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Introduction

e Simultaneous multithreading (SMT) multicores

dominate the high-performance microprocessors
market

* Two levels of shared resources:
o Inter-core: uncore shared part of the systems (CMPs)
o Intra-core: inside the core (SMTs)
* Applications compete among themselves at runtime

for the shared resources

* Designing fair resource-sharing policies is challenging:
o The applications present different requirements for the
multiple shared resources
o The shared use of a resource affects differently the
performance of distinct applications
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Introduction

* We consider the system to be fair when all the running
processes experience the same slowdown with respect
to their isolated execution

e Unfairness causes important undesirable behaviors:
Complicates priority based scheduling or QoS

Difficult guaranteeing worst-case execution time (WCET)
Reduces performance predictability

Leads to unfairness billings in cloud computing services
Enables denial of service attacks

O O O O O

* Processors with heterogeneous cores or hardware
accelerators will magnify the unfairness issues
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Introduction

Are current SMT multicores fair?
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Fig 1. Normalized IPC of the benchmarks with respect to isolated execution

* Simple experiment running pairs of benchmarks:
(a) On different cores: inter-core interferences
(b) On the same core: intra-core interferences

* The processes progress at different paces depending on

the co-runner
e Unfairness above 30%
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Introduction

Key contributions

 We propose a way to accurately estimate the standalone

performance of the processes in SMT multicores
o Running in multiprogrammed workloads

|

 We can estimate the progress achieved by the processes
o With respect to their isolated execution

|

* We present the Progress-Aware scheduler to maximize
fairness
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Experimental platform

* All the experiments are performed on a real system:
o Intel Xeon E5645 (Westmere-EP microarchitecture)
o Linux with kernel 3.11.4

e SPEC CPU2006 benchmarks
o Workload with more processes than execution contexts

* Libpfm 4.6 to manage performance counters:
o Gather IPC and bandwidth utilization through the memory hierarchy

Main memory: 12 GB DDR3

¢ Shared 12 MB LLC cache

GRBADE e
000000

Fig 2. Memory hierarchy of Intel Xeon E5645

Private 32KB L1 cache

Dual-thread cores
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Estimating progress

* Accurately estimating how the processes progress is the key
to devise fairness oriented schedulers

* Progress can be estimated as:

Q

IPCt
Progress (p) = Z I?C?Chmme
alone

=0

L . .
IPCiy_schedute : IPC of the process running in the co-schedule
o Directly calculated with performance counters measures

IPCliome: IPC that the process would have achieved in

isolation during the same quantum
o How itis obtained is the key
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Estimating progress

T wejlﬁ’l‘@ggﬁ? to arrange a low-
contention co-schedule:

* |ntra-core interferences are avoided, allocating the process
alone on a core

* Inter-core interferences are minimized, selecting co-runners that
cause little interferences in the co-runners

* The IPC of the target process is measured in the
low-contention co-schedule

i ~ i
© Ipcalﬂne IPCCG —schedule
o Assumed valid for the n following quanta

 Two reasons can cause inaccuracy in the estimates:
|.  Standalone IPC assumed valid for a too long interval
Il. Process interferences are high in the low-contention
co-schedule
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Estimating progress

|. Period length between IPC estimates

* Tradeoff between accuracy and quanta used on estimates:

o Long interval, inaccuracy could rise

o Short interval, more quanta devoted to IPC estimates

* We compare the measured IPC of the benchmarks

* Baseline: IPC measured each quantum

e With periods from 1s to 8s between estimates

(5% Maximum deviation = Average deviation
(4]
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Fig 3. IPC deviation when increasing the period length between measures
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Maximum deviation:

< 6% with periods
below 6s

Average deviation
< 2%
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Estimating progress

Il. Process interferences in low-contention co-schedules

* Our goal is to classify the process two categories:
o Heavy-sharing -> strong impact on co-runners
o Light-sharing -> slight impact on co-runners

Co-runner
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Fig 5. Performance degradation due to inter-core interferences running pairs of benchmarks on different cores
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Estimating progress
II. Process interferences in low-contention co-schedules

* Our goal is to classify the process two categories:
o) Heavy-sharing -> strong impact on co-runners
o Light-sharing -> slight impact on co-runners
* Inter-core interferences caused by LLC and MM contention
o Thresholds -> MM: 3.5t/us LLC: 19t/us
o If a process reaches any of the two thresholds -> heavy-sharing
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Fig 6. Average main memory and LLC bandwidth
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Estimating progress

Il. Process interferences in low-contention co-schedules

* Evaluate the performance degradation on all possible
co-schedules from three to six light-sharing processes

o The figure presents the frequency on which the performance
degradation in the co-schedules falls in the intervals

o Average and maximum IPC degradation among the processes of
each co-schedule
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Fig 7. Performance degradation on light-sharing co-schedules
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Progress-Aware Scheduling

Yes

\ 4

IPC estimation-oriented mode

Creates a low-contention
co-schedule and estimates

IPC

alone

Any IPC
estimate
expires

No

Vv

Fairness-oriented mode

Schedules the processes to
enhance fairness

Update:

- Accumulated progress
- Expiration counters
- Process classification

IPDPS’15, Hyderabad, India
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Progress-Aware Scheduling

|IPC estimation-oriented

Triggered to estimate the IPC,

one Of process P

Yes

Multiple IPC estimates

- Select the light-sharing processes
with 50% of the expiration time
consumed

- Allocate them alone on a core

Pis
light-sharing

No

- Schedule the light-sharing processes
with lower accumulated progress

- Allocate a pair of processes to each
core considering the L1-bandwidth?

Up to the number of contexts is reached:

[1] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-Bandwidth
IPDPS’15, Hyderabad, India Aware Thread Allocation in Multicore SMT Processors”, PACT’13

17



Progress-Aware Scheduling

Fairness-oriented mode

Triggered to enhance fairness

\ 4

Calculate the average progress of the mix

Yes

\ 4

Compensate the progress

- Allocate process P alone on
a core

IPDPS’15, Hyderabad, India

Process P with No
progress 5% <
average

- Schedule the light-sharing processes
with lower accumulated progress

- Allocate a pair of processes to each
core considering the L1-bandwidth'

Up to the number of contexts is reached:
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Experimental evaluation
Evaluation methodology

The algorithm is implemented in a user-level scheduler, using:
o System calls: determine which processes run each quantum
o Thread-to-core affinity attribute: determine on which core each process runs
o Performance counters: update IPC and bandwidth

> Negligible overhead of scheduling, below 0.1% of the quantum length (200ms)

Fourteen mixes of 24 benchmarks

Fairness metric:

Unfai Max Slowdown vPE{LA)
nfairness = — g1
Min Slowdown
running + pwaiting
Slowdown = co—schedule co—schedule

Tu!une

Performance metrics
o Turnaround time of the mix

N i
o System throughput = Z ’FCcu—scheciure
i=0 IPC!

alone

IPDPS’15, Hyderabad, India
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Experimental evaluation
Fairness

50% B Linux scheduling O Progress-aware scheduling

40%

bbbl

Unfairness (%)

M1 M2 M3 M4 M5 M6 M7 M8 MS M10 M11 M12 M13 M 14 Avg

Fig 8 Unfairness (lower is better)

* The Progress-Aware scheduler performs fairer than Linux:
e Unfairness is reduced to a third on some mixes
* More steady results with the Progress-Aware scheduler

IPDPS’15, Hyderabad, India
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Experimental evaluation
Fairness
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Fig 9. Dynamic progress of processes of mix 7

* The plot shows how unfairness evolves over the mix execution

* When the first processes finishes, the process with minimum
progress:
o With Linux: has completed 40% of its execution
o With the PA scheduler: has completed 80% of its execution
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Experimental evaluation
Performance
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Fig 10. Speedup of the turnaround time over the Linux scheduler

* Turnaround time is not negatively affected, despite fairness-
oriented scheduling

* In fact, the Progress-Aware scheduler improves Linux
turnaround time in all the mixes.
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Experimental evaluation
Performance
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Fig 11. Speedup of the system throughput (STP) over the Linux scheduler

* The progress-aware scheduler improves Linux scheduler
throughput

* Key reason to improve throughput:
o L1-bandwidth aware process allocation policy
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Conclusions

* Scheduling considering fairness is gaining importance to:

o Keep process priorities, QoS, guarantee WCET, fair billing in cloud
computing, etc.

o Unfairness problems rise in heterogeneous systems

* Progress-Aware scheduler for SMT multicores
o Balances the slowdowns suffered by the processes of a workload

o Calculates the progress of the processes using estimates of their
standalone performance

o Prioritizes the processes with lower accumulated progress to
maximize fairness

e Reduces Linux unfairness to a third, while slightly improving
performance
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Thank you for your attention. Any question???
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Progress-Aware Scheduling

* Scheduling goal: maximize fairness

o All the processes achieve the same progress along the mix
execution

* Interferences impact differently on the individual
performance of the processes.

o Equal execution time # equal progress

IF the IPC estimate of any process P expires

IPC estimation-oriented mode
Creates a low-contention co-schedule for the process P

ELSE

Fairness-oriented mode
Schedules the processes to reduce unfairness

Fi

Update the progress, expiration counter and classification for the
executed processes
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Progress-Aware Scheduling
IPC estimation-oriented

* Creates a low-contention co-schedule:

o Remove intra-core interferences: P allocated alone on a core
o Minimize inter-core interferences: selecting light-sharing co-runners

* The quanta used to estimate IPC should be low:
o Not directly devoted to improve fairness

o If possible, multiple estimates performed in a single quantum

IF P is a light-sharing processes

* Schedule light-sharing processes that have consumed half their period
length between estimates

e Allocate them on a entire core to estimate their IPC.
Fi

* The remainin%1

processes are selected prioritizing the light-sharing
processes wit

lower accumulated progress

* Processes with no allocation restrictions are allocated on cores
balancing the L1-bandwidth among the cores?

[1] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-Bandwidth
Aware Thread Allocation in Multicore SMT Processors”, PACT'13
IPDPS’15, Hyderabad, India
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Progress-Aware Scheduling
Fairness-oriented mode

* Rule of thumb to improve the fairness: schedule the processes
with lower accumulated progress

* Processes with high performance degradation may have

difficulties to keep the progress pace of other processes
o Their execution is favored allocating them on a entire core

 Compute the avg progress of the processes of the mix
FOR all the processes whose accumulated progress is 5% below the
average progress
* Schedule and allocate them on an entire core to boost their progress
DONE
* The remaining processes are selected prioritizing the processes
with lower accumulated progress
* Processes with no allocation restrictions are allocated on cores
balancing the L1-bandwidth among the cores

IPDPS’15, Hyderabad, India
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Experimental evaluation

Deviation of IPC estimates

OAvg IPC deviation B MaxIPCdeviation
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Fig 9. Average and maximum IPC deviation of the processes of the mixes.

* The figure plots average and maximum IPC deviation over real IPC
among the processes of each mix.
o Related with progress estimations, and thus fairness.

* The average IPC deviation falls below 5% for all the mixes
* Maximum IPC deviation ranges between 7% to 18%.

IPDPS’15, Hyderabad, India

32



Estimating progress
Period length between IPC estimates

* Tradeoff between accuracy and overhead
* Longinterval, estimations assumed valid more quanta
e Short interval, more quanta devoted to IPC estimates

* Average deviation < 2%, maximum deviation < 6%, with period
length of 6 seconds.

* The plots illustrate the small deviation, comparing IPC updated at
200ms and 6 seconds periods.
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Fig 4. Comparison between IPC measured each 200ms and each 6s.
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