Hyderabad, India

Addressing Fairness in SMT Multicores
with a Progress-Aware Scheduler

J. Feliu, J. Sahuquillo, S. Petit, and J. Duato

Universitat Politecnica de Valencia

%22, UNIVERSITAT GAP
: & POLITECNICA May 26th, 2015
V277 DE VALENCIA Parallel Architectures Group Hyderabad, India

Introduction

e Simultaneous multithreading (SMT) multicores

dominate the high-performance microprocessors
market

* Two levels of shared resources:
o Inter-core: uncore shared part of the systems (CMPs)
o Intra-core: inside the core (SMTs)
* Applications compete among themselves at runtime

for the shared resources

* Designing fair resource-sharing policies is challenging:
o The applications present different requirements for the
multiple shared resources
o The shared use of a resource affects differently the
performance of distinct applications

IPDPS’15, Hyderabad, India

Introduction

* We consider the system to be fair when all the running
processes experience the same slowdown with respect
to their isolated execution

e Unfairness causes important undesirable behaviors:
Complicates priority based scheduling or QoS

Difficult guaranteeing worst-case execution time (WCET)
Reduces performance predictability

Leads to unfairness billings in cloud computing services
Enables denial of service attacks

O O O O O

* Processors with heterogeneous cores or hardware
accelerators will magnify the unfairness issues

IPDPS’15, Hyderabad, India

Introduction

Are current SMT multicores fair?

1.00
0.90
0.80
0.70
0.60
0.50
0.40

B Normalized IPC of Ibm ONormalized IPC of the co-runner

bl

xalancbmk milc bzip2 bwaves gee

(@) Running with Ibm on different cores

gemsFDTD

1.00
0.90
0.80
0.70
0.60
0.50
0.40

@ Normalized IPC of bwaves O Normalized IPC of the co-runner

Lo

xalancbomk perlbench gemsFDTD cactusADM gromacs

(b) Running with bwaves on the same core

Fig 1. Normalized IPC of the benchmarks with respect to isolated execution

* Simple experiment running pairs of benchmarks:
(a) On different cores: inter-core interferences
(b) On the same core: intra-core interferences

* The processes progress at different paces depending on

the co-runner
e Unfairness above 30%

IPDPS’15, Hyderabad, India

Introduction

Key contributions

 We propose a way to accurately estimate the standalone

performance of the processes in SMT multicores
o Running in multiprogrammed workloads

|

 We can estimate the progress achieved by the processes
o With respect to their isolated execution

|

* We present the Progress-Aware scheduler to maximize
fairness

IPDPS’15, Hyderabad, India

Outline

Introduction

* Experimental platform

Estimating progress
* Progress-Aware scheduling
* Experimental evaluation

e Conclusions

IPDPS’15, Hyderabad, India

Experimental platform

* All the experiments are performed on a real system:
o Intel Xeon E5645 (Westmere-EP microarchitecture)
o Linux with kernel 3.11.4

e SPEC CPU2006 benchmarks
o Workload with more processes than execution contexts

* Libpfm 4.6 to manage performance counters:
o Gather IPC and bandwidth utilization through the memory hierarchy

Main memory: 12 GB DDR3

¢ Shared 12 MB LLC cache

GRBADE e
000000

Fig 2. Memory hierarchy of Intel Xeon E5645

Private 32KB L1 cache

Dual-thread cores

IPDPS’15, Hyderabad, India

Outline

Introduction

* Experimental platform

* Estimating progress

* Progress-Aware scheduling
* Experimental evaluation

e Conclusions

IPDPS’15, Hyderabad, India

Estimating progress

* Accurately estimating how the processes progress is the key
to devise fairness oriented schedulers

* Progress can be estimated as:

Q

IPCt
Progress (p) = Z I?C?Chmme
alone

=0

L . .
IPCiy_schedute : IPC of the process running in the co-schedule
o Directly calculated with performance counters measures

IPCliome: IPC that the process would have achieved in

isolation during the same quantum
o How itis obtained is the key

IPDPS’15, Hyderabad, India

Estimating progress

T wejlﬁ’l‘@ggﬁ? to arrange a low-
contention co-schedule:

* |ntra-core interferences are avoided, allocating the process
alone on a core

* Inter-core interferences are minimized, selecting co-runners that
cause little interferences in the co-runners

* The IPC of the target process is measured in the
low-contention co-schedule

i ~ i
© Ipcalﬂne IPCCG —schedule
o Assumed valid for the n following quanta

 Two reasons can cause inaccuracy in the estimates:
|. Standalone IPC assumed valid for a too long interval
Il. Process interferences are high in the low-contention
co-schedule

IPDPS’15, Hyderabad, India

10

Estimating progress

|. Period length between IPC estimates

* Tradeoff between accuracy and quanta used on estimates:

o Long interval, inaccuracy could rise

o Short interval, more quanta devoted to IPC estimates

* We compare the measured IPC of the benchmarks

* Baseline: IPC measured each quantum

e With periods from 1s to 8s between estimates

(5% Maximum deviation = Average deviation
(4]

16%
14%
12%
10%
8%
6%
4%
2%
0%

IPC deviation

1 2 3 4 5 6 7 8
Period length (seconds)

Fig 3. IPC deviation when increasing the period length between measures

IPDPS’15, Hyderabad, India

Maximum deviation:

< 6% with periods
below 6s

Average deviation
< 2%

11

Estimating progress

Il. Process interferences in low-contention co-schedules

* Our goal is to classify the process two categories:
o Heavy-sharing -> strong impact on co-runners
o Light-sharing -> slight impact on co-runners

Co-runner
(oY w® % 5 0“:\ <O
e<\‘°e°‘°1;\’\>"' B g & %o“(@\ “6\«@‘ o o o “’L@‘é o« @\Q‘;@‘ @\aog\&‘z@qes %a«\ea‘": « 1805\\1\? 3 s ’ d“ah\ea\‘\":bé @«\6 & o @ @t e < "
perlbench| 0% 0% ©0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 0% 1% 1% 0% 1% 0% 0% 0% 1%
bzip2| 0% 0% 1% 6% 0% 0% 0% 8% 0% 4% 3% 3% 8% 0% 9% 3% 0% 2% 7% 0%
gee| 0% 1% 3% 8% 1% 0% 1% % 5% 11% 0% 5% 1% 3% 9% 0%
mcf| 0% 0% 3% 24% 2% 2% 1% - 0% a% 2% 6% 24% 0%
gobmk| 0% 0% 0% 1% 0% O% 0% 4% 1% 1% 0% 2% 2% 0% 4% 2% 1% 2% 3% 1%
hmmer| 0% 0% 0% 1% 0% 0% 0% 2% 0% 1% 0% 0% 3% 0% 2% 1% 0% 0% 2% 0%
n sieng| 0% 0% 0% 1% 0% 0% 3% 6% 3% 1% 4% 4% 6% 3% 6% 4% 3% 4% 6% 3%
V) ibquantum| 0% 0% 0% 0% 0% 0% 0% 1% 0% 2% 0% 0% 2% 0% 1% 0% 0% 0% 0%
8 hosarefl 0% 0% 0% 4% 0% 0% 0% 6% 0% 2% 0% 1% 8% 0%
O omnetpp| 1% 6% 7% 3% 3% 3% 2% a% 1%
S astar| 1% 4% 5% 2% 2% 3% 5% 7% 5% 6%
o calancbmk| 0% 4% 700288 2% 2% 2% 25% _ 1% | 28% 2% 1%
Q bwaves| 0% 0% 0% 1% 0% 0% 0% 1% 0% 1% 1% 0% 9% 8% 9% 8% 8% 8%
&D gamess| 0% 0% 0% 1% 0% 1% 0% 1% 0% 0% 0% 0%
© milc| 0% 0% 0% 1% 0% 0% 0% 2% 0% 0%
= euswp| 1% 1% 1% 2% 0% 0% 1% 2% 0% 0%
gromacs| 0% 0% 2% 2% 0% 0% 1% 2% 0% 0% 1%
cactusADM| 0% 1% 3% 8% 1% 0% 0% 9% 0% 0% 0%
leslie3d| 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0%
namd| 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0%
deallf 0% 0% 0% 1% 0% O% 0% 2% O% 0% 0%
soplex| 2% 4% 6% 0A0% 3% 3% 3% |020% 5% As% N iin ISR 1% 2%
povray| 0% 0% 0% O% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 0%
gemsFDTD| 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 0%
lbm| 0% 4% 23% 6% 0% 0% 0% 8% 0% 3% 2% 5% 11% 0% 0% 0% 11% 36%

Fig 5. Performance degradation due to inter-core interferences running pairs of benchmarks on different cores

IPDPS’15, Hyderabad, India

Estimating progress
II. Process interferences in low-contention co-schedules

* Our goal is to classify the process two categories:
o) Heavy-sharing -> strong impact on co-runners
o Light-sharing -> slight impact on co-runners
* Inter-core interferences caused by LLC and MM contention
o Thresholds -> MM: 3.5t/us LLC: 19t/us
o If a process reaches any of the two thresholds -> heavy-sharing

% EBW MM HEBW_LLC

(@)
o

25

ul
(e

20

o
=)

Is

w
o

10

N
o

LLC bandwidth (trans/usec)

MM bandwidth (trans/usec)

bzip2
gee
mcf
hmmer
sjeng
gromacs =
cactusADM
namd
dealll
soplex
Ibm

o ul

|

—

j =

f
omnetpp*

-
2 o

libquantum
gamess j

milc

zeusMP

perlbench b5

gobmk
h264ref

astar - -

xalancbmk h !
bwaves
leslie3d
povray
gemsFDTD

Fig 6. Average main memory and LLC bandwidth
IPDPS’15, Hyderabad, India

Estimating progress

Il. Process interferences in low-contention co-schedules

* Evaluate the performance degradation on all possible
co-schedules from three to six light-sharing processes

o The figure presents the frequency on which the performance
degradation in the co-schedules falls in the intervals

o Average and maximum IPC degradation among the processes of
each co-schedule

O0<1% B@2%-3% B3 %-5%

1009
= = M] []

Frequency

Avg Max Avg Max Avg Max Avg Max
Triplets Quartets Quintets Sextets

Fig 7. Performance degradation on light-sharing co-schedules

IPDPS’15, Hyderabad, India

14

Outline

Introduction

* Experimental platform

Estimating progress
* Progress-Aware scheduling
* Experimental evaluation

e Conclusions

IPDPS’15, Hyderabad, India

15

Progress-Aware Scheduling

Yes

\ 4

IPC estimation-oriented mode

Creates a low-contention
co-schedule and estimates

IPC

alone

Any IPC
estimate
expires

No

Vv

Fairness-oriented mode

Schedules the processes to
enhance fairness

Update:

- Accumulated progress
- Expiration counters
- Process classification

IPDPS’15, Hyderabad, India

16

Progress-Aware Scheduling

|IPC estimation-oriented

Triggered to estimate the IPC,

one Of process P

Yes

Multiple IPC estimates

- Select the light-sharing processes
with 50% of the expiration time
consumed

- Allocate them alone on a core

Pis
light-sharing

No

- Schedule the light-sharing processes
with lower accumulated progress

- Allocate a pair of processes to each
core considering the L1-bandwidth?

Up to the number of contexts is reached:

[1] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-Bandwidth
IPDPS’15, Hyderabad, India Aware Thread Allocation in Multicore SMT Processors”, PACT’13

17

Progress-Aware Scheduling

Fairness-oriented mode

Triggered to enhance fairness

\ 4

Calculate the average progress of the mix

Yes

\ 4

Compensate the progress

- Allocate process P alone on
a core

IPDPS’15, Hyderabad, India

Process P with No
progress 5% <
average

- Schedule the light-sharing processes
with lower accumulated progress

- Allocate a pair of processes to each
core considering the L1-bandwidth'

Up to the number of contexts is reached:

18

Outline

Introduction

* Experimental platform

Estimating progress
* Progress-Aware scheduling
* Experimental evaluation

e Conclusions

IPDPS’15, Hyderabad, India

19

Experimental evaluation
Evaluation methodology

The algorithm is implemented in a user-level scheduler, using:
o System calls: determine which processes run each quantum
o Thread-to-core affinity attribute: determine on which core each process runs
o Performance counters: update IPC and bandwidth

> Negligible overhead of scheduling, below 0.1% of the quantum length (200ms)

Fourteen mixes of 24 benchmarks

Fairness metric:

Unfai Max Slowdown vPE{LA)
nfairness = — g1
Min Slowdown
running + pwaiting
Slowdown = co—schedule co—schedule

Tu!une

Performance metrics
o Turnaround time of the mix

N i
o System throughput = Z ’FCcu—scheciure
i=0 IPC!

alone

IPDPS’15, Hyderabad, India

20

Experimental evaluation
Fairness

50% B Linux scheduling O Progress-aware scheduling

40%

bbbl

Unfairness (%)

M1 M2 M3 M4 M5 M6 M7 M8 MS M10 M11 M12 M13 M 14 Avg

Fig 8 Unfairness (lower is better)

* The Progress-Aware scheduler performs fairer than Linux:
e Unfairness is reduced to a third on some mixes
* More steady results with the Progress-Aware scheduler

IPDPS’15, Hyderabad, India

21

Experimental evaluation
Fairness

PA-scheduler AVG = == == PA-scheduler MAX ==w==- PA-scheduler MIN
Linux AVG = e m= | jNUXMAX @ eea=s Linux MIN

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Progress

0 100 200 300 400
Execution time (s)

Fig 9. Dynamic progress of processes of mix 7

* The plot shows how unfairness evolves over the mix execution

* When the first processes finishes, the process with minimum
progress:
o With Linux: has completed 40% of its execution
o With the PA scheduler: has completed 80% of its execution

IPDPS’15, Hyderabad, India 22

Experimental evaluation
Performance

1

6%

hoo .

4% _}

3%

Speedup

2%

j,jmmmrh; By I &+ ﬁﬁ

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1l M12 M13 M 14 G mean

Fig 10. Speedup of the turnaround time over the Linux scheduler

* Turnaround time is not negatively affected, despite fairness-
oriented scheduling

* In fact, the Progress-Aware scheduler improves Linux
turnaround time in all the mixes.

IPDPS’15, Hyderabad, India

Experimental evaluation
Performance

6% i
] ;

Speedup
w Y
X X
=
=
=
[

——

HH
=

1%

0%

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M1l4 G mean

Fig 11. Speedup of the system throughput (STP) over the Linux scheduler

* The progress-aware scheduler improves Linux scheduler
throughput

* Key reason to improve throughput:
o L1-bandwidth aware process allocation policy

IPDPS’15, Hyderabad, India 24

Conclusions

* Scheduling considering fairness is gaining importance to:

o Keep process priorities, QoS, guarantee WCET, fair billing in cloud
computing, etc.

o Unfairness problems rise in heterogeneous systems

* Progress-Aware scheduler for SMT multicores
o Balances the slowdowns suffered by the processes of a workload

o Calculates the progress of the processes using estimates of their
standalone performance

o Prioritizes the processes with lower accumulated progress to
maximize fairness

e Reduces Linux unfairness to a third, while slightly improving
performance

IPDPS’15, Hyderabad, India 25

Thank you for your attention. Any question???

nn
Dankie Gracias

"Cn"a C..l.460 Merci Takk
Koszonjuk Terima kasih

[Grazie Dzigkujemy Dékojame
Dakujeme Vielen Dank Paldies
Kiitos g Tdname teid 6415t

Thank You-:

@ Obrigado '"3riiG "0
200G EUXAPLOTOUNE YOURA
Bedankt\ Dékujeme vam
HOMNESTIWVNEXT

Tack

IPDPS’15, Hyderabad, India

Addressing Fairness in SMT Multicores

with a Progress-Aware Scheduler

J. Feliu, J. Sahuquillo, S. Petit, and J. Duato

Universitat Politecnica de Valencia

G\ UNIVERSITAT
& POLITECNICA May 26th, 2015
o’ DE VALENCIA Hyderabad, India

Progress-Aware Scheduling

* Scheduling goal: maximize fairness

o All the processes achieve the same progress along the mix
execution

* Interferences impact differently on the individual
performance of the processes.

o Equal execution time # equal progress

IF the IPC estimate of any process P expires

IPC estimation-oriented mode
Creates a low-contention co-schedule for the process P

ELSE

Fairness-oriented mode
Schedules the processes to reduce unfairness

Fi

Update the progress, expiration counter and classification for the
executed processes

IPDPS’15, Hyderabad, India 29

Progress-Aware Scheduling
IPC estimation-oriented

* Creates a low-contention co-schedule:

o Remove intra-core interferences: P allocated alone on a core
o Minimize inter-core interferences: selecting light-sharing co-runners

* The quanta used to estimate IPC should be low:
o Not directly devoted to improve fairness

o If possible, multiple estimates performed in a single quantum

IF P is a light-sharing processes

* Schedule light-sharing processes that have consumed half their period
length between estimates

e Allocate them on a entire core to estimate their IPC.
Fi

* The remainin%1

processes are selected prioritizing the light-sharing
processes wit

lower accumulated progress

* Processes with no allocation restrictions are allocated on cores
balancing the L1-bandwidth among the cores?

[1] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-Bandwidth
Aware Thread Allocation in Multicore SMT Processors”, PACT'13
IPDPS’15, Hyderabad, India

30

Progress-Aware Scheduling
Fairness-oriented mode

* Rule of thumb to improve the fairness: schedule the processes
with lower accumulated progress

* Processes with high performance degradation may have

difficulties to keep the progress pace of other processes
o Their execution is favored allocating them on a entire core

 Compute the avg progress of the processes of the mix
FOR all the processes whose accumulated progress is 5% below the
average progress
* Schedule and allocate them on an entire core to boost their progress
DONE
* The remaining processes are selected prioritizing the processes
with lower accumulated progress
* Processes with no allocation restrictions are allocated on cores
balancing the L1-bandwidth among the cores

IPDPS’15, Hyderabad, India

31

Experimental evaluation

Deviation of IPC estimates

OAvg IPC deviation B MaxIPCdeviation

20%

15%

SlImIIAT

M4 M5 M9 M10 M11 M12 M13 M14

IPC deviation

Fig 9. Average and maximum IPC deviation of the processes of the mixes.

* The figure plots average and maximum IPC deviation over real IPC
among the processes of each mix.
o Related with progress estimations, and thus fairness.

* The average IPC deviation falls below 5% for all the mixes
* Maximum IPC deviation ranges between 7% to 18%.

IPDPS’15, Hyderabad, India

32

Estimating progress
Period length between IPC estimates

* Tradeoff between accuracy and overhead
* Longinterval, estimations assumed valid more quanta
e Short interval, more quanta devoted to IPC estimates

* Average deviation < 2%, maximum deviation < 6%, with period
length of 6 seconds.

* The plots illustrate the small deviation, comparing IPC updated at
200ms and 6 seconds periods.

Period =200ms ——Period=6s Period =200ms ——Period=6s Period = 200ms ——Period=6s
2.5 25 2.5

[o PSR)

20 2.0 2.0

15 15

IPC
IPC

1.0 1.0 f—T —

0.5 0.5

0.0 0.0 0.0
120 160 0 40 120 160 0 40

120 160

80
Time (s)

(@) hmmer (b) xalancbmk (c) cactusADM

80 80
Time (s) Time (s)

Fig 4. Comparison between IPC measured each 200ms and each 6s.

IPDPS’15, Hyderabad, India 33

