
Addressing Fairness in SMT Multicores
with a Progress-Aware Scheduler

J. Feliu, J. Sahuquillo, S. Petit, and J. Duato

Universitat Politècnica de València

May 26th, 2015

Hyderabad, India

IPDPS’15, Hyderabad, India 2

Introduction

• Two levels of shared resources:
o Inter-core: uncore shared part of the systems (CMPs)
o Intra-core: inside the core (SMTs)

• Applications compete among themselves at runtime
for the shared resources

• Designing fair resource-sharing policies is challenging:
o The applications present different requirements for the

multiple shared resources
o The shared use of a resource affects differently the

performance of distinct applications

• Simultaneous multithreading (SMT) multicores
dominate the high-performance microprocessors
market

• We consider the system to be fair when all the running
processes experience the same slowdown with respect
to their isolated execution

IPDPS’15, Hyderabad, India 3

Introduction

• Unfairness causes important undesirable behaviors:
o Complicates priority based scheduling or QoS
o Difficult guaranteeing worst-case execution time (WCET)
o Reduces performance predictability
o Leads to unfairness billings in cloud computing services
o Enables denial of service attacks

• Processors with heterogeneous cores or hardware
accelerators will magnify the unfairness issues

IPDPS’15, Hyderabad, India 4

Introduction
Are current SMT multicores fair?

(a) Running with lbm on different cores (b) Running with bwaves on the same core

Fig 1. Normalized IPC of the benchmarks with respect to isolated execution

• Simple experiment running pairs of benchmarks:
(a) On different cores: inter-core interferences
(b) On the same core: intra-core interferences

• The processes progress at different paces depending on
the co-runner

• Unfairness above 30%

IPDPS’15, Hyderabad, India 5

Introduction
Key contributions

• We propose a way to accurately estimate the standalone
performance of the processes in SMT multicores
o Running in multiprogrammed workloads

• We can estimate the progress achieved by the processes
o With respect to their isolated execution

• We present the Progress-Aware scheduler to maximize
fairness

• Introduction

• Experimental platform

• Estimating progress

• Progress-Aware scheduling

• Experimental evaluation

• Conclusions

IPDPS’15, Hyderabad, India 6

Outline

IPDPS’15, Hyderabad, India 7

Experimental platform

Dual-thread cores

Private 32KB L1 cache

Private 256KB L2 cache

Shared 12 MB LLC cache

Main memory: 12 GB DDR3

• All the experiments are performed on a real system:
o Intel Xeon E5645 (Westmere-EP microarchitecture)
o Linux with kernel 3.11.4

• SPEC CPU2006 benchmarks
o Workload with more processes than execution contexts

• Libpfm 4.6 to manage performance counters:
o Gather IPC and bandwidth utilization through the memory hierarchy

MM

LLC

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

SMT
core

SMT
core

SMT
core

SMT
core

SMT
core

SMT
core

Fig 2. Memory hierarchy of Intel Xeon E5645

• Introduction

• Experimental platform

• Estimating progress

• Progress-Aware scheduling

• Experimental evaluation

• Conclusions

IPDPS’15, Hyderabad, India 8

Outline

: IPC that the process would have achieved in
isolation during the same quantum

o How it is obtained is the key

: IPC of the process running in the co-schedule
o Directly calculated with performance counters measures

IPDPS’15, Hyderabad, India 9

• Accurately estimating how the processes progress is the key
to devise fairness oriented schedulers

Estimating progress

• Progress can be estimated as:

IPDPS’15, Hyderabad, India 10

• T we propose to arrange a low-
contention co-schedule:
• Intra-core interferences are avoided, allocating the process

alone on a core
• Inter-core interferences are minimized, selecting co-runners that

cause little interferences in the co-runners

Estimating progress

• The IPC of the target process is measured in the
low-contention co-schedule
o ≈

o Assumed valid for the n following quanta

• Two reasons can cause inaccuracy in the estimates:
I. Standalone IPC assumed valid for a too long interval
II. Process interferences are high in the low-contention

co-schedule

• Tradeoff between accuracy and quanta used on estimates:
o Long interval, inaccuracy could rise

o Short interval, more quanta devoted to IPC estimates

• We compare the measured IPC of the benchmarks
• Baseline: IPC measured each quantum

• With periods from 1s to 8s between estimates

IPDPS’15, Hyderabad, India 11

Estimating progress
I. Period length between IPC estimates

Fig 3. IPC deviation when increasing the period length between measures

Average deviation
< 2%

Maximum deviation:
< 6% with periods
below 6s

• Our goal is to classify the process two categories:
o Heavy-sharing -> strong impact on co-runners

o Light-sharing -> slight impact on co-runners

IPDPS’15, Hyderabad, India 12

Estimating progress
II. Process interferences in low-contention co-schedules

Fig 5. Performance degradation due to inter-core interferences running pairs of benchmarks on different cores

Co-runner

Ta
rg

et
 p

ro
ce

ss

• Our goal is to classify the process two categories:
o Heavy-sharing -> strong impact on co-runners

o Light-sharing -> slight impact on co-runners

IPDPS’15, Hyderabad, India 13

Estimating progress
II. Process interferences in low-contention co-schedules

Fig 6. Average main memory and LLC bandwidth

• Inter-core interferences caused by LLC and MM contention
o Thresholds -> MM: 3.5t/μs LLC: 19t/μs

o If a process reaches any of the two thresholds -> heavy-sharing

IPDPS’15, Hyderabad, India 14

Estimating progress
II. Process interferences in low-contention co-schedules

Fig 7. Performance degradation on light-sharing co-schedules

• Evaluate the performance degradation on all possible
co-schedules from three to six light-sharing processes

o The figure presents the frequency on which the performance
degradation in the co-schedules falls in the intervals

o Average and maximum IPC degradation among the processes of
each co-schedule

• Introduction

• Experimental platform

• Estimating progress

• Progress-Aware scheduling

• Experimental evaluation

• Conclusions

IPDPS’15, Hyderabad, India 15

Outline

IPDPS’15, Hyderabad, India 16

Progress-Aware Scheduling

Any IPC
estimate
expires

IPC estimation-oriented mode

Creates a low-contention
co-schedule and estimates
IPCalone

Fairness-oriented mode

Schedules the processes to
enhance fairness

Update:
- Accumulated progress
- Expiration counters
- Process classification

NoYes

IPDPS’15, Hyderabad, India 17

Progress-Aware Scheduling
IPC estimation-oriented

Multiple IPC estimates

- Select the light-sharing processes
with 50% of the expiration time
consumed
- Allocate them alone on a core

Triggered to estimate the IPCalone of process P

Up to the number of contexts is reached:

- Schedule the light-sharing processes
with lower accumulated progress

- Allocate a pair of processes to each
core considering the L1-bandwidth1

NoYes P is
light-sharing

[1] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-Bandwidth
Aware Thread Allocation in Multicore SMT Processors”, PACT’13

Triggered to enhance fairness

IPDPS’15, Hyderabad, India 18

Progress-Aware Scheduling
Fairness-oriented mode

Compensate the progress

- Allocate process P alone on
a core

Up to the number of contexts is reached:

- Schedule the light-sharing processes
with lower accumulated progress

- Allocate a pair of processes to each
core considering the L1-bandwidth1

NoYes Process P with
progress 5% <

average

Calculate the average progress of the mix

• Introduction

• Experimental platform

• Estimating progress

• Progress-Aware scheduling

• Experimental evaluation

• Conclusions

IPDPS’15, Hyderabad, India 19

Outline

IPDPS’15, Hyderabad, India

• Fairness metric:

20

Experimental evaluation
Evaluation methodology

• The algorithm is implemented in a user-level scheduler, using:
o System calls: determine which processes run each quantum
o Thread-to-core affinity attribute: determine on which core each process runs
o Performance counters: update IPC and bandwidth

• Performance metrics
o Turnaround time of the mix

o System throughput =

• Fourteen mixes of 24 benchmarks

 Negligible overhead of scheduling, below 0.1% of the quantum length (200ms)

IPDPS’15, Hyderabad, India 21

Experimental evaluation
Fairness

Fig 8 Unfairness (lower is better)

• The Progress-Aware scheduler performs fairer than Linux:
• Unfairness is reduced to a third on some mixes
• More steady results with the Progress-Aware scheduler

IPDPS’15, Hyderabad, India 22

Fig 9. Dynamic progress of processes of mix 7

• The plot shows how unfairness evolves over the mix execution

Experimental evaluation
Fairness

• When the first processes finishes, the process with minimum
progress:

o With the PA scheduler: has completed 80% of its execution
o With Linux: has completed 40% of its execution

IPDPS’15, Hyderabad, India 23

Fig 10. Speedup of the turnaround time over the Linux scheduler

• Turnaround time is not negatively affected, despite fairness-
oriented scheduling

Experimental evaluation
Performance

• In fact, the Progress-Aware scheduler improves Linux
turnaround time in all the mixes.

IPDPS’15, Hyderabad, India 24

Experimental evaluation
Performance

Fig 11. Speedup of the system throughput (STP) over the Linux scheduler

• The progress-aware scheduler improves Linux scheduler
throughput

• Key reason to improve throughput:
o L1-bandwidth aware process allocation policy

IPDPS’15, Hyderabad, India

• Scheduling considering fairness is gaining importance to:
o Keep process priorities, QoS, guarantee WCET, fair billing in cloud

computing, etc.
o Unfairness problems rise in heterogeneous systems

• Progress-Aware scheduler for SMT multicores
o Balances the slowdowns suffered by the processes of a workload
o Calculates the progress of the processes using estimates of their

standalone performance
o Prioritizes the processes with lower accumulated progress to

maximize fairness

• Reduces Linux unfairness to a third, while slightly improving
performance

25

Conclusions

IPDPS’15, Hyderabad, India

Thank you for your attention. Any question???

Addressing Fairness in SMT Multicores
with a Progress-Aware Scheduler

J. Feliu, J. Sahuquillo, S. Petit, and J. Duato

Universitat Politècnica de València

May 26th, 2015

Hyderabad, India

IPDPS’15, Hyderabad, India

• Scheduling goal: maximize fairness
o All the processes achieve the same progress along the mix

execution

• Interferences impact differently on the individual
performance of the processes.
o Equal execution time ≠ equal progress

29

Progress-Aware Scheduling

IF the IPC estimate of any process P expires

IPC estimation-oriented mode
Creates a low-contention co-schedule for the process P

ELSE
Fairness-oriented mode
Schedules the processes to reduce unfairness

FI
Update the progress, expiration counter and classification for the
executed processes

IPDPS’15, Hyderabad, India

IF P is a light-sharing processes
• Schedule light-sharing processes that have consumed half their period

length between estimates
• Allocate them on a entire core to estimate their IPC.

FI

• The remaining processes are selected prioritizing the light-sharing
processes with lower accumulated progress

• Processes with no allocation restrictions are allocated on cores
balancing the L1-bandwidth among the cores1

30

Progress-Aware Scheduling
IPC estimation-oriented

[1] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-Bandwidth
Aware Thread Allocation in Multicore SMT Processors”, PACT’13

• Creates a low-contention co-schedule:
o Remove intra-core interferences: P allocated alone on a core
o Minimize inter-core interferences: selecting light-sharing co-runners

• The quanta used to estimate IPC should be low:
o Not directly devoted to improve fairness
o If possible, multiple estimates performed in a single quantum

IPDPS’15, Hyderabad, India

• Rule of thumb to improve the fairness: schedule the processes
with lower accumulated progress

31

Progress-Aware Scheduling
Fairness-oriented mode

• Processes with high performance degradation may have
difficulties to keep the progress pace of other processes
o Their execution is favored allocating them on a entire core

• Compute the avg progress of the processes of the mix

FOR all the processes whose accumulated progress is 5% below the
average progress

• Schedule and allocate them on an entire core to boost their progress

DONE

• The remaining processes are selected prioritizing the processes
with lower accumulated progress

• Processes with no allocation restrictions are allocated on cores
balancing the L1-bandwidth among the cores

IPDPS’15, Hyderabad, India 32

Experimental evaluation
Deviation of IPC estimates

Fig 9. Average and maximum IPC deviation of the processes of the mixes.

• The average IPC deviation falls below 5% for all the mixes
• Maximum IPC deviation ranges between 7% to 18%.

0%

5%

10%

15%

20%

M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M 10 M 11 M 12 M 13 M 14

IP
C

 d
ev

ia
ti

o
n

Avg IPC deviation Max IPC deviation

• The figure plots average and maximum IPC deviation over real IPC
among the processes of each mix.
o Related with progress estimations, and thus fairness.

IPDPS’15, Hyderabad, India 33

Fig 4. Comparison between IPC measured each 200ms and each 6s.

(a) hmmer (b) xalancbmk (c) cactusADM

Estimating progress
Period length between IPC estimates

• Tradeoff between accuracy and overhead

• Long interval, estimations assumed valid more quanta

• Short interval, more quanta devoted to IPC estimates

• Average deviation < 2%, maximum deviation < 6%, with period
length of 6 seconds.

• The plots illustrate the small deviation, comparing IPC updated at
200ms and 6 seconds periods.

