
MICRO 2021 Submission #444 – Confidential Draft – Do NOT Distribute!!

ITSLF: Inter-Thread Store-to-Load Forwarding in
Simultaneous Multithreading

ABSTRACT
In this paper, we argue that, for a class of fine-grain,
synchronization-intensive, parallel workloads, it is advan-
tageous to consolidate synchronization and communication
as much as possible among the threads of simultaneous mul-
tithreading (SMT) cores. While, today, the shared L1 is the
closest coherent level where synchronization and commu-
nication between SMT threads can take place, we observe
that there is an even closer shared level, entirely inside a
single core. This level comprises the load queues (LQ) and
store buffers (SB) of the SMT threads and to the best of our
knowledge it has never been used as such. The reason is
that if we allow communication of different SMT threads
via their LQs and SBs, i.e., inter-thread store-to-load for-
warding (ITSLF), we violate write atomicity with respect to
the outside world, beyond the acceptable model of read-own-
write-early multi-copy atomicity (rMCA).

The key insight of our work is that we can accelerate syn-
chronization and communication among SMT threads with
inter-thread store-to-load forwarding, without affecting the
memory model—in particular without violating write atom-
icity (rMCA). We demonstrate how we can achieve this en-
tirely through speculative interactions between LQs and SBs
of different threads, while ensuring deadlock-free execution.
Without changing the architectural model, the ISA, or the
software, and without adding extra hardware in the form of
a specialized accelerator, our insight enables a new design
point for a standard architecture. We demonstrate that with
ITSLF, workloads scale better on a single 8-way SMT core
(with the resources of a single-threaded core) than on a base-
line SMT (with or without optimizations), or on 8 separate
single-threaded cores.

1. INTRODUCTION
Synchronization and transfer of critical data from thread to

thread has always been a centerpiece concern for the per-
formance of shared-memory parallel workloads. A vast
body of work aims to make synchronization algorithms
more performant and more efficient— [37] provides a good
review—but we do not expand on it here as it is orthogo-
nal to the perspective we take in this paper. Despite these
advances, synchronization tends to be avoided whenever pos-
sible due to its detrimental effects on performance and scala-
bility. It is telling that traditional parallel benchmark suites
such as SPLASH [36, 43] and PARSEC [7] are relatively
synchronization-poor [5].

While many workloads similar to SPLASH [36, 43] and
PARSEC [7] scale well in modern multicores, a different class
of fine-grain, synchronization-intensive, parallel workloads
performs poorly, progressively underutilizing core resources
with more cores. For example, workloads such as those that
implement graph and tree algorithms [13] or write-intensive
transaction processing [40] belong to this class. Recently, this
class of workloads has become increasingly relevant in many
research areas, including, for example, memory persistency
work, e.g., [22]. A critical reason for this is that the farthest
synchronization has to reach, the more expensive it becomes.
For example, synchronizing two cores via their shared last-
level cache (LLC) is more expensive than synchronizing two
simultaneous multithreading threads via their shared L1. This
not only holds for the actual synchronization operations, but
equally important, for the transfer of critical data from thread
to thread (the reason why synchronization was needed in the
first place).

Trying to scale fine-grain, synchronization-intensive work-
loads is often an exercise in frustration as the more resources
(cores) we allocate to run, the more expensive thread synchro-
nization becomes. The key reason is that synchronization in
shared memory is fundamentally achieved as a data race of
conflicting accesses that exposes the order between them. As
such, the conflicting accesses participating in the data race
must be globally inserted in the memory order to be visible by
all synchronizing parties. This implies that synchronization
must be achieved via a common coherent level of the mem-
ory hierarchy. Because of the hierarchical cluster structure of
modern systems (core clusters inside multicores, processor
packages, NUMA nodes, etc.), chances are, the more cores
we use, the farther away their common coherent level will be
found, making synchronization increasingly expensive.

Research Question: This opens up the main question we
tackle in this paper. How can we bring communication and
synchronization even closer to the executing threads? Spe-
cialized synchronization instructions and additional helper
hardware structures have been proposed to accelerate syn-
chronization in other settings, e.g., in processing in memory
MiSAR [28] and SynCron [20]. However, our aim is to ex-
amine the problem without changing the architectural model,
or the ISA, or the software, and without adding any new
hardware structures. This opportunity is afforded by Simul-
taneous Multithreading (SMT) [42].

Key Insight: The key observation of our work, and one
that as far as we know has not been exploited before, is that

1



the first shared level between threads in an SMT architecture
is not the L1 cache (as it is usually done) but the Store Buffers
(SB) that serve each of SMT threads. In other words, if we
were allowed to forward data from the stores in the SB of one
thread to the loads of another thread, we could then achieve
faster and more efficient in-core synchronization and com-
munication, through inter-thread store-to-load forwarding
(ITSLF 1).

Why ITSLF has not been done before? There are a few
reasons that prevented the closer examination of inter-thread
store-to-load forwarding in the past:

• Stores in the store buffer are not in the memory or-
der yet. This has significant implications for the mem-
ory model. Specifically, allowing inter-thread store-
to-load forwarding violates store atomicity beyond the
acceptable rMCA (read-own-write-early multiple-copy
atomic) model [1, 41] (Section 3). This is also the rea-
son why the SB is logically partitioned (irrespective of
its physical organization) amongst threads for memory
models that require rMCA store atomicity.

• While speculative enforcement of store atomicity, as
a consequence of speculative enforcement of sequen-
tial consistency (SC), is known [8, 18, 21], it was not
until recently that it was shown, in related work, that
efficient implementations can hone in on the specific
situations that cause store atomicity violations and ef-
fectively enforce it only when it is needed [35]. We
draw inspiration from the ideas in [35] but our main
contribution is to build a comprehensive approach to
address a multitude of issues stemming from ITSLF,
issues that are described in Section 3.

• It is not required in SMT scenarios where independent
threads are running (no chance for forwarding). In fact,
even for synchronization-poor parallel SMT threads run-
ning on the same core, the opportunities for forwarding
are few: Consider that modern parallel software is data-
race-free (DRF) and communication between threads
during large synchronization-free regions is simply non-
existent. The value of forwarding, however, becomes
apparent in synchronization-intensive workloads such
as the ones we examine here: first, for the synchroniza-
tion variables themselves, but more-so for the critical
section data that need to be transferred from the stores
of one thread to the loads of another after a successful
lock hand-off.

What are our main results?

• We demonstrate effective store-to-load forwarding
from the store buffers of SMT threads, leading to
significant increase in performance for a number of
synchronization- and write-intensive workloads (Sec-
tion 5).

• Furthermore, contrary to the prevailing view that SMT
is not worth scaling beyond two or four threads per

1Pronounced as itself, as it is the own microarchitecture–using the
SB–which “sends” data from one thread to another, instead of the
L1.

core, we show that, for these workloads, a “Super-SMT”
approach of up to 8 (or potentially more) threads is ben-
eficial for scaling performance even with the resources
of the baseline non-SMT core (we only scale the archi-
tectural state with the number of threads but nothing
else–see Sections 2 and 5). In SMT implementations,
two threads with moderate ILP experience only a small
speed up as they compete for the same resources. In our
case, however, our target workloads are dominated by
synchronization and communication latencies, which
is exactly what multithreading can hide by increasing
the utilization of the core’s resources with more threads.
This is the same phenomenon exploited by GPUs when
they switch to a different thread when issuing long-
latency memory operations.

Overall, we demonstrate a straightforward approach to pro-
vide increased performance and better scaling to a class of
workloads that traditionally have been difficult to accelerate.
We do not resort to a synchronization accelerator solution that
incurs significant changes (it would require additional hard-
ware and changes in the architectural model, ISA, and soft-
ware). Instead, our approach leaves the architectural model
unchanged and is orthogonal to software and synchronization
optimizations. We bring synchronization and communication
one level closer than the L1 to the executing threads.

What are our main contributions?

• For the first time (as far as we know) we solve the
problems that arise with ITSLF in an SMT setting. In
particular, we determine the point when a store becomes
locally visible to SMT threads, we safeguard write se-
rialization for same-address stores while they are only
locally visible in the SMT (but not globally visible
outside the SMT), and we efficiently maintain read-
own-early Multi-Copy Atomicity (rMCA) both within
and outside the SMT using speculation (Section 3).

• We demonstrate how our efficient implementation of
ITSLF reduces the number expensive CAM searches
compared to the baseline non-ITSLF SMT-baseline
(Section 5).

• Finally, we show that synchronization-intensive work-
loads consistently benefit from ITSLF, by scaling
well beyond the SMT-baseline or even its load queue
search filtering optimizations that were previously pro-
posed [23] (Section 5).

2. BACKGROUND
In a Simultaneous Multithreading core most of its re-

sources are shared among multiple threads so they can si-
multaneously execute as if they were placed in independent
“virtual” cores (see Figure 1).

A design choice to minimize the overhead of implementing
SMT is to time-share the fetch, decode, rename, dispatch,
and commit stages among threads so that they operate with
a single thread each cycle (as in a non-SMT core). This
approach resembles Intel’s implementation of SMT [14] and
is the one we assume in this work (see Figure 1). Only few
resources need to be replicated for each thread (e.g., the

2



Fetch Decode Rename Dispatch Memory CommitExecute Stores write

Blue: Partitioned
Orange: Completely Shared 
Green: Time Shared Stages
Dashed: Logical Structures

Thread0 SQ/SB Thread1 SQ/SB ThreadN SQ/SBSQ/SB

Data cache

Reservation Stations

LQ

ROB

Figure 1: SMT Model.

program counter, the Register Alias Table, the return stack)
and the size of the physical register file grows to account for
the increase in the architectural registers while leaving the
same number of physical registers to hold renamed state.

The rest of the physical resources of the baseline non-SMT
core are shared among threads without increasing their size,
as also done by Intel in its SMT processors [14]. These
resources include: the execution units, the reorder buffer
(ROB), the load queue (LQ), the store queue (SQ) and the
store buffer (SB). Besides the execution units that form a
common pool for all threads, sharing of a physical resource
creates multiple smaller logical copies of the resource, one
for each thread (see Figure 1). This is accomplished either
dynamically by using thread_ID tags to discriminate its en-
tries, or statically by physically partitioning the resource to
the different threads. We take the second approach but this
choice is orthogonal to our proposal.

Finally, we distinguish between the SQ and the SB: the
SQ contains stores that may have been executed but not yet
committed, the SB contains stores that have committed but
have not yet been performed (written in the L1), i.e., not yet
inserted in the global memory order. In some implementa-
tions, the SQ and SB are the same physical structure (circular
FIFO queue) and the distinction between them exists only via
a pointer that marks the entries belonging to the SQ and to
the SB respectively [24]. This implementation is orthogonal
to our approach.

Atomic instructions typically empty the SB [30] when
they can execute and commit. In SMT, an atomic instruction
empties the SB of its own thread but has no effect on other
SBs.

2.1 Speculative support for memory ordering
Today’s cores issue memory operations speculatively out-

of-order. Correctness is ensured in presence of out-of-order
execution by checking that (1) memory dependencies and (2)
load→load ordering are respected. These checks require fre-
quent associative searches on the LQ and the SQ/SB. These
queues are implemented as CAMs (content addressable mem-
ories) and are among the most expensive processor structures.
More importantly, these structures pose a critical trade-off:
On one hand, their size (in number of entries) should be in-
creased enough to prevent stalls due to capacity limitations.
This is especially important in a market environment where
newer generations of commercial processors increase the
number of in-flight instructions (see, for example, Intel Ice
Lake [32] or Apple’s M1 [17]. On the other hand, these CAM
structures need to be searched fast, which limits their size (or

alternatively, larger size makes them slower).
Memory dependencies are respected when loads read the

latest value written by a store in the same thread to the same
address, if no other thread wrote that location in the interim.
However, out-of-order processors speculatively issue loads
over older stores that have not been performed (written to
cache), or even not issued i.e., have not computed their target
addresses. Overall, to respect memory dependencies, three
types of CAM searches, detailed in the paragraphs below, are
needed: i) loads must search the SQ/SB; ii) stores must search
the LQ; and iii) external stores, that manifest as invalidations
reaching the core, must also search the LQ.

Loads searching the SB: To retrieve the data from com-
mitted but non-performed stores, the SB2 is searched by every
load, in parallel to the access to memory. On a hit in the SB,
the store forwards the data to the load. To maintain the high-
est performance, a parallel search of the SB implies that the
SB: i) should have at least the same number of ports as the
L1 cache has for read operations (usually two); ii) should be
searched with a latency not larger than the L1 latency, so as
to not incur a penalty on hits; and iii) should be segmented,
to allow executing additional search operations per cycle. A
recent study reports that no fewer than four cycles are needed
to forward data from a store to a load in an Intel Skylake, and
no fewer that five cycles in an Intel Ice Lake [16].

Stores searching the LQ: Since there may be stores with
unresolved addresses when a load snoops the SQ/SB, every
store needs to snoop back the LQ once it computes its address.
Loads that have executed in the presence of an older unre-
solved store, are called Data-Speculative (D-Speculative).
When a store snoops the LQ, if there is a match with a younger
D-Speculative load, the load and subsequent instructions are
squashed and re-executed as the D-Speculative load breaks
a memory dependence. This is a rare event due to accurate
memory dependence prediction [12] that exists today in most
architectures, that prevents memory dependent younger loads
to execute in the presence of the unresolved older stores. In
processors where a single store is issued per cycle, the LQ
can implement a single search port, allowing it to be larger
than the SQ/SB with a similar latency. Interestingly, CACTI-
P [27] reports similar search latency for a 128-entry CAM
with 1 port than for a 72-entry CAM with 2 ports, sizes of
the LQ and the SQ/SB, respectively, of an Intel Ice Lake
processor [32].

External stores searching the LQ: Load→load order is
required for loads to the same address to guarantee coher-
ence [15], and for loads to different addresses in systems
that provide strong consistency guarantees [19], such as x86-
TSO [38]. To respect the load→load order semantics, the
LQ is searched when receiving an invalidation, as another
core’s write may be exposing a speculative load reordering.
Cache evictions are conservatively treated as potential inval-
idations (also searching the LQ) as any actual invalidation
would never reach the LQ in this case. If a match occurs,
the load that is caught violating the load→load order, called
Memory-Speculative (M-Speculative) load, and all subse-
quent instructions are squashed and re-executed. Since these
searches are not frequent, it is preferable not to add an extra

2We include here, for the same thread, the stores (older than the
load) that may still be in the SQ.

3



1.05

1.10

1.15

1.20

1.25

1.30

32 40 48 56 64 72 80 88 96 104 112 120 128

O
ve

rh
ea

d

Number of entries

Latency Energy

Figure 2: Search latency and energy overheads of adding a
second search port to the LQ (CACTI-P).

search port to the LQ, but just perform the searches when
the LQ port is free, potentially delaying invalidations or evic-
tions. As shown in Figure 2, adding an extra port increases
search latency, especially for queues with a large number of
entries, risking a negative impact on performance. Energy
consumption of the LQ is negatively impacted as well.

2.2 Speculative support for memory ordering
in SMT architectures

Consider, now, an SMT core where each hardware thread
only “sees” its own logical LQs and SBs. This is currently
how SMT implementations work and we will explain in the
next section what mandates this behavior. In this case, a
speculative reordering that violates load→load order in one
thread could be exposed by stores performed by a second
hardware thread in the same core. However, coherence in-
validations to the LQ of the first thread, emanating from the
stores of the second thread, are not forthcoming by default as
both threads share the same coherent state of the cachelines
in the L1.

A naïve solution is to force the behavior of an invalidation
by performing an LQ search on each of the threads in the core
whenever any store is written from a SB to the cache. This
LQ search can be performed in parallel to the store writing to
cache. On a match, on any LQ, the matching speculative load
and the subsequent instructions of the corresponding thread
should to be squashed.3 As discussed in the previous section,
adding a second port to the LQ negatively impacts search
latency. Using the existing port for inter-thread searches,
may also negatively impact performance too, as inter-thread
searches are far more frequent than external invalidations or
even evictions.

The naïve solution searches the LQs of the other SMT
threads on every store. A possible optimization is to filter
LQ searches by adding “LQ directory” information to the
L1 cachelines, to track whether any other thread is reading
a cacheline [23]. When a store is written from the SB to the
L1, it checks the LQ directory of the cacheline. If a different
thread has read the cacheline since the last time it was written,
3Note that, in contrast to invalidations where the whole cacheline
range of addresses is searched in the LQ (as invalidations work at
the granularity of a cacheline), stores just search for loads matching
the exact address that they write, thus removing false-sharing effects.
Alexander et al. [3] focus on an SMT processor with a strongly
ordered consistency model and propose to trigger byte-precise LQ
and SQ searches for each executed load and store, respectively, to
avoid potential consistency violations.

the LQ of that thread is searched looking for a matching
load to squash, and the thread is marked as not reading the
cacheline anymore. We can view that information as a “need
LQ search” bit per hardware thread [23]. If no other thread
has read the cacheline, no LQ search is needed. In case of
a cache miss, no LQ-directory information exists, but no
LQ snoop is required as any LQs were already searched, if
required, when the cacheline was last evicted.

The LQ directory approach significantly reduces the num-
ber of LQ searches when stores write to memory, as many
cachelines are not shared by different threads. Consequently,
it reduces contention in the LQ snoop port and saves en-
ergy. However, when the LQ snoop is actually required, store
writes become significantly more costly. First, since the LQ-
directory information has to be retrieved from the cacheline
tag, the LQ snoop cannot be initiated until the L1 access is
performed. Second, since the write cannot be performed until
the LQ search is completed, a second cache access should be
initiated along with the LQ snoop to perform the write. And
third, since writes requiring a LQ snoop take longer to com-
plete, the write port should be squashed to prevent store-store
ordering violations within the same thread, similarly to how a
L1 miss write would be managed. In addition to that, storing
the LQ directory information along the L1 cachelines, also
has an overhead of N bits per cacheline, with N equal to the
number of supported SMT threads in the core. Because of
these reasons, the LQ-directory solution is not consistently
better than the baseline, leading in some cases to performance
degradation as we show in Section 5.

3. ISSUES AND SOLUTIONS WITH ITSLF
Allowing inter-thread store-to-load forwarding from a

thread to another in the same core in a SMT architecture has
the potential to accelerate communication between threads.
Inter-thread forwarding can be simply enabled by not restrict-
ing the SQ/SB search performed by loads to just the stores
belonging to the same thread.

However, as stated by Nagarajan et al. [30], a thread cannot
read a value written by another thread on the same core before
the store has been made “visible” to threads on other cores
(i.e., globally ordered). This implies that a thread cannot get
the value forwarded from another SQ/SB in the same core,
but it has to wait until the store is inserted in memory order.
As we show here, the reason is that allowing inter-thread
forwarding exposes store values before they are inserted in
global order, not just to loads from the same thread, but
also from other threads in the same core. This breaks: i)
coherence, ii) TSO, iii) write serialization, and iv) rMCA
store atomicity which is respected by most vendors (e.g.,
x86-TSO [38], ARMv8 [34]), resulting in a more complex
non-MCA model where stores are not globally ordered. To
the best of our knowledge, this is the first discussion in the
literature about the coherence/consistency impact of inter-
thread forwarding in SMT.

We first focus on the correctness of inter-thread forwarding
within a SMT core. Then, we discuss the interaction with
other cores.

3.1 Point of Local Visibility
In the single thread case, stores that resolve their address

4



ld x (1)

Initially: x = 0

PO st x,1

ld x (0)

Thread 1 Thread 2

ITSLF

ld x (1)

PO

ld y (0)

st y,1

PO

st x,1

Thread 1 Thread 2

ITSLF

Initially: x = 0

Coherence TSOa b

Figure 3: Coherence (a) and TSO examples (b).

squash D-Speculative younger loads on the same address
that have executed speculatively, bypassing the unresolved-
address store. A store, by squashing such younger D-
Speculative loads, ensures that it will be the one visible to all
of them when they re-execute. More importantly, stores make
their presence known to other threads when they write to
memory via invalidations that search the LQs of other threads
(in other cores) to squash speculative loads that may be violat-
ing memory model semantics. If we allow ITSLF in an SMT
core, we lack an analogous mechanism to prevent scenarios
such as the coherence (Figure 3(a)) and TSO (Figure 3(b))
problems, presented below.

Single-Address Coherence Example.
Consider the simple coherence problem depicted in Fig-

ure 3(a), the same example as in Dubois et al. [15]. Note that
this example applies to every memory model. The value in
between parenthesis in the loads is the value read by them.
It can happen in single-thread cores, or in SMT, and the
solution is always the same (search LQ and squash – see
below). Assume that the loads in this example are specula-
tively reordered. The second load performs before st x, 1
is visible to thread 1 and reads the value 0, creating a from-
read happens before dependence with the store. Then st x, 1
computes the address and becomes a potential forwarder. Fi-
nally, in an SMT with ITSLF, the first load executes getting
the value (1) forwarded from the store, creating a read-from
happens before dependence with the store. A dependence
cycle is created when considering program order and this
execution breaks the coherence expectations for variable x.

TSO Example.
A similar problem appears also when we have multiple

addresses and forwarding. Consider the mp litmus test shown
in Figure 3(b). In this example TSO is violated by ITSLF. If
initially x, y = 0, then getting in thread 1 x == 1 and y == 0
is not allowed by TSO. Imagine that thread 1 executes ld y
out-of-order before ld x. Thread 2 has not issued any store
yet. Clearly ld y reads speculatively the value 0. Now, thread
2 executes (computes the target address) st y, 1 and st x, 1
so they are visible to other threads in the core. Now, ld x
executes, getting the value (1) forwarded from st x, 1. But
this would create a cycle when considering the program order,
thus breaking TSO.

ITSLF Solution.

We define a store to be locally visible when its value can
be forwarded to another thread in the same core. The three
fundamental requirements for forwarding are (1) the store
address has been computed, (2) the store value is available,
and (3) the store is still in the SB (not inserted in global order
yet).

To fix both the coherence and TSO problems, we com-
bine the single-thread SLF and the external invalidation ap-
proaches of the baseline SMT in a single ITSLF approach: A
store must search the LQs of other threads, and squash the
matching M-speculative loads, in order to become visible to
these threads. Because the store is not ordered in relation to
the instructions of other threads, it squashes any matching M-
Speculative load (same address) without having a concept of
“younger.” But to its own thread, the store behaves normally
and squashes only younger matching D-Speculative loads.

In the baseline SMT, a store searches the LQs of other
threads only after it writes to the L1 and becomes globally
visible. This is equivalent to an external invalidation due to
a store of another core. The question is: at what point do we
allow a store to squash loads in ITSLF? There are two choices.
If we allow forwarding from the point the stores compute
their address, then they should search the LQs of other threads
at that time. Note that, in the same thread, younger loads
always see the thread’s own stores from the time their address
is available, i.e., from when the stores resolve their address
in the thread’s SQ. If we allow forwarding to other threads
only for committed stores in the SB, the stores should search
other LQs on commit (when they transition from the SQ to
the SB). A key realization to make both local thread SLF
and ITSLF work seamlessly together, in a single LQ snoop,
is that: it is always correct for a store to wait until it is
ready to commit, in order to perform the squash to its own-
thread younger D-Speculative loads.4 At that point the store
combines its local LQ squash with the squash of other thread
M-speculative loads in other LQs. We arrive, then, at the
following invariant:

Invariant: Stores become locally visible to SMT threads
when they commit and pass from the SQ to the SB. When
they become visible, they squash (on commit) the younger
matching D-speculative loads in their own thread and any
matching M-speculative load in all other threads. After a
store becomes locally visible it can forward its data to loads
of other threads.

It is now straightforward to see that in the coherence exam-
ple (Figure 3(a)), when st x, 1 becomes visible, it triggers an
LQ snoop that squashes ld x (0), breaking the dependence
cycle and ensuring that the next time the load executes, it
reads the new value. Similarly, the dependence cycle is bro-
ken in the TSO example (Figure 3(b)) when st y, 1 becomes
visible.

An alternative is to squash earlier (as soon as the store
address is available) and allow forwarding to all threads
from a store that is still in the SQ, i.e., a store that might
be speculative (e.g., from branch prediction). This leads to
higher complexity and we have not found strong evidence
that it offers better performance, therefore we leave it for
future examination. For these reasons, and for the rest of

4As a thought experiment, imagine that the address of a store always
becomes available when the store is at the head of the ROB.

5



RF

ld x (1)

PO

ld x (2)

st x,1 st x,2

Initially: x = 0
Thread 1 Thread 2

ITSLF

Thread 3

ITSLF RF

ld x (1)

SMT Core2SMT Core1

Initially: x = 0, y = 0

PO PO
WS

FR

st y, 2

st x, 2ld y (0)

st x,1

ITSLF

Thread 1

Thread 2

Thread 3
RF

ld x (1)

SMT Core1

PO

FR

st y,1st x,1

ld y (0)

ld y (1)

PO

ld x (0)

SMT Core2

ITSLF

Initially: x = 0, y = 0

Thread 1

Thread 2

Thread 4

Thread 3

ITSLF

FR

a

b c

Write
Serialization
(WS)

n6-ITSLF IRIW

RF RF

RF: read-from
FR: from-read
PO: Program-order

Figure 4: Write serialization (a), n6-ITSLF (b), IRIW (c).

the paper, we consider that ITSLF concerns only committed
(non-speculative) stores.

Cost: Establishing a unique point of squash for a store,
when it becomes locally visible, does not incur any additional
cost over the baseline: a store still snoops, a single time, the
same total number of LQ entries in the single-thread-baseline
(ST-baseline) or in SMT mode (the thread LQs in SMT add
up to the single LQ in the ST-baseline).

3.2 Local Store Order
Establishing a point of local visibility for each store is not

enough to solve a separate problem: write serialization (two
stores to the same address by any two threads are observed in
the same order by all threads). Consider the example below.

Write Serialization.
In Figure 4(a), both stores are locally visible. Assume that

ld x (2) executes and reads 2. Then, st x,2 performs and
exits the SB. ld x (1) reads 1. Finally st x,1 performs and
the memory is left with the final value of 1. The problem
is that the SBs of threads 2 and 3 are not ordered, and if
thread 3 writes to cache first, we have the IRIW problem (two
observers do not agree about the order of the stores—assume,
for example, a coherent observer in another core).

ITSLF Solution.
The problem here is that for the same address we need

to decide which store is younger. Same-address stores in
the same SB are either ordered (TSO) or coalesced (relaxed
models). The effect is the same: only the younger store
forwards. But across the SBs of multiple threads no relative
order exists for locally visible same-address stores. Worse:
the global order is established only when the stores are written
in the L1 and it is irrevocable after that. (In the SMT model
we use, we allow the heads of the SBs to be written in the L1
in arbitrary order.) This means that it is impossible to decide
on a local order without first knowing the global order.5

5In addition, there is a deadlock danger if we try to establish a local

To solve this problem, we allow only one store (of a par-
ticular address) to forward to loads based on local visibility
order (LV order)—or commit order. When a load snoops all
SBs and matches several candidates, in more than one SB,
these candidates are ordered by their LV order. Right at that
point the load selects the “youngest-to-LV” store for forward-
ing and deactivates the forwarding of all other “older-to-LV”
stores.

Now combine this approach with the Invariant of the Point
of Local Visibility, discussed above: Whenever a store com-
mits and enters the SB (from the SQ) it squashes all spec-
ulative loads on the same address that may have forwarded
from older-to-LV stores. This store becomes the youngest-to-
LV and prevents all older-to-LV stores from ever forwarding
again while they are in the SB.

At this point you may be concerned that the LV order of the
stores may be different from their global order. This can be
true but it does not matter. As we will see next, the key idea
that puts everything together (solving the multiple address
and rMCA store atomicity problems) is that the loads that
“see” a store (through forwarding) are obliged to commit only
after the store is inserted in the global order (written from
the SB to the L1) and must remain speculative (exposed to
squashing) until that time.

Invariant: Only a single store on a particular address,
the youngest-to-local-visibility (youngest to commit), can
forward to loads.

Cost: Similar functionality already exists in the ST-
baseline unified FIFO SB (for TSO): all stores of the same
address are matched by a load and the youngest store is se-
lected to do the forwarding. In the SMT case, a load can
match multiple stores in multiple SBs (that all add up to
the ST-baseline SB). We select the younger-to-commit and,
in parallel, deactivate forwarding for all the ones that were
not selected. We extend the SQ entries with a field to store
their commit order. This field requires dlog2(SB entries)e + 1
(sorting-bit [10] to handle wrap-around) bits. In an Ice Lake
core with a 72-entry store buffer, this accounts for 8 bits per
SQ entry (576 bits in total for the SQ).

3.3 Store Atomicity
Finally, we address the main culprit that prevents ITSLF

in current systems: violation of store atomicity. Informally,
in memory models that demand store atomicity, all threads
should see stores in global memory order at the same time.
In an SMT with ITSLF, local threads can see each other’s
stores even if these stores have not been inserted in the global
memory order, i.e., are still in their SBs. Obviously, this
would violate store atomicity in SC [26], x86-TSO [38], or
even in relaxed memory models such as ARMv8 [34].

In recent work, Ros and Kaxiras [35] show that a detection
of a store atomicity violation that stems from store-to-load
forwarding, appears as loads observing stores in a different
order. Of course, this behavior, if it stems from a same-thread
SLF, is incorporated in memory model definitions such as
x86-TSO [38] and is known as read-own-write-early multiple-
copy atomicity (MCA). In other words, stores appear at the
same time to all threads, except to the own thread where

order for more than one address that turns out to be the opposite
order in the global order.

6



they might appear earlier (before inserted in the global order).
However, if the forwarding is from another thread then the
same behavior would be a violation of rMCA.

It is straightforward to show using two classic litmus tests
that ITSLF leads to violations of rMCA. More specifically,
the cycles that appear in n6-ITSLF (a variation of n6 [38],
Figure 4(b)) and IRIW [9] (Figure 4(c))—discussed below—
are not due to read-on-early —they are forwardings from
other threads— and, therefore, violate rMCA.

n6-ITSLF Litmus Test.
Consider the n6-ITSLF litmus test running in Thread 2 and

Thread 3 in Figure 4(b). The difference with n6 is that the
SLF is ITSLF. In x86-TSO it is not possible this outcome:
[x]==1; [y]==2; x==1; y==0; since that would create a
cycle by allowing Thread 2 to see the store of Thread 1
before that store is globally ordered with respect to Thread
3. Seeing this cycle would mean that either the loads or the
stores are reordered, or alternatively, read-own-write-MCA
is not respected, i.e., the system is non-MCA. Executing the
first two threads in the same SMT core, and allowing ITSLF
obviously allows this to happen.

IRIW Litmus Test.
Similarly, ITSLF also breaks the Independent Reads In-

dependent Writes (IRIW) litmus test by creating a cycle, al-
lowing local threads to see stores earlier than remote threads,
thus violating rMCA. The cycle means that two independent
stores (writes) cannot be ordered which is not (generally) true
from the point of view of an outside observer.

ITSLF Solution.
When a load gets the data forwarded from a store, it records

the position (log2(SB entries)) of the forwarding store in the
SB. Note than in a partitioned SB, the position also indicates
the hardware thread the entry belongs to. A load at the head
of the ROB, checks if the entry of the store still contains the
forwarding store, or otherwise, the store has been written to
L1 and the entry is freed. In the first case, the load will not be
committed. To know if the store is still in the SB, we leverage
the concept of the sorting-bit proposed by Buyuktosunoglu
et al. [10]. You can think of using a sorting-bit as being
equivalent of having a monotonically-increasing numbering
for stores. The technique is explained in [10]. The sorting-bit
augments the store’s position in the SB and it is sent to the
load on forwarding. If the bit stored by the load matches the
one of the SB entry, then the store is still present in the SB.
Checking on one single bit lets the load decide if can commit
or not.

Invariant: A load receiving forwarded data from a differ-
ent thread: i) cannot retire from the ROB (commit) until the
forwarding store becomes globally visible; and ii) until it re-
tires, the forwarded load makes all younger loads in its thread
store-atomicity-speculative, therefore subject to squashing
from conflicting stores.

Based on the previous invariant, in the n6-ITSLF litmus
test, ITSLF does not allow ld x (1) to retire until st x, 1
does, and so it remains speculative and is squashed when
st x, 2 is made visible. Similarly, in the IRIW litmus
test, ITSLF does not allow ld x (1) (thread 2) and ld y (1)

(thread 4) to retire until their forwarding stores do, leaving
ld y (0) and ld x (0), respectively, exposed to squashes due
to invalidations.

Cost: ITSLF entails negligible storage overhead. We ex-
tend each LQ entry with two fields: i) a single-bit field to
indicate if the load was forwarded from a different thread, and
ii) a field to store the augmented position of the forwarding
store. The latter only needs dlog2(SB entries)e + 1 (sorting-
bit) bits. In an Ice Lake core with a 72-entry store buffer, 8
bits per LQ entry are needed (1024 bits in total for the LQ).
Overall, the storage overhead of ITSLF on Ice Lake is 1600
bits (200 bytes).

3.4 Summary
Table 1 summarizes the main actions performed by the

ST-baseline, SMT-baseline, and ITSLF along the different
execution steps of loads and stores. Two key differences con-
tribute to make an SMT core with ITSLF support better than
the baseline SMT. First, when loads execute, they search the
SQ/SB of all threads and read the data from the youngest store
among same-thread stores in the SQ/SB and other-thread
stores in the SB, which makes synchronization communica-
tion among threads faster. Second, ITSLF gets rid of the
LQ search when stores are performed and write to memory.
This reduces LQ snoop port contention and helps improve the
SMT performance when running synchronization-poor work-
loads. While the filtering mechanism in the SMT-baseline
discards a number of LQ snoops when stores write to the
L1 [23], it suffers from an important area overhead in the L1
(where LQ-directory information, used to filter LQ snoops,
is stored) and longer latency when the LQ snoop should be
triggered after searching the LQ directory. The latter compro-
mises performance in synchronization-intensive workloads,
as our experimental results show, where LQ snoops are more
frequent, and results in a worse performance than the SMT-
baseline in half of the workloads.

4. EXPERIMENTAL SETUP
We evaluate our proposal using a detailed in-house out-

of-order core model, which faithfully models simultaneous
multithreading. The core model is driven by a Sniper [11]
front-end. We model the memory hierarchy, including the
cache coherence protocol, using the cycle-accurate GEMS
simulator [29], and the interconnect with GARNET [2].

We simulate a multicore processor consisting of 16 cores,
with microarchitecture parameters resembling the Intel’s Ice
Lake microarchitecture [32]. Table 2 shows the main archi-
tectural parameters of the simulated system. When SMT is
enabled, the ROB, LQ and SQ-SB entries are statically parti-
tioned among threads. In addition, a single thread is allowed
to fetch, decode, rename, dispatch and commit instructions
per cycle using a round robin policy.

We focus the evaluation on a suite of six fine-grain,
synchronization-intensive, parallel benchmarks [22,25]. Con-
current Queue (CQ) inserts and removes elements in a shared
thread-safe queue, resembling write ahead logs widely used
in databases and journaled file systems [33]. Persistent Cache
(PC) – updates entries in a shared hash table –, RB-tree (RB)
– inserts and removes nodes in a red-black tree –, and Array
Swaps (SPS) – randomly swaps elements in an array –, are

7



Table 1: Summary of the actions performed by the ST-baseline, SMT-baseline, and ITSLF for load & store execution.

ST-baseline SMT-baseline ITSLF
Search SQ/SB. Search (own-thread) SQ/SB. Search SQ/SB.

LD exec Forward data from Forward data from same-thread most recent-matching ST. Forward data from most-recent ST in own-thread SQ or from unique
most-recent matching ST. Read locked lock from the L1 when other thread is about to free it. (youngest-to-local-visibility) ST in SB (all threads).

Read other thread freeing the lock directly from the SB!
If forwarded, wait for ST to perform.LD retire – – A load forwarded from a different thread cannot retire until the store writes.

Search LQ. Search (own-thread) LQ. (Search-LQ functionality deferred to retire/commit for non-speculativeST exec
Squash matching younger LDs. Squash same-thread matching younger LDs. forwarding)

Search (all threads) LQ.
ST retire – – Squash matching speculative LDs from any thread (only younger from own

thread).
Write L1. Search (all threads, except own) LQ. Write L1. Release any waiting forwarded loads.

ST performed Write L1. (Filtering: Search LQ only if other threads share the cacheline.) If forwarded to load(s): release load(s) waiting to retire by writing to the
Squash matching LDs from other threads. commit-gate register of the corresponding thread(s).

Table 2: System Configuration.

Processor (Ice Lake like)
Fetch width 5 instructions
Issue width 10 uops
Reorder buffer 352 entries
LQ 128 entries
SQ/SB 72 entries
Branch predictor L-TAGE [39]
Memory dep. predictor Store-set [12]

Memory hierarchy
Private L1 Instruction
and Data caches

Instruction: 32KB, 8 ways, 4 hit
cycles. Data: 48KB, 12 ways, 5
hit cycles. Both pipelined and
with a stride prefetcher [4].

Private L2 cache 512KB, 16 ways, 12 hit cycles
Shared L3 cache (16
banks)

1MB per bank, 8 ways, 35 hit
cycles

Memory access time 160 cycles

similar to implementations in NV-Heaps [13]. Finally, TATP
and TPCC, execute the update location transactions of the
TATP database workload [31] and the new order transaction
in a TPCC database [40], respectively. We run the bench-
marks using from 1 to 16 threads. The number of operations
is fixed (ranging from 0.4M in RB to 1.6M in TPCC) and it is
evenly divided among all threads. In addition, we present re-
sults for the SPLASH-3 [36] and PARSEC 3.0 [6] workloads,
which are relatively synchronization poor.

5. EVALUATION

5.1 Performance impact of ITSLF in
synchronization-intensive workloads

Figure 5 shows how performance varies when increasing
the number of threads from one to sixteen in four different
setups. The first setup, labelled as "ST" in the figure, allocates
each thread to a different core in a multicore. The other three
setups allocate all threads to a single X-way SMT core, where
X equals the number of threads. The second setup refers
to a baseline SMT core. The third setup, "Filtering SMT",
uses an LQ-directory with each cacheline to filter LQ snoops

as described in [23] (see Section 2.2). Finally, the fourth
setup, ITSLF is our proposal, a SMT core supporting inter-
thread store-to-load forwarding. Performance is normalized
to the single-thread execution. Hence, a value above 1 for
the normalized performance means that the multi-threaded
execution outperforms the single-thread execution.

As we already anticipated, trying to improve the perfor-
mance of fine-grain, synchronization-intensive workloads by
increasing the number of cores is pointless. The performance
of some of these workloads directly drops when increasing
the number of threads if each thread is allocated to a different
core compared to running the workload with a single thread
(e.g., TATP and CQ). Synchronization is somehow lighter
in other workloads such as PC or SPS, which allows scarce
performance benefits when increasing the core count (1.64×
for SPS and 1.50× for PC). This is not productive taking into
account the additional resources (and power consumption)
each core adds. TPCC is the workload whose performance
scales better with the number of cores (2.43×) since it uses
multiple locks and thus threads need to synchronize through
the LLC less frequently. Conversely, RB has all threads
synchronizing in the same lock and threads spend most of
their time executing long critical sections, which explains its
performance insensitivity when increasing the core count.

Executing all the threads in a single SMT core allows for
a more efficient synchronization through the L1 cache. It is
worth noting, however, that these threads will share all the
resources of the core, otherwise available to a single thread
and, therefore, they will execute at a lower pace. In addition
to that, the baseline SMT core also needs each store to trigger
a search in the LQs of the other threads to prevent expos-
ing a load→load ordering violation. This search increases
contention in the LQ snoop port. Faster thread synchroniza-
tion clearly outweighs the SMT performance-limiting factors.
For instance, the normalized performance of PC and SPS
grows up to 4.09× and 3.84×, respectively, compared to the
single-thread execution. Only in RB and TPCC the base-
line SMT performs worse than allocating each thread to a
different core. As discussed before, these workloads bene-
fit less from a faster synchronization and, in this case, the
performance-limiting factors of SMT execution kill the ben-
efits. The filtering SMT baseline significantly reduces the
number of LQ snoops when stores write to memory but that
comes at the cost of making store writes slower when the

8



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8 16N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Number of threads

ST Baseline SMT Filtering SMT ITSLF

(a) CQ

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

1 2 4 8 16N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Number of threads

ST Baseline SMT Filtering SMT ITSLF

(b) PC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Number of threads

ST Baseline SMT Filtering SMT ITSLF

(c) RB

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

1 2 4 8 16N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Number of threads

ST Baseline SMT Filtering SMT ITSLF

(d) SPS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Number of threads

ST Baseline SMT Filtering SMT ITSLF

(e) TATP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Number of threads

ST Baseline SMT Filtering SMT ITSLF

(f) TPCC

Figure 5: Performance normalized to single-thread execution times when increasing the number of threads in the multicore ST,
baseline SMT, filtering SMT, and ITSLF setups.

LQ snoop is actually required, as discussed in Section 2.2.
Therefore, its potential benefits in synchronization-intensive
workloads, where sharing cachelines is relatively frequent,
are limited. In fact, compared to the baseline SMT, it only im-
proves significantly the performance of TPCC (from 2.10×
for the baseline SMT to 2.64× for the filtering SMT). In half
of the workloads (PC, SPS, TAPT) the filtering SMT baseline
can lead to slowdowns compared to the SMT baseline! The
benefit of the the filtering baseline, therefore, is not consistent,
which is a major disadvantage.

ITSLF brings synchronization inside the core (between the
SB and the LQ), further accelerating synchronization com-
pared to the baseline SMT core where it is done through the
L1 cache. Besides, it does not require stores to snoop the LQs
of other threads when writing to memory, which reduces LQ
snoop port contention. Consequently, ITSLF outweighs all
other setups. More importantly, it outperforms the multicore
setup, where each thread is allocated to a different core in all
workloads, unlike the baseline and filtering SMT cores.

Independent of the interest to observe how performance
varies when increasing the thread count, a system adminis-
trator aims to run each workload with its optimal number
of threads. That is, two threads for CQ, RB, and TATP, and
eight threads for PC, SPS, and TPCC. From now on, we
will report results for the optimal number of threads for each
workload. Figure 6 shows the performance benefit, compared
to the single-thread execution, achieved by the four studied
setups, considering the optimal number of threads for each
workload. Therefore, the figure highlights the maximum
performance each setup provides. On average, executing
each thread on a different core improves performance by
1.4× compared to the single-thread execution. The base-
line SMT and filtering SMT setups perform similarly (2.21×
and 2.24×, respectively, compared to the single-thread exe-
cution). ITSLF outperforms the single-thread execution by
2.51×, the single-threaded multicore execution by 1.74×,

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

CQ PC RB SPS TATP TPCC Avg

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

ST Baseline SMT Filtering SMT ITSLF

Figure 6: Performance benefit with optimal number of threads
for synchronization-intensive workloads.

and the baseline SMT and filtering SMT setups by 14% and
11%, respectively.

5.2 Where does performance come from?

ITSLF accelerates synchronization.
The more obvious way ITSLF accelerates synchronization-

intensive workloads is by making the transfer of critical syn-
chronization data from thread to thread faster. This makes
the data values visible significantly earlier than in the base-
line SMT core, where they are communicated through the L1
cache. Note that to make a value visible to other threads in
the baseline SMT processor, the store should be the oldest
store of the thread in the SB and it should be the turn of the
thread to write to the L1. The situation can be worse with the
filtering baseline, since it should perform an LQ snoop after
it determines if it is required. If a snoop is required (which
is common in the synchornization-intensive workloads), the
propagation of the write must be delayed until the snoop is
completed. Thus, write latency doubles, since the write can
only be performed after the LQ is snooped. This is in sharp
contrast with ITSLF, which makes the data value available

9



0

20

40

60

80

100

CQ PC RB SPS TATP TPCC Avg

C
yc

le
s

Baseline SMT Filtering SMT ITSLF

Figure 7: Average lock acquire time after lock release for
contented locks.

for the other threads in the core as soon as the store commits.
To quantify how much ITSLF accelerates lock acquires,

Figure 7 shows the number of cycles elapsed from when a
contended lock is released to the time it is acquired when
running the workloads with their optimal number of threads.
We define a contended lock as a lock where there is at least
one thread spinning to acquire it when it is released. Com-
pared to the baseline SMT, the filtering baseline increases the
average lock acquire time. This is caused by the cachelines
containing the synchronization data, which frequently require
stores to snoop the LQ when writing to the L1. On average,
the lock-acquire latency grows from 55 cycles in the baseline
SMT core to 60 cycles in the filtering SMT core. Thanks
to directly communicating the lock values within the core,
ITSLF greatly reduces the lock-acquire latency, which drops
to only 34 cycles. Lock-acquire cycles are on the critical path
of each thread and most of the cycles saved directly contribute
to reducing workload execution time. Note, however, that
how they impact performance of a workload also depends on
the length of the critical section.

ITSLF accelerates synchronization because threads spin-
ning on a lock execute loads that read the synchronization
data from the SB of the thread releasing the lock. Figure 8a
shows the number of loads per lock acquire that read the
data from the SB of another thread. CQ, RB, and TATP are
extremely synchronization-intensive and no performance ben-
efit is reached with more than two threads. This is reflected
in these results: there is always a thread spinning on the
lock when it is released and reads the value from the SB of
the thread releasing the lock. PC, SPS, and TPCC are less
synchronization-intensive because threads synchronize with
multiple locks. That explains their performance scalability up
to eight threads, which is also reflected in these results. The
number of threads that read the synchronization data from
the SB of a different thread in their case ranges from 0.3×
to 0.4×, per lock acquire, which means that, often, locks are
released without any thread waiting to acquire them.

Finally, Figure 8b shows the percentage of loads that re-
ceive the data through forwarding from a different thread
with ITSLF. Obviously, the percentage is low since only loads
involved in synchronization can actually read data through an-
other thread SB. In data-race-free software, communication
between threads during large synchronization-free regions is
non-existent.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
u

m
b

er
 o

f 
lo

ad
s 

(a) Number of loads per lock ac-
quire

0.0%

0.5%

1.0%

1.5%

2.0%

P
er

ce
n

ta
ge

 o
f 

lo
ad

s 

(b) Percentage of loads

Figure 8: Loads reading a value from the SB of a different
thread.

0.0

0.2

0.4

0.6

0.8

1.0

CQ PC RB SPS TATP TPCC

R
at

io
 o

f 
LQ

 s
n

o
o

p
s 

w
h

en
 

st
o

re
s 

w
ri

te
 p

er
 s

to
re

0.0

0.2

0.4

0.6

0.8

1.0

C
Q P
C

R
B

SP
S

TA
TP

TP
C

C

R
at

io
 o

f 
LQ

 s
n

o
o

p
s

0%

5%

10%

15%

20%

25%

C
Q P
C

R
B

SP
S

TA
TP

TP
C

C

%
 o

f 
cy

cl
es

 

Baseline SMT Filtering SMT ITSLF

(a) Ratio of LQ snoops (b) Write stalls

Figure 9: Ratio of LQ snoops per store and Percentage of
cycles where a write is stalled due to LQ port contention.

ITSLF reduces contention in the LQ snoop port.
In the SMT baseline, as discussed in Section 2.2, all stores

search the LQ twice: when they execute and when they write
to memory, which affects performance and increases energy
consumption. The filtering SMT baseline tackles this problem
using the LQ-directory, and only triggers LQ snoops when
required. Unlike these approaches, ITSLF does not need to
snoop the LQ of any threads when stores write to memory.

Figure 9(a) shows the ratio of LQ snoops when stores
write for the three SMT setups. While all stores snoop the LQ
when they write with the non-filtering baseline, as the figure
shows, the filtering SMT baseline reduces the ratio of snoops
per store to between 1% (RB) and 16% (PC). An interesting
observation that shows how the additional LQ snoops impacts
performance is that in the three workloads where the filtering
SMT avoids almost all LQ snoops, it outperforms the baseline
SMT. In contrast, when the LQ snoops exceed 10% of the
stores, the filtering SMT performs worse than the baseline
SMT. As discussed, ITSLF does not trigger any LQ snoop
when stores write, which clearly contributes to its superior
performance.

Given that, in the SMT baseline, the LQ snoop port should
be shared by stores that execute and stores writing to the
L1, it is possible to find stores at both stages requiring the
use of the LQ snoop port in the same cycle. When this
happens, we simply stall the execution of the store by a cycle
giving priority to the store that writes. Figure 9(b) shows
the percentage of cycles where a thread executing a store

10



0.8

1.0

1.2

1.4

1.6

1.8

2.0
N

o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Filtering SMT ITSLF

Figure 10: Normalized performance (to the baseline SMT) across SPLASH-3 and PARSEC 3.0 workloads.

suffers a stall because the LQ snoop port is used by a store
writing to the L1. Note that the situation does not occur
with ITSLF since no LQ search is required when stores write
to memory. With the baseline SMT, three workloads (PC,
SPS, and TPCC, the ones that we execute with eight threads)
suffer store execution stalls due to contention in the LQ snoop
port in more than 15% of the execution cycles. TPCC is the
workload that suffer the highest percentage of stalls (25%)
which contributes to the low relative performance that the
SMT baseline achieves in this workload. The filtering SMT
reduces the LQ snoops required when stores write and thus,
reduces the number of stalls, which fall below 5% of the
cycles in all workloads.

5.3 Performance impact of ITSLF in
synchronization-poor workloads

Now, we evaluate other parallel workloads that are rela-
tively synchronization-poor. Therefore, the faster synchro-
nization provided by ITSLF marginally translates into perfor-
mance benefits. However, ITSLF also avoids the LQ snoops
that stores perform when they write to memory in the base-
line SMT processor, which can have an important impact on
performance in some workloads.

Figure 10 shows the performance of the filtering SMT and
ITSLF compared to the baseline SMT across the SPLASH-
3 and PARSEC 3.0 workloads running with eight threads.
Despite this synchronization-poor scenario does not align
favorably to gain performance via inter-thread store-to-load
forwarding, it is very interesting to observe that avoiding the
LQ snoop when stores write to memory also brings impor-
tant performance benefit in many workloads. For instance,
ITSLF and filtering SMT outperform the SMT baseline on
barnes (where LQ snoop port contention strongly hurts per-
formance in the SMT baseline), raytrace, water_nsquared,
and swaptions by 76%. 24%, 19%, and 18%, respectively.
On average, ITSLF improves performance by 8% compared
to the baseline SMT core across all SPLASH and PARSEC
workloads.

In this synchronization-poor scenario, the filtering SMT
performs almost as good as ITSLF. Since synchronization is
infrequent, the performance benefit achieved by ITSLF comes
mostly from reducing the LQ snoop port contention, some-
thing that the filtering SMT baseline also achieves. However,
it is important to empathize that the filtering SMT comes with
an area overhead in the L1 cache since it requires storing LQ-

directory information for each cacheline (one bit per SMT
thread per cacheline) used to determine if the LQ of other
threads should be searched. In addition, as discussed in Sec-
tion 2.2, since it requires checking the LQ-directory to know
if it should search the LQ of any thread, the latency of store
writes is larger when the LQ snoop is finally required. This
makes its performance not consistently better than the SMT
baseline in synchronization-intensive workloads. The lower
overhead and superior performance in all synchronization-
intensive workloads clearly makes ITSLF a better approach
than the filtering SMT.

6. CONCLUSION
Trying to scale fine-grain, synchronization-intensive work-

loads is often an exercise in frustration. The more cores
we allocate to run, the farther away their common coherent
level is found, making their synchronization increasingly ex-
pensive. This makes SMT an attractive choice to run these
workloads: While threads running in a multicore need to
synchronize through the cache hierarchy, threads running in
an SMT core can do so through the L1 cache. Interestingly,
even though it has never been used as such, in this work we
show that there is an even closer shared level that can be used
to accelerate thread’s synchronization within an SMT core:
the store buffer.

We propose inter-thread store-to-load forwarding (ITSLF)
and address problems that arise when allowing a thread to
read the data from the store buffer of another thread, earlier
than when such data become globally visible. We define the
point where a store becomes locally visible to other threads
in the core and a visibility order for same-address stores from
different threads, and show how ITSLF guarantees store atom-
icity using speculation, with minor changes in the architecture
and negligible cost.

Our results show that ITSLF accelerates the transfer of crit-
ical synchronization data from thread to thread, which trans-
lates into an average performance benefit of 14% compared
to a baseline SMT when running fine-grain, synchronization-
intensive workloads. Furthermore, ITSLF also avoids the
second search that stores perform (when writing to the L1)
in the LQs of other threads in an SMT core. This reduces
contention in the LQ snoop port and helps improve the per-
formance of synchronization-poor workloads, where ITSLF
outperforms the baseline SMT by 8% on average.

11



7. REFERENCES

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory
consistency models: A tutorial. IEEE Computer, 29(12):66–76,
December 1996.

[2] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha.
GARNET: A detailed on-chip network model inside a full-system
simulator. In Int’l Symp. on Performance Analysis of Systems and
Software (ISPASS), pages 33–42, April 2009.

[3] Khary J. Alexander, Christian Jacobi Jonathan T. Hsieh, and Martin
Recktenwald. Load and store ordering for a strongly ordered
simultaneous multithreading core. U.S. Patent US14511408, October
2014.

[4] Jean-Loup Baer. Microprocessor Architecture: From Simple Pipelines
to Chip Multiprocessors. Cambridge University Press, 1st edition,
2009.

[5] Nick Barrow-Williams, Christian Fensch, and Simon Moore. A
communication characterisation of Splash-2 and Parsec. In Int’l Symp.
on Workload Characterization (IISWC), pages 86–97, October 2009.

[6] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The PARSEC benchmark suite: Characterization and architectural
implications. In 17th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), pages 72–81, October 2008.

[8] Colin Blundell, Milo M.K. Martin, and Thomas F. Wenisch.
Invisifence: Performance-transparent memory ordering in
conventional multiprocessors. In 36th Int’l Symp. on Computer
Architecture (ISCA), pages 233–244, June 2009.

[9] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++
concurrency memory model. In 2008 Conf. on Programming
Language Design and Implementation (PLDI), pages 68–78, June
2008.

[10] Alper Buyuktosunoglu, Ali El-Moursy, and David H. Albonesi. An
oldest-first selection logic implementation for non-compacting issue
queues. In 15th Annual Int’l ASIC/SOC Conference, pages 31–35,
September 2002.

[11] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper:
Exploring the level of abstraction for scalable and accurate parallel
multi-core simulations. In Conf. on Supercomputing (SC), pages
52:1–52:12, November 2011.

[12] George Z. Chrysos and Joel S. Emer. Memory dependence prediction
using store sets. In 25th Int’l Symp. on Computer Architecture (ISCA),
pages 142–153, June 1998.

[13] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp,
Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. Nv-heaps:
Making persistent objects fast and safe with next-generation,
non-volatile memories. In 16th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), pages
105–118, March 2011.

[14] Martin Dixon, Per Hammarlund, Stephan Jourdan, and Ronak Singhal.
The next-generation Intel core microarchitecture. Intel Technology
Journal, 14(3):8–28, March 2010.

[15] Michel Dubois, Murali Annavaram, and Per Stenström. Parallel
Computer Organization and Design. Cambridge University Press,
2012.

[16] Agner Fog. The microarchitecture of intel, amd and via cpus: An
optimization guide for assembly programmers and compiler makers.
https://www.agner.org/optimize/microarchitecture.pdf,
March 2021.

[17] Andrei Frumusanu. Apple announces the Apple silicon M1: Ditching
x86 - what to expect, based on A14.
https://www.anandtech.com/show/16226/apple-silicon-
m1-a14-deep-dive/2, November 2020.

[18] Kourosh Gharachorloo. Memory consistency models for
shared-memory multiprocessors. Research report 95/9, Western
Research Laboratory, December 1995.

[19] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two
techniques to enhance the performance of memory consistency
models. In 20th Int’l Conf. on Parallel Processing (ICPP), pages
355–364, August 1991.

[20] Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou,
Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa,
Nectarios Koziris, Georgios Goumas, and Onur Mutlu. Syncron:
Efficient synchronization support for near-data-processing
architectures. 27th Int’l Symp. on High-Performance Computer
Architecture (HPCA), February 2021.

[21] K. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? In 26th
Int’l Symp. on Computer Architecture (ISCA), pages 162–171, May
1999.

[22] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish
Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. Persistency
for synchronization-free regions. In 45th Int’l Symp. on Computer
Architecture (ISCA), pages 46–61, June 2018.

[23] Andrew D. Hilton and Amir Roth. SMT-directory: Efficient load-load
ordering for SMT. IEEE Computer Architecture Letters, 9(1):25–28,
January 2010.

[24] Intel. Intel® 64 and ia-32 architectures optimization reference manual.
www.intel.com, June 2016.

[25] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst,
Peter M. Chen, Satish Narayanasamy, and Thomas F. Wenisch.
Language-level persistency. In 44th Int’l Symp. on Computer
Architecture (ISCA), pages 481–493, June 2017.

[26] Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transactions on
Computers (TC), 28(9):690–691, September 1979.

[27] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P.
Jouppi. Cacti-p: Architecture-level modeling for sram-based structures
with advanced leakage reduction techniques. In 2011 Int’l Conf. on
Computer-Aided Design (ICCAD), pages 694–701, November 2011.

[28] Ching-Kai Liang and Milos Prvulovic. Misar: Minimalistic
synchronization accelerator with resource overflow management. In
42nd Int’l Symp. on Computer Architecture (ISCA), pages 414–426,
June 2015.

[29] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore,
Mark D. Hill, and David A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (GEMS) toolset. ACM
SIGARCH Computer Architecture News, 33(4):92–99, September
2005.

[30] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. A
Primer on Memory Consistency and Cache Coherence, Second
Edition. Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2020.

[31] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka.
Telecom application transaction processing benchmark.
http://tatpbenchmark.sourceforge.net/, 2011.

[32] Irma E. Papazian. New 3rd gen Intel® Xeon® Scalable processor
(Codename: Ice Lake-SP). In 32nd HotChips Symp., pages 1–22,
August 2020.

[33] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory
persistency. In 41st Int’l Symp. on Computer Architecture (ISCA),
pages 265–276, June 2014.

[34] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit
Sarkar, and Peter Sewell. Simplifying ARM concurrency:
Multicopy-atomic axiomatic and operational models for ARMv8. In
45th Symp. on Principles of Programming Languages (POPL), pages
19:1–19:29, January 2018.

[35] Alberto Ros and Stefanos Kaxiras. Speculative enforcement of store
atomicity. In 53rd Int’l Symp. on Microarchitecture (MICRO), pages
555–567, October 2020.

[36] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto
Ros. Splash-3: A properly synchronized benchmark suite for
contemporary research. In Int’l Symp. on Performance Analysis of
Systems and Software (ISPASS), pages 101–111, April 2016.

[37] Michael L Scott. Shared-memory synchronization. Synthesis Lectures
on Computer Architecture, 8(2):1–221, 2013.

[38] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. x86-TSO: A rigorous and usable
programmer’s model for x86 multiprocessors. Communications of the
ACM, 53(7):89–97, July 2010.

12

https://www.agner.org/optimize/microarchitecture.pdf
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
www.intel.com
http://tatpbenchmark.sourceforge.net/


[39] André Seznec. The L-TAGE branch predictor. The Journal of
Instruction-Level Parallelism, 9:1–13, May 2007.

[40] Tpc benchmark b. http://www.tpc.org/tpc_documents_
current_versions/pdf/tpc-c_v5-11.pdf, 2010.

[41] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. TriCheck: Memory model verification at the
trisection of software, hardware, and ISA. In 22nd Int’l Conf. on
Architectural Support for Programming Language and Operating
Systems (ASPLOS), pages 119–133, April 2017.

[42] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In 22nd Int’l Symp.
on Computer Architecture (ISCA), pages 392–403, June 1995.

[43] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In 22nd Int’l Symp. on Computer
Architecture (ISCA), pages 24–36, June 1995.

13

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf

	Introduction
	Background
	Speculative support for memory ordering
	Speculative support for memory ordering in SMT architectures

	Issues and Solutions with ITSLF
	Point of Local Visibility
	Local Store Order
	Store Atomicity
	Summary

	Experimental Setup
	Evaluation
	Performance impact of ITSLF in synchronization-intensive workloads
	Where does performance come from?
	Performance impact of ITSLF in synchronization-poor workloads

	Conclusion
	References

