
Addressing Fairness in SMT Multicores with a Progress-Aware Scheduler

Josué Feliu, Julio Sahuquillo, Salvador Petit, and José Duato
Department of Computer Engineering (DISCA)

Universitat Politècnica de València
València, Spain

jofepre@gap.upv.es, {jsahuqui,spetit,jduato}@disca.upv.es

Abstract—Current SMT (simultaneous multithreading) pro-
cessors co-schedule jobs on the same core, thus sharing core
resources like L1 caches. In SMT multicores, threads also
compete among themselves for uncore resources like the LLC
(last level cache) and DRAM modules. Per process performance
degradation over isolated execution mainly depends on process
resource requirements and the resource contention induced by
co-runners. Consequently, the running processes progress at
different pace. If schedulers are not progress aware, the un-
predictable execution time caused by unfairness can introduce
undesirable behaviors on the system such as difficulties to keep
priority-based scheduling.

This work proposes a job scheduler for SMT multicores that
provides fairness to the execution of multiprogrammed work-
loads. To this end, the scheduler estimates per-process stan-
dalone performance by periodically creating low-contention
co-schedules. These estimates are used to compute the per
process progress. Then, those processes with less progress are
prioritized to enhance fairness.

Experimental results on a Intel Xeon with six dual-threaded
SMT cores show that the proposed scheduler reduces unfair-
ness, on average, by 3× over Linux OS. Moreover, thanks to the
tread to core allocation policy, the scheduler slightly improves
throughput and turnaround time.

Keywords-scheduling; fairness; SMT; multicore; perfor-
mance estimation;

I. INTRODUCTION

Simultaneous multithreading (SMT) [1] allows the proces-
sor to exploit both instruction-level and thread-level paral-
lelism. This fact has yield some recent chip multiprocessors
(CMPs) like Intel Core and IBM POWER 8 to implement
this architectural paradigm. Two kind of shared resources
can be distinguished in these systems: intra-core and inter-
core resources, which are the shared resources inside the
core or in the uncore part of the system, respectively. Shared
intra-core and inter-core resources depend on the processor
implementation. The instruction queue, the L1 cache and
the issue width are typical examples of shared intra-core
resources, while the last level cache (LLC) and the main
memory are resources commonly shared among cores.

Processes compete among themselves at run time for the
shared resources and sharing policies are implemented to
regulate their usage. Policies should provide performance
fairness to concurrently running applications. Designing fair
sharing policies is challenging due to two main issues: i)

processes present different requirements for the multiple
shared resources, and ii) the shared use of a resource affects
differently the performance of the distinct processes.

A system is considered to be fair when all the running
processes present the same progress with respect to isolated
execution. Unfairness causes important undesirable behav-
iors on the system [2], [3], [4]: i) it complicates priority-
based scheduling since jobs with lower priorities can achieve
more progress than those with higher priorities, ii) it makes
difficult to guarantee worst-case execution times (WCET),
which is particularly important on embedded systems, iii)
it reduces performance predictability, which complicates the
analysis and optimization of both hardware and software
implementations, iv) it can lead to wrong billings in com-
mercial grid computing services, where users are charged
for CPU hours, and v) it enables denial of service attacks.

Figure 1 illustrates how inter- (Figure 1a) and intra-core –
in addition to inter– (Figure 1b) interferences due to resource
sharing can lead to significant unfairness. Figure 1a depicts
the normalized instructions per cycle (IPC) of lbm over its
isolated execution, and the same value for a co-runner (six
different co-runners are shown) allocated on another core.
Figure 1b presents the results for bwaves and another co-
runner allocated on the same SMT core. Important progress
differences among each possible pair of co-runners, over
30% in both figures, can be observed, although when sharing
the same core, differences (in percentage) are much higher.
This means that fairness oriented scheduling, considering
both intra- and inter-core interferences, is needed.

The key challenge to devise fairness oriented schedulers
lies on estimating the progress of each process at run
time. Progress can be seen as the number of instructions
a process commits running concurrently with respect to the
number of instructions it would have committed in isolation
during the same period of time. Whereas measuring the
instructions completed by the processes in a schedule can
be straightforwardly done using performance counters, the
difficulty rises in estimating the number of instructions the
process would have committed in isolation. A broad range of
research work has addressed progress estimation, however,
most of them [5], [6], [7] require specific hardware not
available in current processors.

In this paper we present the Progress-Aware (PA) sched-

0.40

0.50

0.60

0.70

0.80

0.90

1.00

xalancbmk milc bzip2 bwaves gcc gemsFDTD

Normalized IPC of lbm Normalized IPC of the co-runner

(a) Running with lbm on different cores.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

xalancbmk perlbench gemsFDTD cactusADM gromacs lbm

Normalized IPC of bwaves Normalized IPC of the co-runner

(b) Running with bwaves on the same SMT core.

Figure 1: Normalized IPC of the benchmarks with respect to isolated execution.

uler for SMT CMPs. The PA scheduler dynamically es-
timates the isolated performance of a target process at
run-time by co-scheduling it on low-contention scenarios.
These scenarios remove intra-core interferences for the target
process by allocating it on an entire core. At the same time,
inter-core interferences are minimized by properly selecting
light-sharing co-runners. Isolated performance estimates are
assumed valid for a given number of quanta. While all the
processes have a valid performance estimate, the scheduler
addresses fairness, prioritizing those processes with lower
accumulated progress. The fact that the system includes
SMT cores is leveraged by the scheduler for performance,
by properly selecting the pairs of processes to be allocated
on each core.

Experimental results on a Intel Xeon E5645 with six
dual-threaded SMT cores show that the proposed scheduler
reduces unfairness, on average, by 3× over Linux sched-
uler. Moreover, thanks to the SMT thread allocation policy,
turnaround time and throughput are also enhanced up to 6%
in some mixes.

The rest of this paper is organized as follows. Section II
describes the experimental platform. Section III discusses
how the progress made by the processes can be estimated.
Section IV presents the progress-aware scheduler. Section
V describes the evaluation methodology and Section VI
analyzes the experimental results. Section VII goes over the
related work. Finally, Section VIII presents some concluding
remarks.

II. EXPERIMENTAL PLATFORM

All the experimental evaluation has been performed on
a Intel Xeon E5645 processor, which consists of six dual-
thread SMT cores. Each core includes two levels of private
cache, a 32KB L1 and a 256KB L2. A third-level 12 MB
cache is shared by all the cores. The system is equipped
with 12 GB of DDR3 RAM and runs at 2.4 GHz.

The installed OS is a Fedora Core 10 distribution with
Linux kernel 3.11.4. The library libpfm 4.3.0 is used to
handle hardware performance counters [8]. The scheduler
collects at runtime, for each running thread, the processor
cycles, the committed instructions, and the number of L1,
LLC, and main memory requests. The dynamic information
gathered is used by the scheduler to take the corresponding

scheduling decisions.
The SPEC CPU2006 benchmark suite with reference

inputs has been used in the experiments. For evaluation
purposes (see Section V), the target number of instructions
for each benchmark is set to the number of instructions
executed by the benchmark during 100 seconds in standalone
execution.

III. ESTIMATING PROGRESS

Accurately estimating how a process progresses at runtime
with respect to its isolated execution is the key point to
provide fairness in the devised job scheduler. Progress esti-
mation is updated at the end of each quantum for the running
processes. For this purpose, we use Equation 1 that accumu-
lates, for the elapsed quanta, the ratio between the measured
IPC that a process achieves when running concurrently with
other processes (IPC i

co−runners) and the estimated IPC that
such a process would have achieved in isolation (IPC i

alone)
during the same quantum. The former is directly measured
from the number of instructions and number of
cycles gathered with performance counters. The difficulty
lies on estimating isolated performance.

Progress =

Q∑
i=0

IPC i
co−runners

IPC i
alone

(1)

To estimate standalone IPC of a process, the proposed
scheduler arranges a low-contention co-schedule, aimed at
minimizing performance interferences among the scheduled
processes. The IPC of a target process is measured during
the execution of the created low-contention co-schedule and
used as estimate of its standalone performance for the n
following quanta in which the process is scheduled. During
these quanta, the scheduler pursues to provide fairness by
prioritizing processes with lower accumulated progress.

Two main reasons can cause deviations in the IPC esti-
mates: i) the standalone IPC is assumed valid for a too long
period (number of quanta), and ii) thread interferences are
higher than expected. Below these two deviation sources are
analyzed.

A. Period length between IPC estimates

Defining the period length between IPC estimates presents
a tradeoff between estimation accuracy and fairness. The

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1 2 3 4 5 6 7 8

IP
C

 d
ev

ia
ti

o
n

Period length (seconds)

Maximum deviation Average deviation

Figure 2: IPC deviation when increasing the period length
between measures.

longer the interval, the higher the number of quanta where
a given IPC estimate is assumed valid, hence inaccuracy
potentially rises. Conversely, the shorter the interval, the
higher the number of quanta devoted to IPC estimation; thus,
the fewer the quanta used for fairness.

This section analyzes the accuracy of IPC estimates
varying the period length. The study compares, for each
benchmark, the average deviation of the IPC estimates with
respect to the real IPC of each quantum. Average and
maximum deviations across all the benchmarks are studied.

Figure 2 presents the results ranging the period length
between IPC estimates from 1s to 8s. Solid and dashed
lines show the average and maximum deviations across all
the benchmarks, respectively. Average values are relatively
low (below 2%) for periods shorter than 8s. Maximum
deviations, however, grow faster as the period between IPC
estimates is enlarged. Nonetheless, results show that reason-
able accuracy can be achieved by estimating the standalone
IPC of the benchmarks at relatively long periods of time.

To provide further insights in this claim, Figure 3 com-
pares the dynamic IPC evolution of a subset of benchmarks
measured at 200ms and 6s periods. When the process
presents uniform IPC, like hmmer, practically no difference
is observed between both sampling periods (in spite that the
6s period is 30× longer than the shorter one), while slight
differences can be observed with processes with different
phases of execution like xalancbmk or cactusADM.

These values where obtained running processes alone in
the system, however, processes experience a slower (or much
slower) progress running with a co-runner on the same SMT

core. Therefore, longer periods might be considered in the
devised scheduler (see Section IV-C).

B. Process interferences in co-schedules

This section studies performance interferences among pro-
cesses in the shared resources. The analysis first considers
only pairs of benchmarks; then, the co-schedule is extended
with more benchmarks to analyze their impact on individual
performance. If performance interferences are reasonable,
then the standalone IPC may be estimated in co-schedules
with multiple co-runners.

As mentioned above, two levels of interferences are distin-
guishable in a SMT multicore: intra- and inter-core. Intra-
core interferences are caused due to sharing critical core
resources for performance like the L1 cache or the dispatch
width. In contrast, inter-core interferences are caused by any
other running process, which share the last level cache (L3
in our system) and the main memory.

Intra-core interferences impact more strongly on perfor-
mance since a wider set of resources including L1-caches,
instruction queues, and functional units are shared among
concurrent threads. Two process that perform scarce use of
inter-core resources can run concurrently without noticeable
performance degradation. However, intra-core interferences
cause any two processes running simultaneously on the
same SMT core to significantly reduce their performance.
Therefore, to estimate the standalone IPC of a process it
should be scheduled alone in a core, avoiding intra-core
interferences. From now on, this section focuses on perfor-
mance interferences among processes running on different
cores.

1) Interferences between pairs of benchmarks:
First, the analysis focuses on inter-core interferences

between pairs of benchmarks. For this experiment, all the
possible couples of benchmarks were ran, each benchmark
on a distinct core, and their individual performance com-
pared to that achieved in isolated execution.

Figure 4 presents the results. Each row presents the
performance degradation of a benchmark caused by any
possible co-runner. For instance, bzip2 suffers a performance
drop by 6% when running with mcf, while the performance
of mcf is not reduced when it is executed with bzip2.
Similarly, each column presents the performance degradation

0.0

0.5

1.0

1.5

2.0

2.5

0 40 80 120 160

IP
C

Time (s)

Period = 200ms Period = 6 s

(a) hmmer

0.0

0.5

1.0

1.5

2.0

2.5

0 40 80 120 160

IP
C

Time (s)

Period = 200ms Period = 6 s

(b) xalancbmk

0.0

0.5

1.0

1.5

2.0

2.5

0 40 80 120 160

IP
C

Time (s)

Period = 200ms Period = 6 s

(c) cactusADM

Figure 3: Comparison between IPC measured each 200 ms and each 6 seconds.

perlbench

bzip2
gcc mcf gobmk

hmmer
sjeng

libquantum

h264ref
omnetpp

astar
xalancbmk

bwaves
gamess

milc zeusMP
gromacs

cactusADM

leslie3d
namd

dealII
soplex

povray
gemsFDTD

lbm

perlbench 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 0% 1% 1% 0% 1% 0% 0% 1% 0% 0% 1%
bzip2 0% 0% 1% 6% 0% 0% 0% 8% 0% 4% 3% 3% 8% 0% 9% 3% 0% 2% 7% 0% 1% 6% 0% 8% 9%

gcc 0% 1% 3% 8% 1% 0% 1% 10% 1% 6% 4% 5% 11% 0% 11% 5% 1% 3% 9% 0% 1% 8% 0% 10% 10%
mcf 0% 0% 3% 24% 2% 2% 1% 28% 3% 15% 13% 17% 29% 0% 29% 4% 2% 6% 24% 0% 5% 13% 0% 28% 32%

gobmk 0% 0% 0% 1% 0% 0% 0% 4% 1% 1% 0% 2% 2% 0% 4% 2% 1% 2% 3% 1% 0% 3% 0% 4% 4%
hmmer 0% 0% 0% 1% 0% 0% 0% 2% 0% 1% 0% 0% 3% 0% 2% 1% 0% 0% 2% 0% 0% 1% 0% 1% 3%

sjeng 0% 0% 0% 1% 0% 0% 3% 6% 3% 1% 4% 4% 6% 3% 6% 4% 3% 4% 6% 3% 3% 5% 3% 6% 6%
libquantum 0% 0% 0% 0% 0% 0% 0% 1% 0% 2% 0% 0% 2% 0% 1% 1% 0% 0% 0% 0% 0% 2% 0% 4% 4%

h264ref 0% 0% 0% 4% 0% 0% 0% 6% 0% 2% 1% 3% 6% 0% 11% 2% 0% 1% 8% 0% 1% 6% 0% 10% 6%
omnetpp 1% 6% 7% 15% 3% 3% 3% 17% 5% 14% 10% 13% 17% 2% 18% 11% 4% 10% 16% 1% 4% 15% 0% 19% 19%

astar 1% 4% 5% 12% 2% 2% 3% 14% 3% 10% 17% 17% 14% 5% 22% 15% 7% 5% 21% 6% 3% 20% 1% 22% 23%
xalancbmk 0% 4% 7% 21% 2% 2% 2% 25% 3% 15% 14% 19% 28% 1% 28% 10% 2% 6% 23% 1% 4% 24% 0% 27% 30%

bwaves 0% 0% 0% 1% 0% 0% 0% 1% 0% 1% 1% 0% 9% 8% 9% 8% 8% 8% 9% 8% 8% 1% 8% 9% 9%
gamess 0% 0% 0% 1% 0% 1% 0% 1% 0% 0% 0% 1% 1% 0% 1% 1% 0% 0% 0% 0% 0% 1% 0% 1% 1%

milc 0% 0% 0% 1% 0% 0% 0% 2% 0% 1% 1% 1% 2% 0% 25% 24% 24% 24% 3% 24% 24% 24% 24% 25% 25%
zeusMP 1% 1% 1% 2% 0% 0% 1% 2% 0% 1% 1% 1% 2% 0% 2% 10% 8% 8% 9% 8% 8% 9% 0% 9% 9%

gromacs 0% 0% 2% 2% 0% 0% 1% 2% 0% 1% 2% 1% 2% 0% 2% 1% 1% 1% 3% 0% 1% 1% 0% 3% 3%
cactusADM 0% 1% 3% 8% 1% 0% 0% 9% 0% 6% 4% 5% 9% 0% 9% 5% 0% 4% 9% 0% 1% 8% 0% 10% 10%

leslie3d 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 20% 18% 18% 19% 18% 20% 20%
namd 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 1% 0% 0% 1% 0% 2% 1%
dealII 0% 0% 0% 1% 0% 0% 0% 2% 0% 1% 1% 0% 2% 0% 1% 0% 0% 0% 1% 0% 1% 1% 0% 2% 2%

soplex 2% 4% 6% 19% 3% 3% 3% 20% 5% 13% 11% 15% 21% 1% 19% 11% 2% 7% 17% 1% 4% 20% 0% 21% 24%
povray 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 0% 0% 0% 1% 1% 0% 1%

gemsFDTD 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 0% 0% 0% 1% 0% 2% 2%
lbm 0% 4% 23% 6% 0% 0% 0% 8% 0% 3% 2% 5% 11% 0% 9% 2% 0% 1% 7% 0% 1% 8% 0% 11% 36%

Figure 4: Performance degradation due to inter-core interferences running pairs of benchmarks. Each row shows the
degradation of a benchmark running with each co-runner on differents cores.

a benchmark induces to each co-runner. For instance, among
all the possible co-runners, libquantum causes the highest
performance drop (by 28%) to mcf.

The performance degradation level is highlighted in the
table with different colors (or levels of gray). A cell (X,Y)
colored in green (light gray), orange (medium gray), or red
(dark gray), means that process Y affects the performance
of process X less than 5%, between 5% and 10%, or more
than 10%, respectively.

Depending on how benchmarks affect the performance
of their co-runners, they can be classified in two main
categories: heavy-sharing and light-sharing. The former
category includes benchmarks that strongly (e.g. above 10%)
affect the performance of a significant subset of the possible
co-runners. Examples of benchmarks belonging to this cat-
egory are mcf, libquantum and omnetpp. The light-sharing
category includes those benchmarks that scarcely affect the
performance of the co-runners since they make a scarce use
of the shared resources. This category includes benchmarks
in columns that mostly include cells colored in green.

Note that for any target benchmark, a wide set of co-
runners impacting its performance less than 5% can be
found. For example, perlbench can be coupled to estimate
its standalone IPC with any other benchmark since the
maximum performance degradation it suffers is by 1%.
Following the same rule, astar can be paired with perlbench,
bzip2, gcc, gobmk, etc.

A scheduler could use the above off-line analysis to
predict performance interferences. However, this way is im-
practical in a real system. In contrast, our approach consists
on classifying benchmarks as heavy-sharing or light-sharing
at run-time. After a wide set of experiments analyzing

distinct performance counters, we found that the bandwidth
consumption of the uncore shared resources, that is, the
LLC and the main memory (MM), are appropriate metrics
to match this classification.

At a first glance, it might be expected that processes with
either high LLC bandwidth or high MM bandwidth con-
sumption fall on the heavy-sharing category since they are
likely to interfere the co-runners performances. Conversely,
processes that perform a scarce use of these resources are
unlikely to interfere with co-runners, so they could be
classified as light-sharing.

Figure 5 depicts the average MM and LLC bandwidth
consumption of the benchmarks in standalone execution.
As observed, all the benchmarks whose LLC bandwidth
utilization is above 19 trans/µs or whose MM bandwidth
utilization is above 3.5 trans/µs belong to the heavy-sharing
category. Otherwise, they fall in the light-sharing category.
Notice that these thresholds are estimated in standalone
execution and cache interference when the processes run
concurrently can cause cache misses to grow. Thus, it is
likely that processes with bandwidth utilizations close to the
thresholds (e.g., gcc or cactusADM) will exceed them when
running with other processes.

2) Cumulative interferences in low-contention co-
schedules:

The previous section analyzed interferences in low-
contention co-schedules composed only of a pair of co-
runners. However, to avoid significant throughput reduc-
tion when IPC estimates are required, the number of
light-sharing benchmarks executing in a low-contention co-
schedule should be as high as possible.

To analyze cumulative interferences in low-contention

0

10

20

30

40

50

60

0

5

10

15

20

25

30
p

e
rl

b
en

ch

b
zi

p
2

gc
c

m
cf

go
b

m
k

h
m

m
e

r

sj
e

n
g

lib
q

u
an

tu
m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

xa
la

n
cb

m
k

b
w

av
es

ga
m

es
s

m
ilc

ze
u

sM
P

gr
o

m
ac

s

ca
ct

u
sA

D
M

le
sl

ie
3

d

n
am

d

d
e

al
II

so
p

le
x

p
o

vr
ay

ge
m

sF
D

TD lb
m

LL
C

 b
an

d
w

id
th

 (
tr

an
s/

u
se

c)

M
M

 b
an

d
w

id
th

 (
tr

an
s/

u
se

c)

BW_MM BW_LLC

Figure 5: Average main memory and LLC bandwidth.

co-schedules consisting of more than two co-runners, the
performance of all possible groups of three, four, five, and
six light-sharing benchmarks has been explored. Figure 6 de-
picts the results. Looking the average performance slowdown
(Avg bar), it can be observed that performance interferences
are acceptable even in large groups. For instance, more
than 85% of all the possible (i.e. 462) 6-process (sextets)
co-schedules present an average slowdown below 1%. The
Max bar refers to the slowdown of the benchmark suffering
the highest slowdown in the co-schedule. As expected, it
grows as the number of processes of the co-schedules rises.
However, only by 10% of the benchmarks in the 6-process
co-schedules present a maximum performance degradation
falling in between 3% and 5%.

IV. PROGRESS-AWARE SCHEDULING

The proposed PA scheduler is designed to allow all
the processes to achieve the same progress over the mix
execution. The impact of interferences on individual process
performance widely differs across the studied processes.
This means that processes require distinct execution times
to achieve the same progress. In other words, processes
with higher performance degradation induced by co-runners
require more quanta of execution than processes with lower
degradation to achieve equal progress.

As mentioned above, the scheduler uses some quanta to
estimate isolated performance of a target process. These
quanta can affect both fairness and performance due to
scheduling constraints when creating low-contention co-
schedules. For instance, in low-contention co-schedules
light-sharing processes are prioritized over heavy-sharing
processes regardless their accumulated progress. Remark
that processes are dynamically broken down at run time
as heavy- or light-sharing according to their bandwidth
consumption in the uncore resources (LLC and main mem-
ory) during the last quantum, which are updated using
performance counters.

The scheduler can work on two different modes: IPC
estimation-oriented and fairness-oriented. The former ap-
plies when any process needs to estimate its isolated IPC
and a low-contention co-schedule is required. The latter
guides the scheduling to improve fairness and applies when

0%

20%

40%

60%

80%

100%

Avg Max Avg Max Avg Max Avg Max

Triplets (165) Quartets (330) Quintets (462) Sextets (462)

Fr
eq

u
en

cy

< 1% 2% - 3% 3 % - 5%

Figure 6: Histogram of the performance degradation on
light-sharing co-schedules. In brackets, the total number of
evaluated co-schedules.

all the processes have a valid IPC estimate. Algorithm 1
presents the pseudocode of the progress-aware scheduler,
which differentiates between both scheduling modes: IPC
estimation-oriented mode (lines 1 to 9) and fairness-oriented
mode (lines 10 to 16).

IPC estimates for each process are kept valid for a certain
number n (see Section IV-C) of quanta. A saturating counter
is assigned to each P process to account the elapsed quanta,
and is updated each quantum the process is scheduled.
When any counter saturates, the scheduler moves to the
IPC estimation-oriented mode and the counter is reset.
Otherwise, the fairness-oriented mode determines the co-
schedules for the following quanta. Below these two modes
are described, and then the implementation parameters are
discussed.

A. IPC estimation-oriented mode

The IPC estimation-oriented mode (lines 2 to 10 of the
algorithm) is triggered when a valid IPC estimate is required

Algorithm 1 Progress-Aware scheduler
1: if the IPC estimation of any process P has expired then

IPC-ESTIMATION MODE
2: Allocate P to an entire core.
3: if P is a light-sharing process then
4: while IPC estimation of any light-sharing process PLS is

close to expire
and there are free cores do

5: Allocate PLS to an entire core.
6: end while
7: end if
8: Select as many light-sharing processes as available hardware

threads, prioritizing those with lower progress.
9: Allocate pairs of processes to free cores using [9]

10: else
FAIRNESS MODE

11: while a process PLP is progressing below the average do
12: Allocate PLP to an entire core.
13: end while
14: Select as many processes as available hardware threads

prioritizing those with lowest progress.
15: Allocate pairs of processes to free cores using [9]
16: end if

(line 1) for any process P. A low-contention scenario is
scheduled to avoid intra-core and minimize inter-core inter-
ferences. The former interferences are removed by allocating
P to an entire core (line 2). Inter-core interferences are
minimized by only including light-sharing processes in the
co-schedule.

If P itself is a light-sharing process (line 3), and there are
other light-sharing processes whose IPC estimates are close
to expire (see Section IV-C), then each of them is allocated
to an individual core (line 5). This way allows multiple IPC
estimates to be obtained during the same quantum.

After that, the remaining cores are filled with light-sharing
processes. In particular, as many light-sharing processes as
available SMT hardware threads are co-scheduled (line 8).
For the sake of fairness, the scheduler prioritizes the light-
sharing processes that have experienced less accumulated
progress. These processes are smartly allocated to cores in
pairs to reduce SMT intra-core interferences according to
[9]. This thread-to-core allocation strategy considers the L1-
cache bandwidth consumption of the processes. Finally note
that if there are not enough light-sharing processes in the
workload, the exceeding hardware threads are left idle.

B. Fairness-oriented mode

As a rule of thumb, to improve fairness, the scheduler
selects those processes with lowest progress to run the
following quantum (line 14). On the experimental platform,
the twelve processes with lowest progress are selected.
Nonetheless, to maximize fairness, this execution mode
checks, in a prior step, if the progress of any process is
falling behind the others. To this end, the scheduler computes
the average progress of all the processes. Then, it is tested
if the progress of any process is 5% below the average
(line 11). If there are some processes in this situation,
the scheduler allocates each of them to an individual core
(line 12). This way speedups their progress since individual
execution is faster than when sharing the core. After that, the
scheduler selects the remaining processes and allocates pairs
of them on the remaining cores considering their L1-cache
bandwidth consumption.

Finally, note that even when working in this mode,
the scheduler can take profit of unprompted scenarios to
estimate isolated IPCs. For instance, if a co-schedule only
includes light-sharing processes, isolated performance can
be estimated for those processes individually allocated to a
core, regardless the deadline of their IPC estimate.

C. Implementation considerations

The proposed algorithm relies on several parameters, that
must be tuned to provide its best results. Depending on the
values of these parameters the schedulers can: i) maximize
fairness with no performance considerations, ii) prioritize
fairness over (but without compromising) performance. Dif-
ferent values for these parameters have been evaluated. This

section presents and discusses the values used to evaluated
the proposal, analyzing their advantages and disadvantages.

The maximum period between two standalone IPC esti-
mates has been empirically set to 8 seconds, that is n = 40
200ms quanta. Experimental results showed that shorter
periods could enhance fairness, but strongly affecting the
performance. Conversely, longer intervals negatively affect
fairness without providing significant performance benefits.
In the algorithm implementation, we also consider that an
isolated IPC estimation is close to expire when the number of
quanta a process has been scheduled since its last estimation
is half (n = 20) the maximum number of quanta.

Main memory and LLC bandwidth thresholds to discern
between light- and heavy-sharing processes are set to 3.5
and 19 tran/µs, respectively, since these values offer a good
trade-off between fairness and performance. Higher thresh-
olds include more benchmarks classified as light-sharing
even if they are not (i.e., they produce considerable con-
tention). As a consequence, more contention than expected
can be generated so system fairness can be compromised.
On the contrary, lower thresholds classify more processes as
heavy-sharing. However, in this case, performance may be
affected since a higher number of heavy-sharing processes
limits the scheduler flexibility.

The last parameter used in the algorithm determines
when a given process is unfairly progressing below the
others. As explained before, when this situation occurs, the
scheduler allocates the process to an entire core to accelerate
its progress, avoiding inter-core interferences. We consider
that a process is progressing too slow when its progress
differs above 5% from the average progress of the processes
of the mix. Using a higher threshold would enlarge the
accepted unfairness before taking scheduling decisions to
reduce it. Conversely, a lower threshold would trigger the
progress correction too frequently, so affecting the system
performance.

V. EVALUATION METHODOLOGY

A. Scheduler implementation

To evaluate the effectiveness of the progress-aware sched-
uler, we compare its fairness and performance to those
achieved by the Linux scheduler. The proposed algorithm is
implemented in a user-level scheduler. Performance counters
are used to update IPC and MM-, LLC- and L1-bandwidth
consumption of the different processes at runtime. The Linux
system calls and the thread-to-core affinity attribute of the
processes are used to co-schedule the selected processes. The
former determines which processes run at a given quantum,
and the latter, their allocation to cores.

Linux schedules are also evaluated with a user-level
scheduler to monitor the number of instructions each process
executes (see Section V-B). To mimic the Linux behavior
from this user-level scheduler, all the processes are allowed

to run each quantum on any core, so the Linux kernel sched-
uler must determine the actual co-schedule (both process
selection and allocation) [10], [11].

The overhead arising from the algorithm implementation
is negligible considering the 200ms quantum length at which
scheduling is performed. Overall overhead, including pro-
cess selection, process allocation and progress accounting,
as well as, processes and performance counters management,
is by 0.1 ms. Note that it is below 1 h of the quantum
length.

B. Mix design

A set of fourteen mixes composed of twenty-four SPEC
CPU2006 benchmarks has been designed to evaluate the
proposed algorithm. Each mix consists of a variety of light-
and heavy-sharing benchmarks. Mixes have been sorted
according to their percentage of heavy-sharing benchmarks,
which ranges from 25% to 60%.

Since SPEC CPU2006 benchmarks present widely dif-
ferent execution times. To equalize the differences, we run
each benchmark for a target number of instructions, which
corresponds to the amount of instructions it executes during
100s (i.e. 500 quanta) in isolation. Benchmarks with shorter
or longer execution time are relaunched or killed, respec-
tively, to run exactly their target number of instructions. In
this way, we avoid benchmarks to present different weights
during the mix execution.

C. Metrics

Fairness can be achieved at the cost of performance.
Therefore, it cannot be evaluated in isolation, but perfor-
mance metrics should also be considered.

Running multiprogrammed workloads, fairness metrics
estimate if performance benefits or losses are similar across
all the processes, and do not concentrate only on a few
of them. Recent work has used the unfairness metric [12],
[13], [14] for this purpose. This metric is defined as the
maximum slowdown divided by the lowest slowdown across
all the processes (N) of the workload as shown in Equation
2. Notice that an unfairness equal to 1 means that the system
is completely fair.

Unfairness =
Max Slowdowni
Min Slowdownj

∀{i, j} ∈ {1, N} (2)

The slowdown of each process is calculated as the ratio
between its elapsed execution time in the co-schedule and
its standalone execution time as shown in Equation 3. The
elapsed execution time of a process i not only accounts
for the time the process is actually running (TirunningWorkload),
but also for those quanta the process is not scheduled
(Tiwaiting

Workload).

Slowdowni =
TirunningWorkload + Tiwaiting

Workload

Tialone
(3)

A wide set of metrics has been used on recent research
work to evaluate the performance of multiprogrammed
workloads running on multicores, but it is still in debate
what are the best ones [15]. This work evaluates turnaround
time and system throughput (STP). The impact on both
turnaround time and STP is analyzed to explore how perfor-
mance is affected by the PA scheduler. Turnaround time is a
user-oriented performance metric and measures the elapsed
time since the workload is launched to execution until the
last process of the workload completes its execution. STP
quantifies the system-level throughput and it is computed
as the sum of the weighted IPC of the processes of the
workload [15]. The weighted IPC of a process is the ratio
between its IPC when it is co-scheduled and its standalone
IPC.

VI. EXPERIMENTAL EVALUATION

A. Fairness

This section evaluates the fairness of the PA scheduler
and the Linux scheduler. Figure 7 depicts the unfairness,
in percentage, presented by both Linux and the proposed
scheduler across the evaluated mixes. For each mix, the
figure presents the average values of 20 executions with both
schedulers and a 95% confidence interval.

The PA scheduler is fairer than Linux across all the mixes.
Unfairness ranges in a relatively narrow interval, from 8% to
18%, with an average by 12%. In contrast, Linux unfairness
ranges in a wide interval, from 19% to 44%, with an average
by 32%. This means that under Linux, the slowest process
progresses on average by 32% slower than the fastest one.
These values seem high and inappropriate in many real
systems (e.g. they complicate priority-based scheduling or
the estimation of WCET in real-time systems). Compared
to Linux, PA reduces unfairness, on average, by a 3× factor
under the stduied mixes. In addition, the presented 95%
confidence intervals show the steadiness of the unfairness
values through multiple executions of each mix.

Taking into account that mixes have been sorted by the
number of heavy-sharing processes they include, results
suggest that, in general, Linux achieves lower levels of
unfairness when contention is lower. On the contrary, the
unfairness provided by the PA scheduler tends to be more

0%

10%

20%

30%

40%

50%

M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M 10 M 11 M 12 M 13 M 14 Avg

U
n

fa
ir

n
es

s
(%

)

Linux scheduling Progress-aware scheduling

Figure 7: Unfairness (lower is better).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400

P
ro

gr
es

s

Execution time (s)

PA-scheduler AVG PA-scheduler MAX PA-scheduler MIN
Linux AVG Linux MAX Linux MIN

Figure 8: Dynamic progress of processes in mix M7.

uniform, regardless the number of heavy-sharing processes
considered in the studied mixes. Therefore, we can conclude
that the higher the contention, the higher the fairness benefits
the PA scheduler provides over Linux.

Figure 8 focuses on mix M7 to illustrate how unfairness
evolves over the mix execution. Average, maximum, and
minimum progress achieved by the processes for the Linux
and the PA schedulers are plotted. Remark that in this
figure, real progress is plotted since it is calculated and
not estimated (only to show the progress, not to guide
scheduling) for each process as the ratio between committed
instructions and the target number of instructions to be
committed.

Results depict how Linux unfairness grows with time.
For instance, when the first process of the mix finishes at
time 280s under Linux, the process with lowest progress has
only completed by 40% of its execution. In contrast, the PA
scheduler handles progress more uniformly across all the
processes. At time 340s, when the first process finishes, the
process with lowest progress has committed about 75% of
its instructions. Moreover, there is a bigger gap between the
maximum and minimum progress with the Linux scheduler
for most of the execution time.

B. Performance

Figure 8 also shows that the PA scheduler slightly im-
proves turnaround time over Linux, since the complete
workload finishes its execution sooner than under Linux.
This section analyzes this performance improvement.

Figure 9a presents the speedup of the turnaround time

achieved by the PA scheduler over Linux across the studied
mixes. Results show that despite the main focus is on
fairness, the PA scheduler improves turnaround time across
all the mixes. This improvement is above 3.5% in five
mixes, and by 7% in mix M6. The reason is that the PA
scheduler allows all the processes to progress at similar rate,
and consequently, the workload execution finishes sooner. In
contrast, if the scheduler is not progress aware, the process
with lowest progress will make the mix execution time
longer.

Figure 9b presents the speedup of the STP achieved
by the PA scheduler with respect to Linux. The proposed
scheduler improves Linux STP ranging from 2% to 6%, with
a geometric mean of 3.4%. These speedups demonstrate that
the system throughput is not adversely but positively affected
by the PA scheduler. The key reason is that processes are
selected for fairness but allocated to cores for performance.
Effectively, the scheduler addresses performance by choos-
ing the proper pair of threads to be allocated in the same
SMT core reducing intra-core interferences [9].

C. Accuracy of the isolated IPC estimations

Accurate IPC estimates are required to improve fairness.
If these estimates are inaccurate, the computed progress will
differ from the actual progress, which will yield unfairness
to grow.

Figure 10 presents the average, maximum, and minimum
IPC accuracy across the twenty four processes of each mix.
Results show that average IPC accuracy ranges from 95% to
98%, which confirms that the proposed mechanism is able
to correctly estimate isolated performance of the processes
in co-schedules. Notice that by 100% accuracy is always
achieved by at least one process of each mix. This is due to
the fact that some processes present a uniform IPC across its
execution time, which helps accurate estimates. Regarding
maximum deviation from the real IPC, accuracy ranges from
82% to 93%.

VII. RELATED WORK

Contention in shared resources has been addressed in
scheduling algorithms, but an important piece of this work
in the past [11], [10], [16], [9] mainly focus on performance
without taking fairness into account.

0%

1%

2%

3%

4%

5%

6%

7%

M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M 10 M 11 M 12 M 13 M 14 G mean

Sp
ee

d
u

p

(a) Speedup of the turnaround time.

0%

1%

2%

3%

4%

5%

6%

M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M 10 M 11 M 12 M 13 M 14 G mean

Sp
ee

d
u

p

(b) Speed up of the system throughput (STP).

Figure 9: Performance benefits over Linux.

0.80

0.85

0.90

0.95

1.00

M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M 10 M 11 M 12 M 13 M 14

A
cc

u
ra

cy

Figure 10: Average, maximum, and minimum accuracy of
the isolated IPC estimations.

This paper is mainly related to two research topics:
fairness techniques and performance predictability. These
topics have been already addressed together in previous
works, where performance predictability models have been
used to estimate fairness in either a shared resource or the
system.

Several works have addressed fairness from a shared
resource perspective, trying to provide fair sharing in a
given resource. Some of them have focused on uncore
memory resources. [2] and [17] concentrate on the memory
controller to improve the system fairness. In [2], Mutlu et
al. propose a memory access scheduler that balances the
DRAM-related slowdown experienced by the co-scheduled
processes. A similar approach is followed in [17], where
Nesbit et al. use concepts from network fair queuing to
design a fair queuing memory system. Finally, Ebrahimi et
al. [12] propose achieving fairness via source throttling, a
global mechanism that addresses unfairness on the entire
shared memory system.

Other works deal with fairness in SMT fetch policies.
Luo et al. [18] and Eyeraman et al. [19] propose SMT fetch
policies that enhance both performance and fairness con-
sidering the pipeline status and memory-level parallelism,
respectively.

Cache partitioning techniques also try to provide a fair
cache access to the processes sharing the same cache
structure. Suh et al. [20] estimate the isolated miss-rate of
the processes to improve the partitioning, and Kim et al.
[21] dynamically partition L2 caches based on metrics that
correlate with execution-time fairness.

Unfortunately, fairly sharing a single resource or a set of
resources does not provides fairness to the system. There-
fore, other authors address aims to provide system fairness,
by focusing on process scheduling. Fairness oriented process
schedulers have been proposed by Fedorova et al. [22] and
Xu et al. [13]. In [22], Fedorova et al. target shared-cache
contention using resource performance. Xu et al. [13] mainly
target main memory contention and focus on overall system
fairness with a scheduler that monitors the progress of the
processes at runtime.

Compared to these works, the proposed PA scheduler
tackles fairness on SMT multicores, considering both intra-

and inter-core interferences to provide a fair execution
among the different processes of a workload. In addition,
the proposed scheduler also addresses performance when
allocating processes to cores, as done in [9], which allows
simultaneous performance and fairness enhancements in
SMT platforms.

Regarding performance predictability, in [5] and [6],
Eyerman et al. propose cycle accounting architectures that
allow accurate predictions of the isolated performance of the
processes while they run concurrently on out-of-order CMPs
and SMT processors, respectively. The proposed models
can be used to design a process scheduler targeting system
fairness. An orthogonal solution was proposed by Cazorla
et al. [3] allowing the OS to run jobs at a certain percentage
of their maximum speed, regardless of the system load.

Finally, Subramanian et al. [7] combine performance
predictability with fairness-oriented main-memory request
scheduling. Authors first present a model that estimates the
slowdowns caused by memory interferences by modifying
the priority scheme of the memory controller. Then, they
use this model as the base of two memory request schedul-
ing schemes that provide quality-of-service and maximize
fairness, respectively.

VIII. CONCLUSIONS

Fairness-aware scheduling is gaining importance in mul-
ticore systems to guarantee correct management of process
priorities, quality of service, worst case execution times,
energy consumption, etc. Allocating the same execution
time and resources to the running processes in a multi-
programmed workload does not provide fairness because
of the unpredictable interferences on the shared resources.
Several techniques used in current systems, such as heteroge-
neous cores, dynamic voltage and frequency scaling (DVFS),
application-specific hardware accelerators, etc. complicate
even more fairness-oriented scheduling.

This work has presented the PA progress-aware scheduler
for SMT multicores. The main challenge to achieve fairness
lies on dynamically and accurately estimating at run-time
the progress of each process over isolated execution. To
accomplish this, the proposed scheduler periodically creates
low-contention co-schedules where the isolated performance
of the processes can be estimated. The scheduler presents
two working modes: IPC estimation and fairness-oriented.
When all the processes have a valid estimate, the scheduler
prioritizes those processes with the lowest relative progress
to achieve fairness.

The PA scheduler exploits multithreaded cores by allo-
cating a single process to an entire core or by allocating
a pair of processes to that core, mainly depending on the
working mode. An important observation is that performance
is not necessarily damaged by this fact, since a process can
speedup its execution much faster running alone on a core
than when sharing the core with a co-runner.

Experimental evaluation results obtained in a Intel Xeon
E5645 show that the PA scheduler improves unfairness by a
3× factor with respect to Linux. In addition, thanks to the
SMT thread to core allocation policy, turnaround time and
throughput are also enhanced up to 6% in some mixes.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de
Economı́a y Competitividad (MINECO) and Plan E funds,
under Grant TIN2012-38341-C04-01, and by the Intel Early
Career Faculty Honor Program Award.

REFERENCES

[1] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” SIGARCH
Comput. Archit. News, vol. 23, no. 2, pp. 392–403, May 1995.

[2] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Ac-
cess Scheduling for Chip Multiprocessors,” in International
Symposium on Microarchitecture (MICRO), 2007, pp. 146–
160.

[3] F. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernan-
dez, A. Ramirez, and M. Valero, “Predictable Performance in
SMT Processors: Synergy Between the OS and SMTs,” IEEE
Transactions on Computers, vol. 55, no. 7, pp. 785–799, 2006.

[4] T. Moscibroda and O. Mutlu, “Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems,” in 16th
USENIX Security Symposium. USENIX, August 2007.

[5] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A
Performance Counter Architecture for Computing Accurate
CPI Components,” in International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS), 2006, pp. 175–184.

[6] S. Eyerman and L. Eeckhout, “Per-thread Cycle Accounting
in SMT Processors,” in International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), 2009, pp. 133–144.

[7] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and
O. Mutlu, “MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems,” in
International Conference on High-Performance Computer
Architecture (HPCA), 2013, pp. 639–650.

[8] S. Eranian, “What Can Performance Counters Do for Memory
Subsystem Analysis?” in Proceedings of the ACM SIGPLAN
Workshop on Memory Systems Performance and Correctness,
2008, pp. 26–30.

[9] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-Bandwidth
Aware Thread Allocation in Multicore SMT Processors,”
in International Conference on Parallel Architecture and
Compilation Techniques (PACT), 2013, pp. 123–132.

[10] D. Xu, C. Wu, and P.-C. Yew, “On Mitigating Memory
Bandwidth Contention Through Bandwidth-Aware Schedul-
ing,” in International Conference on Parallel Architecture and
Compilation Techniques (PACT), 2010, pp. 237–248.

[11] J. Feliu, S. Petit, J. Sahuquillo, and J. Duato, “Cache-
Hierarchy Contention Aware Scheduling in CMPs,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 25,
no. 3, March 2014, pp. 581–590.

[12] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness
Via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-core Memory Systems,” in Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2010, pp.
335–346.

[13] D. Xu, C. Wu, P.-C. Yew, J. Li, and Z. Wang, “Provid-
ing Fairness on Shared-memory Multiprocessors via Process
Scheduling,” in International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), 2012,
pp. 295–306.

[14] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and
M. Azimi, “Application-to-Core Mapping Policies to Reduce
Memory Interference in Multi-core Systems,” in International
Conference on Parallel Architecture and Compilation Tech-
niques (PACT), 2012, pp. 455–456.

[15] S. Eyerman and L. Eeckhout, “Restating the Case for
Weighted-IPC Metrics to Evaluate Multiprogram Workload
Performance,” in Computer Architecture Letters, vol. 13,
no. 2, 2014, pp. 93–96.

[16] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M.-L.
Soffa, “The Impact of Memory Subsystem Resource Sharing
on Datacenter Applications,” in International Symposium on
Computer Architecture (ISCA), 2011, pp. 283–294.

[17] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair
Queuing Memory Systems,” in International Symposium on
Microarchitecture (MICRO), 2006, pp. 208–222.

[18] K. Luo, J. Gummaraju, and M. Franklin, “Balancing Though-
put and Fairness in SMT Processors,” in International Sym-
posium on Performance Analysis of Systems & Software
(ISPASS), 2001, pp. 164–171.

[19] S. Eyerman and L. Ecckhout, “A Memory-Level Paral-
lelism Aware Fetch Policy for SMT Processors,” in Inter-
national Conference on High-Performance Computer Archi-
tecture (HPCA), Feb 2007, pp. 240–249.

[20] G. Suh, S. Devadas, and L. Rudolph, “A New Memory
Monitoring Scheme for Memory-Aware Scheduling and Par-
titioning,” in International Conference on High-Performance
Computer Architecture (HPCA), 2002, pp. 117–128.

[21] S. Kim, D. Chandra, and Y. Solihin, “Fair Cache Sharing
and Partitioning in a Chip Multiprocessor Architecture,” in
International Conference on Parallel Architecture and Com-
pilation Techniques (PACT), 2004, pp. 111–122.

[22] A. Fedorova, M. Seltzer, and M. D. Smith, “Improving Per-
formance Isolation on Chip Multiprocessors via an Operating
System Scheduler,” in International Conference on Parallel
Architecture and Compilation Techniques (PACT), 2007, pp.
25–38.

