ITSLF: Inter-Thread Store-to-Load Forwarding in Simultaneous Multithreading

Josué Feliu¹, Alberto Ros¹, Manuel E. Acacio¹, and Stefanos Kaxiras²

¹ Computer Engineering Department University of Murcia

² Department of Information Technology Uppsala University

- Fine-grain, synchronization-intensive workloads scale poorly.
 - The farthest the synchronization, the more expensive.

- Fine-grain, synchronization-intensive workloads scale poorly.
 - The farthest the synchronization, the more expensive.

- Fine-grain, synchronization-intensive workloads scale poorly.
 - The farthest the synchronization, the more expensive.

- Fine-grain, synchronization-intensive workloads scale poorly.
 - The farthest the synchronization, the more expensive.

- Fine-grain, synchronization-intensive workloads scale poorly.
 - The farthest the synchronization, the more expensive.

- Fine-grain, synchronization-intensive workloads scale poorly.
 - The farthest the synchronization, the more expensive.
- Can we bring communication closer to the threads?

- Fine-grain, synchronization-intensive workloads scale poorly.
 - The farthest the synchronization, the more expensive.
- Can we bring communication closer to the threads?
 - The first shared level between threads in an SMT is not the L1 cache but the SQ/SB.

- Fine-grain, synchronization-intensive workloads scale poorly.
 - The farthest the synchronization, the more expensive.
- Can we bring communication closer to the threads?
 - The first shared level between threads in an SMT is not the L1 cache but the SQ/SB.

- Fine-grain, synchronization-intensive workloads scale poorly.
 - The farthest the synchronization, the more expensive.
- Can we bring communication closer to the threads?
 - The first shared level between threads in an SMT is not the L1 cache but the SQ/SB.

- Fine-grain, synchronization-intensive workloads scale poorly
 - The farthest the synchronization, the more expensive
- Can we bring communication closer to the threads?
 - The first shared level between threads in an SMT is not the L1 cache but the SQ/SB
- Implications for the memory models!
 - Violates coherence and consistency.

Introduction What are our main contributions?

- We propose Inter-Thread Store-to-Load Forwarding (ITSLF) for SMT architectures and solve the problems that arise related to the memory model.
 - 1. Determine the point when a store becomes locally visible to SMT threads.
 - Safeguard write serialization for same-address stores.
 - 3. Efficiently maintain multi-copy atomicity (MCA).

Outline

- Introduction
- Background
- Issues and Solutions with ITSLF
- Experimental Evaluation
- Conclusion

• Memory operations are speculatively issued out-of-order.

- A correctness execution must respect:
 - Memory dependencies.

Load → Load ordering.

• Memory operations are speculatively issued out-of-order.

• A correctness execution must respect:

• Memory dependencies.

Load → Load ordering.

- A correctness execution must respect:
 - Memory dependencies.
 - Loads search the SB.
 - Load → Load ordering.

- A correctness execution must respect:
 - Memory dependencies.
 - Loads search the SB.
 - Stores search the LQ.
 - Load → Load ordering.

- A correctness execution must respect:
 - Memory dependencies.
 - Loads search the SB.
 - Stores search the LQ.
 - Load → Load ordering.

• Memory operations are speculatively issued out-of-order.

- A correctness execution must respect:
 - Memory dependencies.
 - Loads search the SB.
 - Stores search the LQ.
 - Load → Load ordering.

• Memory operations are speculatively issued out-of-order.

- A correctness execution must respect:
 - Memory dependencies.
 - Loads search the SB.
 - Stores search the LQ.
 - Load → Load ordering.

Memory operations are speculatively issued out-of-order.

- A correctness execution must respect:
 - Memory dependencies.
 - Loads search the SB.
 - Stores search the LQ.
 - Load → Load ordering.
 - Invalidations search the LQ.

Memory operations are speculatively issued out-of-order.

- A correctness execution must respect:
 - Memory dependencies.
 - Loads search the SB.
 - Stores search the LQ.
 - Load → Load ordering.
 - Invalidations search the LQ.

COMPUTER & PARALLEL ARCHITECTURE & SYSTEMS

- Load → Load ordering violations could be exposed by stores from a thread running in the same SMT core.
 - Same-core threads share the state of cachelines in the L1.
 - No invalidation arrives to threads in a SMT core due to a store from a same-core thread.

COMPUTER & PARALLEL ARCHITECTURE & SYSTEMS

- Load → Load ordering violations could be exposed by stores from a thread running in the same SMT core.
 - Same-core threads share the state of cachelines in the L1.
 - No invalidation arrives to threads in a SMT core due to a store from a same-core thread.
 - Store search the LQs of the other threads in the same core when they write to memory.

COMPUTER & PARALLEL ARCHITECTURE & SYSTEMS

- Load → Load ordering violations could be exposed by stores from a thread running in the same SMT core.
 - Same-core threads share the state of cachelines in the L1.
 - No invalidation arrives to threads in a SMT core due to a store from a same-core thread.
 - Store search the LQs of the other threads in the same core when they write to memory.
 - Increases LQ snoop port contention.

COMPUTER & PARALLEL ARCHITECTURE & SYSTEMS

- LQ-search filtering optimization [1]: only the LQs of threads that read the cacheline need to be snooped.
 - Store cacheline readers in the L1.
 - Squashing is rare and thus, it reduces LQ snoop contention.

COMPUTER & PARALLEL ARCHITECTURE & SYSTEMS

- LQ-search filtering optimization [1]: only the LQs of threads that read the cacheline need to be snooped.
 - Store cacheline readers in the L1.
 - Squashing is rare and thus, it reduces LQ snoop contention.

COMPUTER & PARALLEL ARCHITECTURE & SYSTEMS

- LQ-search filtering optimization [1]: only the LQs of threads that read the cacheline need to be snooped.
 - Store cacheline readers in the L1.
 - Squashing is rare and thus, it reduces LQ snoop contention.

COMPUTER & PARALLEL ARCHITECTURE & SYSTEMS

- LQ-search filtering optimization [1]: only the LQs of threads that read the cacheline need to be snooped.
 - Store cacheline readers in the L1.
 - Squashing is rare and thus, it reduces LQ snoop contention.
 - Doubles the write latency when the snoop if required.

Outline

- Introduction
- Background
- Issues and Solutions with ITSLF
- Experimental Evaluation
- Conclusion

- Inter-thread store-to-load-forwarding could be enabled by not restricting the SQ/SB search to the same thread.
- Exposes store values to some threads before they are inserted in global order and breaks:
 - Coherence and TSO
 - Write serialization
 - 3. Multi-Copy Atomicity

- Inter-thread store-to-load-forwarding could be enabled by not restricting the SQ/SB search to the same thread.
- Exposes store values to some threads before they are inserted in global order and breaks:
 - 1. Coherence and TSO → Point of Local Visibility
 - 2. Write serialization
 - 3. Multi-Copy Atomicity

PO: program order

PO: program order

FR: from-read

PO: program order

FR: from-read

PO: program order

FR: from-read RF: read-from

PO: program order

FR: from-read RF: read-from

ITSLF solution

Stores become visible when they become non-speculative. At that point, they:

- i) squash any matching M-speculative load in all other SMT threads.
- ii) can forward its data to loads of other SMT threads.

PO: program order

FR: from-read RF: read-from

ITSLF solution

Stores become visible when they become non-speculative. At that point, they:

- i) squash any matching M-speculative load in all other SMT threads.
- ii) can forward its data to loads of other SMT threads.

PO: program order

FR: from-read RF: read-from

ITSLF solution

Stores become visible when they become non-speculative. At that point, they:

- i) squash any matching M-speculative load in all other SMT threads.
- ii) can forward its data to loads of other SMT threads.

PO: program order

FR: from-read RF: read-from

ITSLF solution

Stores become visible when they become non-speculative. At that point, they:

- i) squash any matching M-speculative load in all other SMT threads.
- ii) can forward its data to loads of other SMT threads.

ITSLF combines the same-thread LQ search and other-threads LQ search into a single LQ snoop.

PO: program order

FR: from-read RF: read-from

ITSLF solution

Stores become visible when they become non-speculative. At that point, they:

- i) squash any matching M-speculative load in all other SMT threads.
- ii) can forward its data to loads of other SMT threads.

ITSLF combines the same-thread LQ search and other-threads LQ search into a single LQ snoop.

Cost

Requires support to determine when stores become nonspeculative (et al. at . ISCA'19)

- Inter-thread store-to-load-forwarding could be enabled by not restricting the SQ/SB search to the same thread.
- Exposes store values to some threads before they are inserted in global order and breaks:
 - Coherence and TSO → Point of Local Visibility
 - 2. Write serialization → Local Store Order
 - 3. Multi-Copy Atomicity

ITSLF: Local Store Order

Initially: x = 0

Thread 2

st x, 1

Thread 3

st x, 2

PO: program order

FR: from-read RF: read-from

Memory

x = 0

Th2 st x, 1 visible

Th3 st x, 2 visible

time

PO: program order

FR: from-read RF: read-from

Memory x = 0

11

PO: program order

FR: from-read RF: read-from

Memory x = 2

ITSLF: Local Store Order

Initially: x = 0

Memory

x = 1

PO: program order

FR: from-read

RF: read-from

WS: write serialization

ITSLF solution

Only a single store on a particular address, the youngest based on local visibility order (youngest to become non-speculative), can forward to loads.

Thread 1 ld x PO ld x

PO: program order FR: from-read

RF: read-from

WS: write serialization

Thread 3

Memory

x = 0

time

Only a single store on a particular address, the

become non-speculative), can forward to loads.

youngest based on local visibility order (youngest to

ITSLF solution

PO: program order

FR: from-read

RF: read-from

WS: write serialization

ITSLF solution

Only a single store on a particular address, the youngest based on local visibility order (youngest to become non-speculative), can forward to loads.

11

Memory

x = 0

Initially: x = 0

Memory

x = 0

PO: program order

FR: from-read

RF: read-from

WS: write serialization

ITSLF solution

Only a single store on a particular address, the youngest based on local visibility order (youngest to become non-speculative), can forward to loads.

Initially: x = 0

PO: program order

FR: from-read

RF: read-from

WS: write serialization

ITSLF solution

Only a single store on a particular address, the youngest based on local visibility order (youngest to become non-speculative), can forward to loads.

Memory

x = 0

Initially: x = 0

ITSLF solution

Only a single store on a particular address, the youngest based on local visibility order (youngest to become non-speculative), can forward to loads.

Initially: x = 0

ITSLF solution

Only a single store on a particular address, the youngest based on local visibility order (youngest to become non-speculative), can forward to loads.

Memory

x = 2

PO: program order

FR: from-read

RF: read-from

WS: write serialization

ITSLF solution

Only a single store on a particular address, the youngest based on local visibility order (youngest to become non-speculative), can forward to loads.

Cost

ITSLF only requires extending the SQ entries with a field to store their LV order ($\lceil log_2(SB\ entries) + 1 \rceil$ bits per SB entry).

- Inter-thread store-to-load-forwarding could be enabled by not restricting the SQ/SB search to the same thread.
- Exposes store values to some threads before they are inserted in global order and breaks:
 - 1. Coherence and TSO \rightarrow Point of Local Visibility
 - 2. Write serialization \rightarrow Local Store Order
 - 3. Multi-Copy Atomicity

Invalid outcome with x86-TSO:

- Memory: [x] = 1; [y] = 2;
- Thread 2: x = 1; y = 0;

RF: read-from

Memory x = 0; y = 0

Invalid outcome with x86-TSO:

• Memory: [x] = 1; [y] = 2;

Invalid outcome with x86-TSO:

• Memory: [x] = 1; [y] = 2;

Invalid outcome with x86-TSO:

• Memory: [x] = 1; [y] = 2;

Invalid outcome with x86-TSO:

• Memory: [x] = 1; [y] = 2;

• Thread 2: x = 1; y = 0;

x = 0; y = 0

RF: read-from

PO: program order FR: from-read

RF: read-from

Memory x = 0; y = 0 Invalid outcome with x86-TSO:

• Memory: [x] = 1; [y] = 2;

Invalid outcome with x86-TSO:

• Memory: [x] = 1; [y] = 2;

Invalid outcome with x86-TSO:

• Memory: [x] = 1; [y] = 2;

ITSLF solution

A load receiving forwarded data from a different thread:

- i) cannot retire until the forwarding store becomes globally visible
- ii) until it retires, it makes all younger loads in its thread speculative and subject to squashing from conflicting stores.

PO: program order

FR: from-read RF: read-from

Memory x = 0; y = 0

ITSLF solution

A load receiving forwarded data from a different thread:

- i) cannot retire until the forwarding store becomes globally visible
- ii) until it retires, it makes all younger loads in its thread speculative and subject to squashing from conflicting stores.

x = 0; y = 0RF: read-from

ITSLF: Inter-Thread Store-to-Load Forwarding in Simultaneous Multithreading @ MICRO'21

13

ITSLF solution

A load receiving forwarded data from a different thread:

- i) cannot retire until the forwarding store becomes globally visible
- ii) until it retires, it makes all younger loads in its thread speculative and subject to squashing from conflicting stores.

ITSLF: Inter-Thread Store-to-Load Forwarding in Simultaneous Multithreading @ MICRO'21

ITSLF solution

A load receiving forwarded data from a different thread:

- i) cannot retire until the forwarding store becomes globally visible
- ii) until it retires, it makes all younger loads in its thread speculative and subject to squashing from conflicting stores.

Cost

ITSLF requires extending each LQ entry with two fields:

- i) a single-bit field to indicate if the load was forwarded from a different thread.
- ii) a field to store the augmented position of the forwarding store order ($[log_2(SB\ entries) + 1]$ bits).

Outline

- Introduction
- Background
- Issues and Solutions with ITSLF
- Experimental Evaluation
- Conclusion

Experimental evaluation Setup

- Ice Lake like SMT multicore.
 - Up to 16 SMT threads with resources statically partitioned among threads.
- Fine-grain, synchronization-intensive, parallel benchmarks:
 - CQ, PC, RB, SPS, TATP, TPCC.
- Synchronization-poor workloads:
 - SPLASH-3 and PARSEC 3.0.

Performance impact of ITSLF in synchronization-intensive workloads

Performance impact of ITSLF in synchronization-intensive workloads

SMT singlecore not consistently better than non-SMT multicore

Performance impact of ITSLF in synchronization-intensive workloads

Performance impact of ITSLF in synchronization-intensive workloads

Performance impact of ITSLF in synchronization-intensive workloads

Filtering SMT not consistently better than baseline SMT

Performance impact of ITSLF in synchronization-intensive workloads

Performance impact of ITSLF in synchronization-poor workloads

Normalized performance compared to the baseline SMT across SPLASH-3 and PARSEC 3.0 workloads.

Conclusion

 We demonstrate that store-to-load forwarding from the SQ/SB of SMT threads is possible without violating MCA.

• We show that synchronization-intensive workloads consistently benefit from ITSLF (13% speedup).

 We show that ITSLF reduces the number of expensive CAM searches to the LQ.

ITSLF: Inter-Thread Store-to-Load Forwarding in Simultaneous Multithreading

Josué Feliu ¹, Alberto Ros ¹, Manuel E. Acacio ¹, and Stefanos Kaxiras ²

¹ Computer Engineering Department University of Murcia ² Department of Information Technology
Uppsala University

josue.f.p@um.es

MICRO-54 – Session 10B: Microarchitecture II

Thanks for your attention!

This work was supported by the Spanish MCIU and AEI, as well as European Commission FEDER funds, under grant RTI2018-098156-B-C53, the European Research Council (ERC) under the Horizon 2020 research and innovation program (grant agreement No 819134), the Vetenskapsradet project 2018-05254, and the European joint Effort toward a Highly Productive Programming Environment for Heterogeneous Exascale Computing (EPEEC) (grant No 801051). Josué Feliu is supported by a Juan de la Cierva Formación Contract (FJC2018-036021-I).

This presentation and recording belong to the authors. No distribution is allowed without the authors' permission.