 8-
3 E
& 6 g ©
@ L
g 4 :4
: I i T M I hm
0 Il — D:h o 8 &I
A A N N oS L @ O D N & A o & {\
F & & ¢ & & F &€ g PGS S & & K LT SN & &
i v eSS & & < & T & & & & & TG F S “ d Q
& A & & & 8 & S
q) £ & ¢
(a) integer (b) floating-point

IPC degradation due to memory contention varying the MPKI of the co-runners

Although this degradation is lower than the caused by main memory
contention, since the trend is to increase the number of cores and shared
caches we claim the necessity of a cache-hierarchy bandwidth aware
scheduling and not only memory aware scheduling.

31

Cache-hierarchy memory aware
scheduling

Algorithm 1 Cache-hierarchy memory aware scheduler

Block the executing processes and place them at the queue tail.

for cach process P executed in the last quantum do
for each cache level L do
Update BTR for process P in cache level L
end for
end for
while there are unfinished jobs do
BW remain = average memory bandwidth
Select the process at the queue head and update BW rermain
while selected processes < cores do
select the process that maximizes
FITNESS(p) = !

BWremain r P
CPURcmain —BW required

and update BW remain and CPUgemain
end while
for i = maxr_cache_level downto level 2 do
. BTR of L(i—1)
AVGgerr(L;)= Z

#Caches at Li

for cach cache in level L; do
B\VRmnm&n = AVGBTR(LJZ)
while #selected processes for the cache < # cores
sharing the cache do
Select the process that maximizes the FITNESS(p)
function and update BW remain and CPUgemain
end while
end for
end for
Unblock the processes, and allocate them in the chosen core.
Sleep during the quantum.
end while

Addresses the target bandwidth
at each contention point.

Schedules the processes in n
steps (as many as cache levels).

Top-down approach: from the
MM to the L1 cache.

— Final step allocates the
processes to cores.

32

Cache-hierarchy memory aware
scheduling

Algorithm 1 Cache-hierarchy memory aware scheduler

:...!.3.19.@.'?...‘.1.1.?..F???F?E.l}.t.i.1.15;'.]?IQE??:?E‘.?...f!!?.Cl.]?.l.f.i.‘.?.t.‘..I.f.l.t.‘.fl!..@.‘..!.h‘?..?lk‘.‘?..tl.t‘...tﬁi.l;..i ° W h en a q uantum ex p | res

i for cach process P executed in the last quantum do
i for each cache level L do

Update BTR for process P in cache level L
i end for

while there are unfinished jobs do
BW remain = average memory bandwidth

Select the process at the queue head and update BW rermain ° Upd ate the BTR Va|ueS in eaCh CaChe

while selected processes < cores do
select the process that maximizes Ievel for eaCh exeCUted process'
= 1
PN = [o o
o, nd update BWeernain and CPURcrnan * Use these values as predicted BTR for
for : = max_cache_level downto level 2 do the next quantum.

BTR of L(i—1)
#Caches at Li

AVGgerr(L;)=

for cach cache in level L; do
BWRemain = AVGBTR(LZ)
while #selected processes for the cache < # cores
sharing the cache do
Select the process that maximizes the FITNESS(p)
function and update BW remain and CPUgemain
end while
end for
end for
Unblock the processes, and allocate them in the chosen core.
Sleep during the quantum.
end while

33

Cache-hierarchy memory aware
scheduling

Algorithm 1 Cache-hierarchy memory aware scheduler

Block the executing processes and place them at the queue tail.
for cach process P executed in the last quantum do
for each cache level L do
Update BTR for process P in cache level L
end for
end for
R e S i ol
BW remain = average memory bandwidth
Select the process at the queue head and update BW rermain
while selected processes < cores do
select the process that maximizes
FITNESS(p) = !

BWremain r P
CPURcmain —BW required

and update BW remain and CPUgemain
....... ENLWHILE et
for i = maxr_cache_level downto level 2 do
BTR of L(i—1)
#Caches at Li

AVGgerr(L;)=

for cach cache in level L; do
B\VRmnm&n = AVGBTR(LJZ)
while #selected processes for the cache < # cores
sharing the cache do
Select the process that maximizes the FITNESS(p)
function and update BW remain and CPUgemain
end while
end for
end for
Unblock the processes, and allocate them in the chosen core.
Sleep during the quantum.
end while

BW ...in IS set to the total
number of memory requests
divided by the total execution
time of the processes in stand-
alone execution.

Unfinished jobs are kept in a
software queue structure.

The process at the queue head is
always selected to avoid process
starvation.

34

Cache-hierarchy memory aware
scheduling

Algorithm 1 Cache-hierarchy memory aware scheduler

Block the executing processes and place them at the queue tail.

for cach process P executed in the last quantum do

for each cache level L do
Update BTR for process P in cache level L

end for

end for

R e S i ol
BW remain = average memory bandwidth
Select the process at the queue head and update BW rermain

i select the process that maximizes

{ FITNESS(p) = 1

BWremain r P
m—BL’L required

i and update BW gerain and CPUgemain

for i = maxr_cache_level downto level 2 do

BTR of L(i—1)
#Caches at Li

AVGgerr(L;)=

for cach cache in level L; do
BWRemain = AVGBTR(LZ)
while #selected processes for the cache < # cores
sharing the cache do
Select the process that maximizes the FITNESS(p)
function and update BW remain and CPUgemain
end while
end for
end for
Unblock the processes, and allocate them in the chosen core.
Sleep during the quantum.
end while

Then, the scheduler selects the
remaining ¢ minus 1 processes that
maximize the Fitness function™.

— That estimates the gap between the

BTRgemain @Nd the predicted BTR of
each process.

BWgomain @and CPUg..... (# of cores)
are updated each time a process is
selected.

The result of this step is the list of
processes to be executed considering
taking into account the MM
bandwidth constraint.

35

* From D. Xu, C. Wu and p.-C. Yew, “On mitigating memory bandwidth contention through bandwidth-aware scheduling”, in PACT 2010

Cache-hierarchy memory aware
scheduling

Algorithm 1 Cache-hierarchy memory aware scheduler

Block the executing processes and place them at the queue tail.
for cach process P executed in the last quantum do
for each cache level L do
Update BTR for process P in cache level L
end for
end for
while there are unfinished jobs do
BW remain = average memory bandwidth
Select the process at the queue head and update BW rermain
while selected processes < cores do
select the process that maximizes

FITNESS(p) = !

BWremain r P
m—BL’L required

and update BW remain and CPUgemain
end.while

for i = maxr_cache_level downto level 2 do

AVG prn(Ls)= Z BTR of L(i—1)

#Caches at Li

for cach cache in level L; do
B\VRmnain = AVGBTR(LZ)
while #selected processes for the cache < # cores
sharing the cache do
Select the process that maximizes the FITNESS(p)
function and update BW remain and CPUgemain
end while
end for
end for

Unblock the processes, and allocate them in the chosen core.
Sleep during the quantum.
end while

For each level in the cache
hierarchy with shared caches:

— AVG_BTR is set to the average
BTR of the selected processes
divided by the number of cache
structures.

— BWremain is set to AVG_BTR
for each cache and the
processes are selected using
the Fitness function, updating
the BW remain and CPU
remain.

— The iteration in the last shared
cache level allocates the
processes to the concrete cores
in its cache structure.

36

Example

1
HATNESS (p) B BWRemain _ BWP .
CPURemain required
Average memory bandwidth = 30 1. Select the first process in the queue:
P Ident PO P1 P2 P3 P4 ‘ P5 P6 P7
BTRL2 12 | 20 o 5 L o K 9 L 15 [25 [8
BTR L1 80 90 25 40 65 ‘ 90 45 70

Selected processes:

Example

Average memory bandwidth = 30

P Ident

BTRL2
BTR L1

FITNESS (p) =

BWRemain
CPURenmin
1. Select the first process in the queue:
PO P1 P2 P3 P4 P5 P6 P7
12 20 5 0 9 15 25 > 8
80 90 25 40 65 90 45 70
Update: BWRremain =30 -12=18 CpuRremain = 3
P1 P2 P3 P4 P5 P6 P7
20 5 0 9 15 25 8
90 25 40 65 90 45 70

Selected processes:

PO
12
80

— BWP?

required

38

xample

1
HATNESS (p) B BWRemain _ BWP .
CPURenmin required
Average memory bandwidth = 30 1. Select the first process in the queue:
P Ident PO P1 P2 P3 P4 P5 P6 P7
BTR L2 12 1+ 20 [~ 5 [0 [9 [15 = 25 | 8
BTR L1 80 90 25 40 65 20 45 70

Update: BWremain = 30 - 12 = 18 CPU Remain = 3

2. Select the process that maximizes the fitness function:

P1 P2 P3 P4 P5 P6 P7
1 20 |+ 5 [0o o o o 15 | 25 L 8
FITNESS (p) = 18
2 _ pwP . 20 25 40 65 90 45 70
3 required
(o | | 4 | [] | o | [wa | |58 | | 85 |

Selected processes:

PO
12
80

xample

1
EILNESS (p) B BWRemain _ BWP .
URem(lin required
Average memory bandwidth = 30 1. Select the first process in the queue:
P Ident PO P1 P2 P3 P4 P5 P6 P7
BTR L2 12 1+ 20 [~ 5 [0 [9 [15 = 25 | 8
BTR L1 80 90 25 40 65 90 45 70

Update: BWemain = 30 - 12 = 18 Cpu Remain = 3

2. Select the process that maximizes the fitness function:

P1 P2 P3 P4 P5 P6 p7
FITNESS (p) = 1 20 | S . o | . o | 15 | 25 L s
P 13_8_ BWr}:zquired 90 25 40 65 90 45 70

‘ 0.07 ‘ | 1 | ‘ 0417 ‘ l 033 ‘ ’ 0.11 ‘ ’ 0.05 \ ‘ 05 ‘

Update: BWRemain =18-5=13 CpURemam =2

P1 P3 P4 P5 P6 P7
20 [+ 0 [+ 9 | 15 |of 25 | 8

90 40 65 90 45 70

Selected processes:

PO P2
12 > 5§
80 25

xample

1
FITNESS (p) =
BWRemain _ BWP
. required
Remain
Average memory bandwidth = 30 1. Select the first process in the queue:
P Ident PO P1 P2 P3 P4 ‘ P5 P6 P7
BTR L2 12 = 20 t» 5 f= 0 | 9 15 > 25 (= 8
BTR L1 80 90 25 40 65 90 45 70

Update: BW remain = 30 - 12 = 18 CpU geman = 3

2. Select the process that maximizes the fitness function:

P1 P2 P3 P4 P5 P6 P7
FITNESS (p) = 1 20 -5 10 o | oo o5 [25 [s
13_8 — BWquuired 90 25 40 65 90 45 70
‘ 0.07 ‘ ‘ 1 ‘ ‘ 0.17 ‘ ‘ 0.33 ‘ ‘ 0.11 ‘ ’ 0.05 ‘ ‘ 0.5 ‘
Update: BWremain = 18 -5 =13 CpUgemain = 2
3. Select the process that maximizes the fitness function:
P1 P3 P4 P5 P& P7
FITNESS (p) = 1 20 = 0 4 9 o 15 o 25 8
% — Ber;quirm 90 40 65 90 45 70
‘ 0.07 ‘ ‘ 0.15 ‘ [0.4 } ‘ 0.12 ‘ ‘ 0.05 ‘ ’ 0.66 ‘

Selected processes:

PO P2
12 > 5

80 25

xample

1
FITNESS (p) =
P BWRemain _ BWP
. required
Remain
Average memory bandwidth = 30 1. Select the first process in the queue:
P Ident PO P1 P2 P3 P4 ‘ P5 P6 P7
BTR L2 12 20 F» 5 (= 0 | 9 15 (> 25 (> 8
BTR L1 80 90 25 40 65 0 45 70
Update: BW gemain = 30 - 12= 18 CpU gemain = 3
2. Select the process that maximizes the fitness function:
P1 P2 P3 P4 P5 P6 P7
1 20 -5l o L o L 15 L 25 L s
FITNESS (p) = 3
= _ BwWP . 90 25 40 65 20 45 70
3 required
‘ 0.07 ‘ ‘ 1 ‘ ‘ 017 ‘ ‘ 0.33 ‘ ‘ 0.11 ‘ ’ 0.05 ‘ ‘ 05 ‘
Update: BWremain = 18 -5 =13 CpUgemain = 2
3. Select the process that maximizes the fitness function:
P1 P3 P4 P5 P8 P7
1 20 > 0 > 9 > 15 = 25 [&
FITNESS (p) = 13
p
5 - BWrequire a 90 40 65 90 45 70
‘ 0.07 ‘ ‘ 0.15 ‘ [0.4 } ‘ 0.12 ‘ ‘ 0.05 ‘ | 0.66 |
Update: BWremain = 13-8=5 CpU remain = 1
Selected processes:
P1 P3 P4 P5 P& PO P2 P7
20 |~ 0 o 9 = 15 = 25 12 | 5 L 8

) 40 65 90 45 80 25 70

xample

Average memory bandwidth = 30

P Ident

BTRL2

BTR L1

1
FITNESS (p) = 3
-~ — BWP .
3 required
1
FITNESS (p) = 13
2 Ber;quired
FITNESS (p) = T
1~ BWrI;quired

1
FITNESS (p) =
BWRemain _ BWP
. required
Remain
1. Select the first process in the queue:
PO P1 P2 P3 P4 ‘ P5 P6 P7
12 20 F» 5 (= 0 | 9 15 25 = 8
80 90 25 40 65 0 45 70
Update: BWgregmain = 30-12=18 CpuRremain = 3
2. Select the process that maximizes the fitness function:
P1 P2 P3 P4 P5 P6 P7
20 | 5 [0 — 9 = 15 = 25 8
90 25 40 65 90 45 70
‘ 0.07 ‘ ‘ 1 ‘ ‘ 017 ‘ ‘ 0.33 ‘ ‘ 0.11 ‘ ’ 0.05 ‘ ‘ 05 ‘
Update: BWremain = 18 -5 =13 CpUgemain = 2
3. Select the process that maximizes the fitness function:
P1 P3 P4 P5 P6 P7
20 +~ 0 - 9 |(>= 15 |—» 25 |+~ 8
90 40 65 90 45 70
‘ 0.07 ‘ ‘ 0.15 ‘ l 0.4 } ‘ 0.12 ‘ ‘ 0.05 ‘ | 0.66 |
Update: BWremain = 13-8=5 CpU remain = 1
4. Select the process that maximizes the fitness function: Selected processes:
P1 P3 P4 P5 P& PO P2 P7
20 |~ 0 o 9 = 15 = 25 12 | 5 L 8
90 40 65 90 45 80 25 70
‘ 0.06 ‘ ‘ 0.5 ‘ ’ 0.25 } ‘ 0.1 ‘ ‘ 0.05 ‘

43

xample

1
FITNESS (p) =
P BWRemain _ BWP
. required
Remain
Average memory bandwidth = 30 1. Select the first process in the queue:
P Ident PO P1 P2 P3 P4 ‘ P5 P6 P7
BTRL2 12 | 20 = 5 (= 0 | 9 15 > 25 (= 8
BTR L1 80 90 25 40 65 90 45 70
Update: BW gemain = 30 - 12= 18 CpU gemain = 3
2. Select the process that maximizes the fitness function:
P1 P2 P3 P4 P5 P6 P7
1 20 -5l o L o L 15 L 25 L s
FITNESS (p) = 73
= _ BwWP . 90 25 40 65 20 45 70
3 required
‘ 0.07 ‘ ‘ 1 ‘ ‘ 0.17 ‘ ‘ 0.33 ‘ ‘ 0.11 ‘ ’ 0.05 ‘ ‘ 05 ‘
Update: BWremain = 18 -5 =13 CpUgemain = 2
3. Select the process that maximizes the fitness function:
P1 P3 P4 P5 P& P7
1 20 > 0 > 9 > 15 = 25 [&
FITNESS (p) = 13
P
5 - Bquuire a 90 40 65 90 45 70
‘ 0.07 ‘ ‘ 0.15 ‘ [0.4 } ‘ 0.12 ‘ ‘ 0.05 ‘ | 0.66 |
Update: BWremain = 13-8=5 CpU remain = 1
4. Select the process that maximizes the fitness function: Selected processes:
P1 P3 P4 P5 P6 PO P2 P7 P3
20 [0 |~ 9 [15 |- 25 L] L] N
FITNESS (p) = 7——— 12 ° 8 0
P
T — BWrequfTed 90 40 65 90 45 80 25 70 40

‘0.06“0.5"0.25“0.1“0.05‘

44

xample

YBTRofL(i—1) }»80+25+70+40

AVGyrp(Ly) = = =107.5

pre(L) # caches at L; 2
P Ident PO P2 P7 P3
BTR L2 12 . 5 L 8 0
L 80 25 70 40

FITNESS (p) =

BWRemain

PURemm‘n

Main memory

— BWP

required

3MBL2

3MBL2

45

xample

1
YBTRof L(i—1) Y80+ 25+70+ 40 FITNESS (p) =
AVG L) = = =107.5 ;
sre(Ld) # caches at L; 2 % - BWr’;quired
1. Set BWRemain = AVGgrr S
Select the process that maximizes the fitness function:
’ P Ident PO P2 P7 P3 Main memory

’ BTR LZJ 12 H~ 5 =+ 8 I o0 3MBL2 | 3MBL2

‘ BTR L1 BN 1 80 25 70 40
, P) = 11075 ,
75— BWquirea

’ 004 | ’ 0.03 ‘ ’ 0.06 ’ ’ 0.07 ‘

xample

YBTRof L(i—1) X80+ 25+70+40
AVG L) = =
pre(L) # caches at L;

=107.5
2

1. Set BWRemain =AVG BTR
Select the process that maximizes the fitness function:

P Ident PO P2 P7 P3

BTR L2 12 | 5 > 8 |3} 0

BTRLY 1 80 25 70 40

: FITNESS (p) = 7575 . .

% required ’ 0.04 I ’ 0.03 ‘ ’ 0.06 | | 0.07 ‘

Update: BW remgin = 107.5 - 40 = 67.5 CPU Remain = 1

PO P2 P7
12 5 8
80 25 70

FITNESS (p) =

1

BWRenmin

Remain

Main memory

BWP

r

equired

3MBL2

3MBL2

P3

47

xample

YBTRofL(i—1) }»80+25+70+40
AVGpra(Ly) = #cachesatL; 2 =107.5

1
FITNESS (p) =
BWRemain — BWE .
CPUgemain required
1. Set BWRemain = AVGgTr
Select the process that maximizes the fitness function:
P Ident PO P2 P7 P3 T er—
BTRL2 12 | 5 8 = 0 3MBL2] 3MB L2 |
BTRL1 FITNESS () 1 80 25 70 40 P3
: P)= 11075 ,
7 = BW quired ‘ 0.04 ‘ ‘ 0.03 ‘ | 0.06 \ 0.07 ‘

Update: BW ggmain = 107.5-40=67.5 CpuU gemain = 1

2. Select the process that maximizes the fitness function:

" P2 i [wainmemay |
12 5 8 [3MB L2 [IMB L2]
FITNESS (p) = ﬁ 80 25 70 P3
T~ BWrequired ’ 0.08 ‘ ‘ 0.02 ‘ [0.4 ‘

48

xample

YBTRofL(i—1) }»80+25+70+40
AVGpra(Ly) = #cachesatL; 2 =107.5

1
FITNESS (p) =
BWRemain — BWE .
CPUgemain required
1. Set BWRemain = AVGgTr
Select the process that maximizes the fitness function:
P Ident PO P2 P7 P3 T er—
BTRL2 12 | 5 8 = 0 3MBL2] 3MB L2 |
BTRL1 FITNESS () 1 80 25 70 40 P3
: P)= 11075 ,
7 = BW quired ‘ 0.04 ‘ ‘ 0.03 ‘ | 0.06 \ 0.07 ‘

Update: BW ggmain = 107.5-40=67.5 CpuU gemain = 1

2. Select the process that maximizes the fitness function:

= " . [wainmemay |
12 5 8 [smBL2 [_ameLz |
FITNESS (p) = ﬁ 80 25 70 Pz (B7
T~ BWisquirea ‘ 008 ‘ ‘ 002 ‘ | o4 ‘
PO P2
12 |+ 5
80 25

49

xample

1
YBTRofL(i—1) }»80+25+70+40 FITNESS (p) =
AVGprg(Ly) = = =107.5 P .
pre(L) # caches at L, 2 BWeemain _ we .
CPURemm‘n required
1. Set BWRemain = AVGgTr
Select the process that maximizes the fitness function:
P Ident PO P2 P7 P3 Main memory
BTRL2 12 | 5 8 = 0 3MBL2] 3MB L2 |
L 1 80 25 70 40 P3
FITNESS (p) = 157 o
2 required ‘ 0.04 ‘ ‘ 0.03 ‘ | 0.06 ‘ \ 0.07 ‘
Update: BW ggmain = 107.5-40=67.5 CpuU gemain = 1
2. Select the process that maximizes the fitness function:
PO P2 P7 Main memory
12 L, 5 L 8 [3MB L2 [3MB L2 |
1 P3 . (P7
FITNESS (p) = == 80 25 70
) _ BWP)
1 required ‘ 0.08 ‘ ‘ 0.02 ‘ | 04 ‘
3. Set BWRremain = AVGgTR
Select the process that maximizes the fitness function:
PO P2 [Main memory |
[3MBL2] [3MBL2 |
12 |~ 5
P3) (P7
B 1 80 25
FITNESS (p) = 575 .
2 BW,equired 0.04 0.01

xample

BTRof L(i—1 80 + 25+ 70 + 40
AVGpra(Ly) = 2# cachfes Eu‘ L,)2 2 - 107.5
1. Set BWRemain = AVGgTr
Select the process that maximizes the fitness function:
P Ident PO P2 P7 P3
BIRICS 12 [5 [8 > 0
BTRL1 FITNESS (g) = 1 80 25 70 40
1027‘5 — BWoquired ‘ 0.04 ‘ ‘ 003 ‘ | 0.06 ‘ \ 0.07 ‘

Update: BW ggmain = 107.5-40=67.5 CpuU gemain = 1

2. Select the process that maximizes the fitness function

PO P2 p7

12 — 5 - 8

FITNESS (p) = ﬁ 80 25 o
T~ BWisquirea ‘ 0.08 ‘ ‘ 002 ‘ | o4 ‘

3. Set BWRremain = AVGgTR
Select the process that maximizes the fitness function:

0.01

PO P2
12 5
1 80 25
FITNESS (p) = 1075 .
2 EWrequi‘red

Update: BW gemain = 107.5-80=27.5 Cpu gemain = 1

P2

25

1
FITNESS (p) =

BWRemain P
CPU - BW,

. required
Remain q

Main memory
3MBL2]

P3

3MBL2

Main memory
[3MB L2 [

3MB L2 |
P3, (PT
[Main memory |
[3MBL2] [3MBL2 |
P3 P7 PO

51

Xxample

YBTRof L(i—1) X 80+25+70+40

AVGprp(Ly) = =

P Ident

BTRL2
BTR L1

caches at L; 2

=107.5

1. Set BWRemain = AVG gTR
Select the process that maximizes the fitness function:

PO P2 P7 P3
12 5 8 0
FITNESS) 1 80 25 ‘ 70 40
P)= 11075
7~ BWiequirea | 0.04] | 0.03 | { 0.06] | 0.07 J
Update: BW rgmain = 107.5-40=67.5 Cpu remain = 1
2. Select the process that maximizes the fitness function:
PO P2 P7
12 5 8
FITNESS (p) = 675; 80 25 70
222 P
T~ BWrequirea | 0.08 ‘ | 0.02 ‘ | 0.4
3. Set BWRemain =AVG BTR
Select the process that maximizes the fitness function:
PO P2
S — 5
1 80 25
FITNESS (p) = 575 o
Update: BWgemain = 107.5-80=27.5 Cpu remain = 1
4. Select the process that maximizes the fitness function:
1 P2
FITNESS (p) =
27.5 5
1 BWr‘;quired
25

FITNESS (p) =

BWRemain

CP Remain

— BWP?

Main memory |

required

3MBL2] [3MBL2

Main memory

[swez | [_sweLz

Main memory

3MBL2] [3MBL2

P3) (P7 b@‘,

‘ Main memory

3MBL2 | [3mMBL2

P3) [P7 PO

52

xample

il
Y BTRof L(i—1) Y80+ 25+70+40 =
AVGyrp(L) = = —— o= > =107.5 FITNESS (p) BWeemain _ gyP
: CPURemain B required
1. Set BWRemain =AVG BTR
Select the process that maximizes the fitness function:
P Ident PO P2 P7 P3 Main memory
BTRL2 12 >+ 5 (> 8 | 0 [MB L2] [3mBL2 |
BTRL1 1 80 25 70 40
FITNESS (p) = 1075
; : P
7~ BWrequirea ‘ 0.04 | ’ 0.03 | ‘ 0.06 | | 0.07 |
Update: BW rgmain = 107.5-40 =67.5 Cpu remain = 1
2. Select the process that maximizes the fitness function:
PO P2 P7 ‘ Mainﬁ\ien]g!y ‘
122 - 5 [~ 8 [] [_3wez__]
1
= 80 25 70
FITNESS (p) = 675
1 i ’ 0.08 ‘ ‘ 0.02 | | 04 ‘
3. Set BWRemain = AVGgTrR
Select the process that maximizes the fitness function:
PO P2 Main memory
[3MBL2] [3MBL2 |
S — S
P3) (P7
1 80 25
FITNESS (0) = 5%
T BWr’:zquired 0.01
Update: BW ggmain = 107.5-80 =275 Cpu remain = 1
4. Select the process that maximizes the fitness function:
. P2 [Mainmemoy |
FITNESS (p) = 75 p— 5 [3smBL2 | [3mBL2 |
1 required Bs P3 P7 PO

Evaluation methodology

e Evaluation is performed in the experimental
platform.

* Implement the proposal in a user level scheduler (in
a real machine)
— At the end of each quantum, the scheduler uses:
 PTRACE_ATTACH to block the execution of the processes.

 PTRACE_DETACH to unblock the execution of the processes.
* Sched_setaffinity to allocate processes in cores.

— To evaluate the performance, a set of 10 mixes with
eight benchmarks was designed.

Evaluation methodology

 The performance of the proposal is evaluated against:
— Memory-aware scheduler *.
— Linux OS scheduler.

 The schedulers differ in the selection process:

— Memory-aware scheduler selects proper processes but do
not allocate them to cores.

— Cache-hierarchy scheduler selects the processes and
allocates them to cores.

*D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory bandwidth contention through bandwidth-aware scheduling”, in PACT 2010

Scheduler performance
Speedup

B Memory-aware @ Cache-hierarchy aware

ﬂldilhi

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix9 Mix 10

Speedup (%)

Speedup over native Linux OS

050-75 O75-100 m>125

@m0-25 ®25-50

aleme-9)

aieme- |\

Mix 10

aleme-)

JeMe-|A

Mix 9

aleme-)

leme-|A

Mix 8

aieme-)

dieme-|A

Mix 7

aleme-)

IeME-|A]

Mix 6

aieme-)

aleme-|A

Mix 5

aieme-9)

aieme-|Al

Mix 4

aieme-)

2leMe-|A|

Mix 3

aleme-)

IeME-|A

Mix 2

aleme-)

2IEME-|A]

Mix 1

BTR differences between the L2 shared caches

57

Aduanbal4

Scheduler performance

BTR balancing: histogram

Scheduler performance

BTR balancing: average

BTR |, difference

70

60

50

O Memory-aware M@ Cache-aware

A P

—

Mix1l Mix2 Mix3 Mix4d Mix5 Mixe Mix7 Mix8 Mix9 Mix 10

Average and variance of the difference between the BTRs of the L2 caches

58

Scheduler performance

BTR L2 difference evolution

300
Memory-aware scheduling

250

]
Q
Q

BTR difference
-
{9,
=)

[y
=
Q

T T
N “ N} “ O “ N}
u v A\ oy & A2

Quantum

BTR difference
=
(¥,)
o

[s) & (8]] QS
s o Qv A2

Quantum

BTR L2 difference evolution time in mix 2

Scheduler performance

BTR L2 difference evolution

300
Memory-aware scheduling
[

BTR difference
[
{9,
=)

100
50
0 T
Q QQ 5,';{’) 'O,?Q :;,’;\‘9
Quantum
300

Cache-hierarchy aware scheduling

250

BTR difference
=
U
o

Quantum

BTR L2 difference evolution time in mix 2

60

Scheduler performance

BTR L2 difference evolution

300
Memory-aware scheduling

300

250

200

£ 150 -

o
5 100

BTR L2 difference evolution time in mix 2

61

Scheduler performance

BTR balancing on mix 2

80

BTR |, difference

60

40 -

20 -

O Memory-aware scheduling

Cache-hierarchy aware scheduling

1

l

A/\VM\/\J\/\ W

5(0

60 60 10 %0 o

Quantum

BTR L2 difference in the first 160 quanta

fil ”'W\ ’A

62

Conclusions

 Performance can drop due to bandwidth contention
located at different levels of the memory hierarchy.

* The current processor industry trend increases the
number of contentions points.

* Memory aware bandwidth jobs only attack main
memory contention point.

* Cache-hierarchy bandwidth aware policy:
— Attacks all the contention points of the cache hierarchy.

— Increases the performance of the evaluated mixes 30%
respect to the memory bandwidth aware scheduling.

 Thank you very much for your attention

e Questions?

Understanding Cache Hierarchy
Contention in CMPs to Improve Job
Scheduling

Julio Sahuquillo

Universitat Politecnica de Valencia
Spain

Evaluation methodology

To deal with the different execution time of the
benchmarks, a benchmark execution is set to the
number of instructions required to achieve a execution
time of 120 seconds in stand alone execution.

Otherwise, a long job first policy would provide the
best performance in most mixes.

The number of complete executions and instructions of
the last execution is measured and recorded offline.

If the execution time of the benchmarks is larger, the
scheduler kills it when the target instructions are
executed. If it is lower, the scheduler re-execute the
benchmarks several times.

Evaluation methodology

* To evaluate the performance, a set of 10 mixes with
eight benchmarks was designed.

 Mixes present an ideal bandwidth (IABW) falling in
between 20 and 40 trans/usec.

— Lower IABWs detract the necessity of a memory-aware
scheduler since contention is low.

— Higher IABWs cannot take advantage of memory-aware

scheduling since all the scheduling possibilities reach high
contention.

Performance degradation analysis

Degradation due to memory contention (1)

Emem-benl @Emem-ben2 @®mem-ben 142 Omem-ben 1+2+3 Bmem-benl @Emem-hen2 BEmem-ben1l+2 DOmem-hen 1+2+3

%)

IPC degradation (¢
rada

—

%30

10
_n_ﬂ j - j.ﬂ | 1)
R & P

o S o > @ & I P S S N

O @] 2~ AN er A N A x> &

(“ & ’b§) ’Lbb‘ & & {\ (}g\\ “{8\ <& ,\4\ &16\ & ‘7‘,9 ‘}\": (\(\\ & OQ\ IOV & &

§ S & o P & T o FF K
¥ +® 8 b@" &2

(a) integer (b) floating point

IPC degradation due to memory contention varying the number of co-runners

* Some benchmarks suffer higher IPC degradation when the co-runner runs in

the other bi-core since memory is more frequently accessed.
» Other benchmarks suffer higher IPC degradation when the co-runner runs in
the same bi-core. This can be caused by L2 cache conflicts or L2 bandwidth.

* In the common case, both degradations are similar.
* The IPC degradation difference is lower from 1 to 2 co-runners than from 2
to 3 co-runners, since 2 co-runners are close to saturate the bandwidth.

68

