
Understanding Cache Hierarchy
Contention in CMPs to Improve Job

Scheduling

J. Feliu, Julio Sahuquillo, S. Petit and J. Duato

Universitat Politècnica de València
Spain

Outline

• Introduction

• Experimental platform

• Benchmark characterization and performance
degradation analysis

• Cache-hierarchy bandwidth aware scheduler

• Methodology and evaluation

• Conclusions

2

Introduction

• Multi-core processors have
become the common
implementation for high-
performance microprocessors.

• CMPs main performance
bottleneck lies in the main
memory latency.

3

Introduction

• As the number of cores and
multithreading capabilities
increase, the available
memory bandwidth is
becoming a major concern.

4

Introduction

• As the number of cores and
multithreading capabilities
increase, the available
memory bandwidth is
becoming a major concern.

5

Introduction

• Memory bandwidth aware
schedulers can help to
reduce memory contention
by avoiding the concurrent
execution of memory-hungry
applications.

6

Introduction

What about other
contention points?

7

Introduction
Main contributions

• Two main contributions:

– Characterize the sensitiveness of the SPEC
CPU2006 benchmarks to each contention point in
the memory hierarchy of a quad-core Intel Xeon
which claims the necessity of the proposal.

– Propose a scheduling approach for multi-core
processors with shared caches to improve the
performance.

8

Experimental platform
Specifications

CPU Intel Xeon X3320

Frequency 2.5 GHz

Number of cores 4

Multithreading No

L1 cache Code L1: 4 x 32 KB
Data L1: 4 x 32 KB

L2 cache 2 x 3 MB

Main memory 4 GB DDR2

Operating system Fedora Core 10
Linux

Kernel 2.6.29 with
perfmon patch

Software pfmon, libpfm

Benchmarks Spec CPU2006 with
train input

Hardware specifications Software specifications

9

Experimental platform
Performance counters

• A set of special-purpose registers built into modern processors.

• Store the counts of hardware-related activities within computer
systems.

• Keep track of the events in a per process basis.

Monitored event Information

UNHALTED_CORE_CYCLES Cycles

INSTRUCTIONS_RETIRED Instructions

L2_RQSTS:MESI L1 misses

LAST_LEVEL_CACHE_MISSES L2 misses

10

Experimental platform
Intel Xeon X3320

Xeon X3320 memory hierarchy 11

Experimental platform
Intel Xeon X3320

Contention points related to the memory subsystem in the Xeon X3320
12

Cache hierarchy in the IBM Power 5

Power 5 memory hierarchy

13

Cache hierarchy in the IBM Power 5

Contention points related to the memory subsystem in the IBM Power 5
14

Cache hierarchy in the IBM Power 5

Contention points related to the memory subsystem in the IBM Power 5

The more contention points,
the more performance enhancement
is expected.

15

Benchmark characterization and
performance degradation analysis

• Benchmark characterization
– Classify the benchmarks as

memory-bounded or L2-bounded.

– Build “interesting” mixes.

• Estimation of the performance degradation
due to main memory and L2 contention
– Degradation over 60% due to main memory and

around 13% due to L2 contention.

– Motivate the work.

16

Benchmark characterization
L1 MPKI & L2 MPKI

17

Benchmark characterization
L1 MPKI & L2 MPKI

18

Performance degradation analysis
Microbenchmark

• Mimic the behavior of both
memory-bounded and L2-
bounded.

• Setting the CACHE_LINE_SIZE
and N parameters according to
the target cache, the
microbenchmark can miss in
that cache, hitting in the lower
levels.

• In the Intel Xeon X3320:
– Cache line size: 256 bytes (64

integers)
– L2-bounded: N= 128
– Memory-bounded: N = 12288

19

Performance degradation analysis
Degradation due to memory contention (I)

• Commonly, the lower the MPKI of the benchmark, the lower IPC degradation.

20

Performance degradation analysis
Degradation due to memory contention (I)

• Commonly, the lower the MPKI of the benchmark, the lower IPC degradation.
• Performance degradation is over 50% in some benchmarks and high MPKI of the
co-runners.

21

Performance degradation analysis
Degradation due to memory contention (I)

• Commonly, the lower the MPKI of the benchmark, the lower IPC degradation.
• Performance degradation is over 50% in some benchmarks and high MPKI of the
co-runners.
• A few benchmarks are poorly affected by contention.

22

Performance degradation analysis
Degradation due to memory contention (I)

• Commonly, the lower the MPKI of the benchmark, the lower IPC degradation.
• Performance degradation over 50% in some benchmarks and high MPKI of the co-
runners.
• A few benchmarks are poorly affected by contention.
• Performance degradation is over 20% in most benchmarks and different MPKI of
the co-runners.

23

Performance degradation analysis
Degradation due to memory contention (II)

mem-b in 1 mem-b in 2 mem-b in 1+2 mem-b in 1+2+3

Four scenarios are analyzed:

24

Performance degradation analysis
Degradation due to memory contention (II)

• Some benchmarks suffer higher IPC degradation when the co-runner runs in
the other bi-core, since memory is more frequently accessed.

25

Performance degradation analysis
Degradation due to memory contention (II)

• Some benchmarks suffer higher IPC degradation when the co-runner runs in
the other bi-core, since memory is more frequently accessed.
• Other benchmarks suffer higher IPC degradation when the co-runner runs in
the same bi-core. This can be caused by L2 cache conflicts or L2 bandwidth.

26

Performance degradation analysis
Degradation due to memory contention (II)

• Some benchmarks suffer higher IPC degradation when the co-runner runs in
the other bi-core since memory is more frequently accessed.
• Other benchmarks suffer higher IPC degradation when the co-runner runs in
the same bi-core. This can be caused by L2 cache conflicts or L2 bandwidth.
• In the common case, both degradations are similar.

27

Performance degradation analysis
Degradation due to L2 contention

• Only the benchmark and one co-runner are involved.

28

Performance degradation analysis
Degradation due to L2 contention

• Only the benchmark and one co-runner are involved.
• Three benchmarks present high IPC degradation with an L2-bounded co-
runner over 10%.

29

Performance degradation analysis
Degradation due to L2 contention

• Only the benchmark and one co-runner are involved.
• Three benchmarks present high IPC degradation with an L2-bounded co-
runner over 10%.
• About half of the benchmarks present an IPC degradation close (or over) 5%
due to L2 bandwidth.

30

Performance degradation analysis
Degradation due to L2 contention

Although this degradation is lower than the caused by main memory
contention, since the trend is to increase the number of cores and shared
caches we claim the necessity of a cache-hierarchy bandwidth aware
scheduling and not only memory aware scheduling.

31

Cache-hierarchy memory aware
scheduling

• Addresses the target bandwidth
at each contention point.

• Schedules the processes in n
steps (as many as cache levels).

• Top-down approach: from the
MM to the L1 cache.

– Final step allocates the
processes to cores.

• Inputs: for each process its

execution time and BTR MM.

32

Cache-hierarchy memory aware
scheduling

• When a quantum expires
…

• Update the BTR values in each cache
level for each executed process.

• Use these values as predicted BTR for
the next quantum.

• BTR values are only updated if
contention there is no high
contention. Otherwise, BTR values
are not updated.

33

Cache-hierarchy memory aware
scheduling

• BW Remain is set to the total
number of memory requests
divided by the total execution
time of the processes in stand-
alone execution.

• Unfinished jobs are kept in a
software queue structure.

• The process at the queue head is
always selected to avoid process
starvation.

• The selected processes are
inserted at the queue tail when
the quantum finishes.

34

Cache-hierarchy memory aware
scheduling

• Then, the scheduler selects the
remaining c minus 1 processes that
maximize the Fitness function*.

– That estimates the gap between the
BTRRemain and the predicted BTR of
each process.

• BWRemain and CPURemain (# of cores)
are updated each time a process is
selected.

• The result of this step is the list of
processes to be executed considering
taking into account the MM
bandwidth constraint.

* From D. Xu, C. Wu and p.-C. Yew, “On mitigating memory bandwidth contention through bandwidth-aware scheduling”, in PACT 2010

35

Cache-hierarchy memory aware
scheduling

• For each level in the cache
hierarchy with shared caches:
– AVG_BTR is set to the average

BTR of the selected processes
divided by the number of cache
structures.

– BWremain is set to AVG_BTR
for each cache and the
processes are selected using
the Fitness function, updating
the BW remain and CPU
remain.

– The iteration in the last shared
cache level allocates the
processes to the concrete cores
in its cache structure.

36

Example

37

Example

38

Example

39

Example

40

Example

41

Example

42

Example

43

Example

44

Example

45

Example

46

Example

47

Example

48

Example

49

Example

50

Example

51

Example

52

Example

53

Evaluation methodology

• Evaluation is performed in the experimental
platform.

• Implement the proposal in a user level scheduler (in
a real machine)

– At the end of each quantum, the scheduler uses:

• PTRACE_ATTACH to block the execution of the processes.

• PTRACE_DETACH to unblock the execution of the processes.

• Sched_setaffinity to allocate processes in cores.

– To evaluate the performance, a set of 10 mixes with
eight benchmarks was designed.

54

Evaluation methodology

• The performance of the proposal is evaluated against:

– Memory-aware scheduler *.

– Linux OS scheduler.

• The schedulers differ in the selection process:

– Memory-aware scheduler selects proper processes but do
not allocate them to cores.

– Cache-hierarchy scheduler selects the processes and
allocates them to cores.

* D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory bandwidth contention through bandwidth-aware scheduling”, in PACT 2010

55

Scheduler performance
Speedup

Speedup over native Linux OS

56

Scheduler performance
BTR balancing: histogram

BTR differences between the L2 shared caches
57

Scheduler performance
BTR balancing: average

Average and variance of the difference between the BTRs of the L2 caches

58

Scheduler performance
BTR L2 difference evolution

BTR L2 difference evolution time in mix 2

59

Scheduler performance
BTR L2 difference evolution

BTR L2 difference evolution time in mix 2

60

Scheduler performance
BTR L2 difference evolution

BTR L2 difference evolution time in mix 2

61

Scheduler performance
BTR balancing on mix 2

BTR L2 difference in the first 160 quanta

62

Conclusions

• Performance can drop due to bandwidth contention
located at different levels of the memory hierarchy.

• The current processor industry trend increases the
number of contentions points.

• Memory aware bandwidth jobs only attack main
memory contention point.

• Cache-hierarchy bandwidth aware policy:
– Attacks all the contention points of the cache hierarchy.

– Increases the performance of the evaluated mixes 30%
respect to the memory bandwidth aware scheduling.

63

• Thank you very much for your attention

• Questions?

64

Understanding Cache Hierarchy
Contention in CMPs to Improve Job

Scheduling

J. Feliu, Julio Sahuquillo, S. Petit and J. Duato

Universitat Politècnica de València
Spain

Evaluation methodology

• To deal with the different execution time of the
benchmarks, a benchmark execution is set to the
number of instructions required to achieve a execution
time of 120 seconds in stand alone execution.

• Otherwise, a long job first policy would provide the
best performance in most mixes.

• The number of complete executions and instructions of
the last execution is measured and recorded offline.

• If the execution time of the benchmarks is larger, the
scheduler kills it when the target instructions are
executed. If it is lower, the scheduler re-execute the
benchmarks several times.

66

Evaluation methodology

• To evaluate the performance, a set of 10 mixes with
eight benchmarks was designed.

• Mixes present an ideal bandwidth (IABW) falling in
between 20 and 40 trans/usec.

– Lower IABWs detract the necessity of a memory-aware
scheduler since contention is low.

– Higher IABWs cannot take advantage of memory-aware
scheduling since all the scheduling possibilities reach high
contention.

67

Performance degradation analysis
Degradation due to memory contention (II)

• Some benchmarks suffer higher IPC degradation when the co-runner runs in
the other bi-core since memory is more frequently accessed.
• Other benchmarks suffer higher IPC degradation when the co-runner runs in
the same bi-core. This can be caused by L2 cache conflicts or L2 bandwidth.
• In the common case, both degradations are similar.
• The IPC degradation difference is lower from 1 to 2 co-runners than from 2
to 3 co-runners, since 2 co-runners are close to saturate the bandwidth.

68

