
The Forward Slice Core Microarchitecture
Kartik Lakshminarasimhan

Ghent University, Belgium
Ajeya Naithani

Ghent University, Belgium

Josué Feliu
Universidad de Murcia, Spain

Lieven Eeckhout
Ghent University, Belgium

ABSTRACT
Superscalar out-of-order cores deliver high performance at the cost
of increased complexity and power budget. In-order cores, in con-
trast, are less complex and have a smaller power budget, but offer
low performance. A processor architecture should ideally provide
high performance in a power- and cost-efficient manner. Recently
proposed slice-out-of-order (sOoO) cores identify backward slices
of memory operations which they execute out-of-order with re-
spect to the rest of the dynamic instruction stream for increased
instruction-level and memory-hierarchy parallelism. Unfortunately,
constructing backward slices is imprecise and hardware-inefficient,
leaving performance on the table.

In this paper, we propose Forward Slice Core (FSC), a novel
core microarchitecture that builds on a stall-on-use in-order core
and extracts more instruction-level and memory-hierarchy paral-
lelism than slice-out-of-order cores. FSC does so by identifying and
steering forward slices (rather than backward slices) to dedicated in-
order FIFO queues. Moreover, FSC puts load-consumers that depend
on L1 D-cache misses on the side to enable younger independent
load-consumers to execute faster. Finally, FSC eliminates the need
for dynamic memory disambiguation by replicating store-address
instructions across queues. FSC improves performance by 9.7%
on average compared to Freeway, the state-of-the-art sOoO core,
across the SPEC CPU2017 benchmarks, while incurring reduced
hardware complexity and a similar power budget.
ACM Reference Format:
Kartik Lakshminarasimhan, Ajeya Naithani, Josué Feliu, and Lieven Eeck-
hout. 2023. The Forward Slice Core Microarchitecture. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Modern processors are designed to either deliver high performance
or provide high energy efficiency. The two ends of the spectrum are
represented by superscalar out-of-order (OoO) and in-order (InO)
cores, respectively. To deliver high performance, OoO cores are
power-hungry due to their higher design complexity and bigger
chip area. InO cores on the other hand, consume significantly less

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Table 1: Comparing FSC against prior slice-out-of-order mi-
croarchitectures in terms of ILP, MHP and hardware com-
plexity. FSC offers higher ILP and MHP than LSC and Freeway
at lower hardware overhead.

Processor design ILP MHP Hardware Complexity
InO − − +
LSC + + +++

Freeway ++ ++ +++
FSC +++ +++ ++
OOO ++++ ++++ +++++++

power as a consequence of their much simpler design and smaller
chip area. An ideal processor design, however, should deliver high
performance at a small chip area and power overhead.

Although in-order cores are highly energy-efficient, their in-
program order execution model severely restricts performance
compared to OoO cores. Recently, slice-out-of-order (sOoO) core mi-
croarchitectures have been proposed to address the in-order issue
bottleneck by allowing the execution of load and store instructions,
plus their backward slices (i.e., the address-generating sequence
of instructions leading up to these memory operations) to bypass
arithmetic instructions in the dynamic instruction stream. The
sOoO cores are restricted out-of-order machines that add modest
hardware overhead upon a stall-on-use in-order core to improve
instruction-level parallelism (ILP) as well as memory-hierarchy
parallelism (MHP).1 Load Slice Core (LSC) [5] was the first work to
propose an sOoO core; Freeway [10] builds upon the LSC proposal
and exposes more MHP than LSC by adding one more in-order
queue for uncovering additional independent loads.

LSC and Freeway identify the address-generating instructions
(AGIs) of loads and stores in an iterative manner using a hardware
mechanism called Iterative Backward Dependence Analysis (IBDA).
The loads, store-address operations and AGIs execute through a
separate bypass queue (B-queue), while all other instructions exe-
cute from the main, arithmetic queue (A-queue). Kumar et al. [10]
observe that, in LSC, an independent load may be stuck behind a
load that depends on an older long-latency memory load, unnec-
essarily limiting the exploitable MHP. They therefore propose the
Freewaymicroarchitecture, which adds one more in-order queue for
putting dependent loads on the side so that younger independent
loads can go ahead and execute.

1We refer to MHP to denote parallelism across the memory hierarchy including the
various levels of cache and main memory. Formally, MHP is defined as the average
number of overlapping memory accesses that hit anywhere in the cache hierarchy,
including main memory.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Table 1 compares the InO, LSC, Freeway and OoO microarchitec-
tures in terms of ILP, MHP and design complexity. Since both LSC
and Freeway execute instructions from multiple queues, the degree
of ILP exposed by sOoO cores is higher than an in-order core. sOoO
cores expose substantially higher MHP by allowing independent
loads and their backward slices to execute ahead of older (possibly
stalled) instructions. Unfortunately, IBDA requires dedicated hard-
ware. More specifically, LSC and Freeway rely on two structures,
namely the Register Dependence Table (RDT) and the Instruction
Slice Table (IST), for identifying backward slices. Not only do the
RDT and IST incur hardware overhead, IBDA is also imperfect. In
particular, a workload for which the code footprint is too big to
fit within the IST may lead to IST misses. Moreover, iteratively
constructing backward slices leads to imprecise backward slices,
further limiting the exploitable MHP. Another source of increased
complexity lies in memory disambiguation. The LSC eliminates the
need for dynamic memory disambiguation by executing all mem-
ory instructions in program order from the B-queue. In Freeway
on the other hand, memory instructions can execute out-of-order,
which requires expensive content-addressable hardware support for
correctly handling memory dependences. In summary, backward
slice analysis is imprecise and adds hardware complexity; Freeway
further increases complexity by requiring hardware support for
dynamic memory disambiguation.

In this paper, we propose Forward Slice Core (FSC), a novel core
microarchitecture, that builds on a stall-on-use in-order core but
achieves higher ILP and MHP compared to prior sOoO cores at
lower hardware cost. In contrast to sOoO cores which target back-
ward slices of both loads and stores, the FSC targets forward slices
of only loads. A forward slice consists of the direct and indirect
dependents of a load that is yet to be executed. At dispatch time, all
instructions — including loads — that are not part of a forward slice
are steered to an in-order FIFO queue, the so-calledMain Lane (ML).
This enables the execution of instructions that are independent of
older loads to execute as soon as possible. Forward-slice instruc-
tions are steered to dedicated FIFO queues: loads are sent to the
Dependent Load Lane (DLL) and non-loads are sent to the Dependent
Execute Lane (DEL). Instructions that wait at the head of the DEL
for more than a preset number of cycles (i.e., the L1 D-cache access
time) are sent to the Holding Lane (HL) to enable instructions that
are independent of L1 D-cache misses to be selected for execution.
The four in-order queues (ML, DEL, DLL and HL) issue instructions
in program order, but operate out-of-order with respect to each
other, i.e., instructions at the head to the queues are selected for
execution on a functional unit as soon as their register dependences
have been resolved.

There are three key differences that set the FSC microarchitec-
ture apart from prior work. First, FSC operates on forward slices
rather than backward slices. This simplifies the hardware: building
forward slices can be done in a single pass whereas constructing
backward slices requires multiple passes using dedicated RDT and
IST hardware structures. Second, FSC drains all DEL instructions
waiting on an L1 D-cache miss to a separate Holding Lane. These in-
structions cause the longest performance stalls in an in-order core,
and re-directing them to a separate queue accelerates the execution
of younger independent instructions. Third, FSC performs memory
disambiguation in a novel manner through store-address replication

RDTIST

Rename

Instr.
Cache

Execute Write-back CommitFetch Decode
A-queue

B-queue

Y-queue

ROB

Slice dependence bit

Issue

L1-D$

Sequence
numbers

Store
Buffer

LSC & Freeway Freeway

Figure 1: Slice-out-of-order cores: LSC and Freeway add a
number of new structures color-coded in gray and orange,
respectively. LSC steers loads and their backward-slices to the B-
queue. Freeway in addition steers dependent backward slices to the
Y-queue. Non-backward-slice instructions are steered to the A-queue
in both LSC and Freeway.

(SAR). When dispatching a store instruction, FSC replicates the
store-address micro-op across all FIFO queues. The store-address
micro-op is issued to a functional unit only when all copies of the
micro-op are at the heads of their respective queues. This ensures
that loads can never bypass older stores, i.e., loads always execute
in program order with respect to older stores. SAR greatly simplifies
dynamic memory disambiguation, in contrast to Freeway, which
requires expensive content-addressable memory (CAM) look-ups
prior to the execution of a load to verify there are no prior unre-
solved and aliasing stores.

As summarized in Table 1, FSC achieves higher ILP and MHP
at less hardware complexity compared to the previously proposed
sOoO processors. FSC achieves higher MHP by focusing on forward
slices rather than backwards slices. Backward slice construction is
an iterative and imperfect process, in contrast to identifying forward
slices. FSC achieves higher ILP by steering arithmetic instructions
across multiple lanes, and by re-directing instructions that depend
on L1 D-cache misses to the Holding Lane, paving the way for
younger independent arithmetic instructions to execute. FSC reduces
hardware complexity by eliminating the need for dedicated RDT
and IST hardware tables and by eliminating the need for expensive
memory disambiguation support.

We experimentally evaluate the proposed FSC microarchitecture
through detailed cycle-level simulation using the SPEC CPU2017
benchmarks. We report that FSC outperforms the state-of-art sOoO
core microarchitecture, Freeway, by 9.7% on average while being
more hardware-efficient (requiring 1408 less bytes). Compared to
an in-order core baseline, FSC achieves 64% higher performance on
average, versus 44% for LSC and 50% for Freeway. FSC is within
6.9% of an out-of-order processor, while consuming 56% less power.

2 BACKGROUND AND MOTIVATION
In this section, we briefly cover the background on the two prior
sOoO cores — LSC [5] and Freeway [10] — and we elaborate on
their shortcomings. Figure 1 provides a schematic overview of the
two sOoO core microarchitectures.

2.1 Load Slice Core
In a stall-on-use in-order core, an instruction that depends on a
load miss stalls the head of the issue queue. The processor is stalled
for tens up to hundreds of cycles depending on where the miss is

0%
20%
40%
60%
80%

100%

Ex
ec

u
ti

o
n

 T
im

e

DRAM stall L2 stall L1-D stall Other

Figure 2: CPI stacks for the SPEC CPU2017 benchmarks (sorted by LLC MPKI from left to right) on a stall-on-use in-order core.
Compute-intensive workloads frequently stall on L1/L2 load consumers, whereas memory-intensive workloads frequently stall on memory access
consumers.

serviced, i.e., the next level of cache or main memory. This hinders
future independent loads from accessing the memory hierarchy. To
be able to issue independent loads as soon as possible, LSC sepa-
rates loads and their backward slices, i.e., the Address-Generating
Instructions (AGIs), into a separate in-order queue, called the bypass
queue or B-queue. All other instructions — primarily arithmetic
instructions — are issued from the arithmetic queue or A-queue.
Store instructions are broken down into store-address (STA) and
store-data (STD) micro-ops; the STA micro-op is dispatched to the
B-queue (along with its AGIs), whereas the STD micro-op is dis-
patched to the A-queue. Sending the instructions that depend on
a load to the A-queue enables LSC to extract more MHP from the
instruction stream compared to an in-order core, i.e., multiple in-
dependent loads can issue in parallel from the B-queue even if
there are load-dependent instructions in-between the loads in the
instruction stream. Although instructions are issued in program
order from the A and B-queues, they can be issued out-of-order
with respect to each other.

Identifying backward slices incurs additional hardware. LSC uses
a mechanism called Iterative Backward Dependency Analysis (IBDA)
to do so: backward slices are identified iteratively across multiple
executions of the same code (e.g., multiple iterations of the same
loop or multiple invocations of the same function). IBDA relies on
two dedicated hardware structures as shown in Figure 1. LSC pig-
gybacks on register renaming by adding a new hardware structure,
called the Register Dependence Table (RDT), to identify the AGIs
leading to a load instruction in an iterative manner. The backward-
slice instructions identified by IBDA are stored in a dedicated cache,
called the Instruction Slice Table (IST). Future occurrences of AGI
instructions in the instruction stream are identified by consulting
the IST: an instruction is considered a backward-slice instruction if
it hits in the IST — if so, the instruction is steered to the B-queue.
According to our experimental results, LSC achieves 44% higher
performance than an InO core.

2.2 Freeway
While steering load-dependent instructions to a separate A-queue
paves the way for more loads to access the memory hierarchy in
parallel, LSC still serializes all loads from the B-queue. In particu-
lar, in case of load-dependent loads, i.e., a load that depends on a
older load, the head of the B-queue stalls on the dependent load.
Therefore, younger independent loads behind the dependent load

cannot issue to the memory hierarchy, hindering the opportunity
to expose MHP.

Kumar et al. [10] propose Freeway, a core microarchitecture that
overcomes LSC’s MHP bottleneck caused by load-dependent loads.
Freeway splits a slice that contains multiple loads into two types:
a producer slice and a dependent slice. The producer slice ends
with a load; the dependent slice starts after the load, and ends on
another load. Freeway steers the dependent slice to a new in-order
queue called the yielding queue or Y-queue. Parking dependent
slices in the Y-queue enables Freeway to issue independent slices
from the B-queue, exposing more MHP than LSC. The dependent
slices from the Y-queue are issued to the memory hierarchy when
their producer slices finish execution. By exposing more MHP,
Freeway achieves 4% higher performance than LSC (according to
our experimental results). Freeway adds complexity over LSC by
adding a third queue and, more importantly, by requiring memory
disambiguation to allow out-of-order execution of loads and stores.

2.3 Shortcomings of Slice-Out-of-Order Cores
There are three major shortcomings with sOoO cores which we
address in this work.
Limited Instruction-Level Parallelism. The sOoO cores are
fundamentally limited in the way they can extract instruction-level
parallelism (ILP) from the dynamic instruction stream. The reason
is that younger independent instructions may be stuck behind load-
consumers. In particular, an instruction waiting for a load to return
from the memory hierarchy may stall the head of the A-queue for
a few cycles (in case of an on-chip cache hit) or for many cycles
(in case of an off-chip memory access). None of the instructions
in the A-queue can be issued until the stall resolves, even if the
instructions are independent of the instruction stalling the A-queue.

Figure 2 supports this by showing normalized CPI stacks for the
SPEC CPU2017 benchmarks on a stall-on-use in-order core. (Please
refer to Section 4 for details regarding the experimental setup.)
These normalized CPI stacks report the fraction stall cycles due to
a consumer of an L1 D-cache access, an L2/LLC D-cache access2
or a main memory access; the remaining cycles are classified as
‘other’. (The benchmarks in Figure 2 are sorted from left to right
by increasing number of LLC misses per-kilo instructions (MPKI).)
Memory-intensive benchmarks appearing in the right half of the
figure, spend the majority of their time waiting for data to return

2We consider a two-level hierarchy, so L2 is the last-level cache (LLC).

Dependent
Execute Lane

Dependent
Load Lane

Main Lane

Holding Lane

ROB

Issue

Fetch Decode Rename

Instr.
Cache

Steering
Bit

Physical
Reg-ID

Steering Bit Vector

New Structures

Arch.
Reg-ID

Physical
Reg-ID

Execute Write-back Commit

Figure 3: Forward Slice Core (FSC) architecture. FSC adds a number of new structures (gray components) over an stall-on-use
in-order core. FSC consists of four in-order queues: non-forward-slice instructions are steered to the Main Lane (ML), forward-slice instructions
are steered to the Dependent Execute Lane (DEL) and the Dependent Load Lane (DLL); DEL instructions that stall on a L1 D-cache miss are
re-directed to the Holding Lane (HL) so that independent forward-slice instructions can execute as soon as possible.

from main memory. Compute-intensive benchmarks, on the left-
hand side of the figure, spend almost half of their total execution
time waiting for L1 and L2 D-cache accesses. This suggests that
allowing instructions that are independent of on-chip cache hits
and their consumers to execute ahead, can significantly improve
ILP for the compute-intensive workloads.
Limited Memory-Hierarchy Parallelism. sOoO cores expose
higher degrees of MHP compared to InO cores, which is beneficial
for memory-intensive benchmarks. However, the MHP on sOoO
cores is still limited by at least two factors. First, sOoO cores rely
on the IBDA mechanism to identify AGIs. IBDA is supported by
the IST hardware structure which is of limited size. Hence, if the
total set of AGIs for a particular workload (i.e., a workload with
a large code footprint) exceeds the size of the IST, this may lead
to IST misses which will cause AGIs to be sent to the A-queue
and which will hinder the level of MHP that can be extracted.
Moreover, backward slice analysis is an iterative and imprecise
process. Hence, while building up the backward slices, AGIs will
be sent to the A-queue, which also hinders the exploitable MHP.
Second, and more specifically to Freeway, dependent slices serialize
in the Y-queue. Hence, a dependent slice which gets stalled in the
Y-queue may hinder a younger independent slice in the Y-queue to
execute. So, in conclusion, even though sOoO cores significantly
improve the exploitable MHP over an in-order core, there is still
room for improvement.
Hardware Complexity. sOoO cores incur hardware overhead
over in-order cores. First, sOoO cores require dedicated hardware
structures to dynamically compute backward slices. sOoO cores do
so by using the RDT and IST structures. The RDT is 512 Bytes in size
while the IST incurs a hardware overhead of 768 Bytes. Moreover,
the IST needs to have 𝑁 read and 𝑁 write ports to support an 𝑁 -
wide superscalar pipeline, and the IST needs to be accessed within
a single clock cycle. This may be challenging (or even problematic)
for wide and high-frequency pipelines.

Second, and more specifically to Freeway, memory disambigua-
tion incurs a non-trivial hardware cost. In particular, to guarantee
that all memory dependences are respected, Freeway marks all
loads and stores with a sequence number in program order. When

issuing a load, a look-up is performed in the store buffer to verify
whether all older stores have computed their addresses. A load
proceeds only if there are no unresolved and aliasing stores. This
operation requires (i) comparing the sequence number of the load
against all stores in the store buffer, and (ii) an associative compari-
son of the memory addresses. Overall, the complexity for handling
memory disambiguation in Freeway is close to that of an OoO core.

3 FORWARD SLICE CORE
We propose the Forward Slice Core (FSC) microarchitecture to ad-
dress the aforementioned shortcomings of sOoO cores. Figure 3
provides an overview of the FSC microarchitecture. The general
intuition of the FSC microarchitecture is to steer instructions to dif-
ferent in-order FIFO queues depending on whether an instruction
is a load-consumer, i.e., whether an instruction depends (directly
or indirectly) on an older load. In addition, instructions that de-
pend on an L1 D-cache miss are re-directed to a separate queue
to enable younger independent load-consumers to make forward
progress. We now discuss the various unique components of the
FSC microarchitecture.

3.1 Identifying Forward Slices
We define a forward slice as the sequence of instructions that depend
(directly or indirectly) on a load instruction. The FSC microarchitec-
ture identifies forward-slice instructions dynamically in hardware
using a bit vector called the Steering Bit Vector (SBV). The SBV is
indexed by a physical register tag and initially all bits of the vector
are cleared. Upon register-renaming a load in the front-end of the
pipeline, the SBV bit corresponding to the destination physical reg-
ister of the load is set. When a younger instruction reads (consumes)
a physical register for which the corresponding SBV bit is (still) set,
the SBV bit corresponding to the destination physical register of
this instruction is also set. This process propagates the dependence
chain of a load forward in the dynamic instruction stream, hence
the name ‘forward slice’.

An SBV bit is cleared when the instruction executes and has
computed its destination physical register. Clearing a steering bit

Algorithm 1: FSC Instruction Steering.
1 if a forward-slice instruction then
2 if a load instruction then
3 if ∃ a free entry in DLL then
4 Dispatch to DLL
5 else
6 Stall dispatch
7 else
8 if ∃ a free entry in DEL then
9 Dispatch to DEL

10 else
11 Stall dispatch
12 else
13 if ∃ a free entry in ML then
14 Dispatch to ML
15 else
16 Stall dispatch

in the SBV indicates that a future instruction reading the corre-
sponding physical register does not need to wait for the execution
of the instruction, i.e., its input register is available and the future
instruction can immediately read the value from the physical reg-
ister file. In other words, the SBV keeps track of the forward-slice
instructions that are still waiting for their input registers to be
computed. Or, more precisely, the SBV keeps track of the physical
registers that are yet to be written along the loads’ forward slices.

3.2 Instruction Steering
We make a distinction when steering or dispatching forward-slice
versus non-forward-slice instructions. A forward-slice instruction
is an instruction for which at least one of the input physical reg-
isters has the SBV bit set. When none of the SBV bits are set, the
instruction does not belong to a forward slice and is therefore a
non-forward-slice instruction. Note that the first load of a chain of
dependent instructions is a non-forward-slice instruction; all in-
structions that (indirectly) depend on the load are forward-slice
instructions.

Non-forward-slice instructions are sent to the ‘main’ in-order
FIFO queue, called theMain Lane (ML). FSC includes two more FIFO
queues for handling forward-slice instructions: a Dependent Load
Lane (DLL) and a Dependent Execute Lane (DEL). Loads among the
forward-slice instructions are dispatched to the DLL, while all other
forward-slice instructions are dispatched to the DEL. The reason for
steering load and non-load forward-slice instructions to different
queues is to enable younger independent non-load instructions to
execute ahead of older load-dependent loads.

The mechanism for steering instructions in FSC is presented in
Algorithm 1. Forward-slice instructions are steered to the DLL in
case of a load, and to the DEL in case of a non-load instruction.
Non-forward-slice instructions are steered to the main lane. When
a lane is full upon steering a new instruction, dispatch is stalled.
Back-pressure causes the rest of the front-end pipeline to stall.

3.3 Holding Lane
The forward-slice instructions, by definition, wait for data to return
from the memory hierarchy. The number of cycles that forward-
slice instructions stall depends on whether and where the load
hits in the memory hierarchy. In case of a hit in the on-chip cache
hierarchy, the forward-slice instructions have to wait for only a
couple cycles or at most a dozen cycles. In case of an LLC miss on
the other hand, the forward-slice instructions need to wait on the
order of a hundred or more cycles. In other words, forward-slice
instructions that depend on L1 D-cache misses stall the DEL/DLL
queues for a (large) number of cycles, preventing younger inde-
pendent forward-slice instructions to execute, severely limiting
performance.

We therefore introduce theHolding Lane (HL). The basic intuition
is to gradually filter out instructions that belong to the forward
slices of L1-missing loads and move those instructions to the HL to
allow younger independent forward-slice instructions to execute
earlier. In particular, an instruction at the head of the DEL is moved
to the HL when its producer load misses in the L1 D-cache. This
is implemented by setting a counter to a pre-set value (i.e., the L1
D-cache access time) whenever a new instruction reaches the DEL
head. The counter is decremented every cycle and when the counter
reaches zero — this denotes an L1 D-cache miss — the instruction
at the DEL head is moved to the HL. The instructions in the DEL
are then moved up one place and the counter is reset to its pre-set
value after which it starts decrementing again. A forward slice that
depends on an L1 D-cache miss thus gradually migrates from the
DEL to the HL, so that other independent forward-slice instructions
can execute sooner. Note that FSC does not move instructions from
the HL back to the DEL.

The pre-set value is set such that it enables identifying L1 misses
in a cost-effective way. In our experimental setup, we set this value
to 4, i.e., the access time to the L1 D-cache. A forward-slice in-
struction that waits at the DEL head for four cycles implies that
it depends on an L1 miss and FSC moves the instruction to the
HL. This is a hardware-efficient implementation. An alternative
implementation would be to notify the core upon an L1 D-cache
miss. The counter implementation allows for determining an L1
miss locally within the core at low overhead.

FSC does not re-direct instructions from the DLL to the HL —
only DEL instructions are moved to the HL. We recognize that
the DLL head may also stall on long-latency loads in case of miss-
dependent misses. This may happen in case of pointer-chasing code
patterns. Nevertheless, we experimentally observe a negligible per-
formance impact from filtering out instructions from the DLL to
the HL, in contrast to the DEL. There are two reasons. First, this is
an infrequent scenario because the DLL is stalled less frequently
compared to the DEL. For our set of workloads, only 10% of the
instructions are steered to the DLL on average, out of which only a
minority depend on L1 D-cache misses; hence, re-directing these
miss-dependent loads to the HL has limited impact. Second, the op-
portunity to improve performance is less. Putting a miss-dependent
miss out of the way quickly leads to the next miss-dependent miss,
which does not improve performance.

Note that the instructions are never steered to the HL from the
front-end; instructions are only steered to the ML, DLL and DEL,

and forward-slice instructions in the DEL can be re-directed to the
HL. However, instructions are selected for execution on a functional
unit from the four lanes. At most two instructions can be issued
per cycle. We use an oldest-first policy for selecting instructions
when there are multiple instructions ready at the heads of the lanes
in a given cycle.

3.4 Store-Address Replication
In FSC, a load instruction is steered to the ML or DLL. A store
instruction is broken up in a store-address (STA) micro-op that
computes the memory address and a store-data (STD) micro-op that
performs the actual store operation. The STD micro-op is steered
to the ML or DEL, and may be dynamically re-directed to HL. A
load instruction may therefore bypass an older store. While exe-
cuting a load ahead of an earlier store helps improve performance,
one has to be careful and respect through-memory dependences at
all times. In particular, a load that executes before an older (unre-
solved) store may possibly read an old value if the load and store
reference the same (or overlapping) memory address(es). Correctly
handling memory dependences while executing loads and stores
out of program order requires complex memory disambiguation
logic.

We propose Store-Address Replication (SAR) as a simple yet el-
egant solution to the memory disambiguation problem; SAR is
applicable to any multi-queue architecture, including FSC. SAR
replicates the STA micro-op across all four lanes upon instruction
steering. An STA micro-op is selected for execution if its input
register operands are available and if it is at the head of all the
lanes. FSC executes the STA micro-op from the ML and discards
the duplicate copies from the other lanes. SAR guarantees that
younger loads after the STA micro-op in program order effectively
execute after the STA micro-op. Note that SAR guarantees that STA
micro-ops are ordered with respect to loads, and loads are ordered
with respect to STA micro-ops, however, SAR does not impose any
ordering among loads in-between two consecutive STA micro-ops.

3.5 Code Example
Figure 4 illustrates the difference between the various sOoO cores
using a hot loop taken from the SPEC CPU2017mcf_r_1 benchmark.
The code includes one AGI, 5 loads (𝐿), 2 arithmetic instructions (𝐸)
and 2 stores (𝑆). The subscripts indicate program order. LSC steers
the AGI and all the loads to the B-queue; all other instructions are
steered to the A-queue. Freeway further steers the dependent load
slices (𝐿4 and 𝐿6) to the Y-queue. FSC steers the non-forward-slice
instructions to the ML and the forward-slice instructions (i.e., the
load-consumers) to the DEL and DLL. Assuming now that 𝐿2 is an
L1 D-cache miss or an LLC miss, FSC will re-direct 𝐸7 and 𝑆8 to the
HL, paving the way for 𝐸9 and 𝑆10 to execute. LSC and Freeway
on other hand do not allow 𝐸9 and 𝑆10 to move ahead, limiting
performance.

3.6 Hardware Complexity
Overall, the hardware cost and complexity is less for FSC compared
to Freeway, the state-of-the-art sOoO core microarchitecture. Com-
pared to Freeway, FSC removes the IST (768 bytes), the RDT (512
bytes), and the load sequence numbers in the store buffer (48 bytes).

A-Q B-Q

E7

S8

E9

S10

AGI1

L2

L3

L4

L5

L6

A-Q B-Q Y-Q

E7

S8

E9

S10

AGI1

L2

L3

L5

L4

L6

ML DLL DEL HL

AGI1

L2

L3

L5

L4

L6

E9

S10

E7

S8

(a) LSC (b) Freeway (c) FSC

AGI1

L3

L5

L4

L2

L6

E9

E7

S10

S8

Figure 4: Code example taken from mcf_r_1’s hot loop il-
lustrating how instructions are steered (and re-directed) to
queues. FSC steers non-forward-slice instructions to the ML and the
forward-slice instructions (i.e., load-consumers) to the DEL and DLL.
Instructions in the DEL that depend on an L1 D-cache miss (e.g., 𝐸7
and 𝑆8) are re-directed to the HL.

In our implementation, FSC features four queues with 8 entries each
versus three queues with 12 entries each for Freeway — a reduction
by 88 bytes. FSC requires new structures with minimal hardware
cost: the Steering Bit Vector (8 bytes) and a count-down timer at
the DEL head for moving instructions to the HL (3 bits). In addition,
some logic is required for duplicating STA micro-ops at instruction
steering and for re-directing instructions from the DEL to the HL.
The steering logic has similar complexity for FSC and Freeway
because both architectures dispatch instructions into three lanes.
The total hardware cost for FSC over an in-order core amounts
to 2,388 bytes, versus 3,796 bytes for Freeway — a reduction by
1408 bytes compared to Freeway. Note that this calculation does
not account for the content-addressable logic needed to support
dynamic memory disambiguation in Freeway, which is significant.
We conclude that FSC incurs (significantly) less hardware compared
to Freeway.

4 EXPERIMENTAL SETUP
We evaluate FSC using the most detailed, cycle-level, and hardware-
validated core model in Sniper v6.0 [4]. The configurations for the
InO, FSC and OoO cores are provided in Table 2. We evaluate LSC
and Freeway following the configurations by Kumar et al. [10].
The size of the A and B queues in LSC is 16-entries each. Freeway
has three queues of size 12 entries each. FSC has four lanes with
8 entries each. For fair comparison, the total number of in-flight
instructions equals 32 for all core microarchitectures evaluated in
this work. All simulated cores are 2-wide superscalar processors as
we target small embedded and mobile processors. LSC, Freeway and

0.0

0.5

1.0

1.5

2.0

2.5

N
o

rm
al

iz
ed

 IP
C

InO LSC Freeway FSC OoO

Figure 5: Performance of LSC, Freeway, FSC and OoO cores normalized to the baseline InO core. FSC improves performance by 64%
on average compared to an InO core, versus 44% for LSC and 50% for Freeway. The OoO core improves performance by 75% on average.

Table 2: Simulated InO, FSC and OoO configurations.

InO core FSC OoO core
Frequency 2.0 GHz
Branch Predictor 1.5 KB hybrid local/global/loop predictor and BTB
Scorebrd/ROB 32
Issue queue — 8-entry ML/DEL/DLL/HL 32-entry
Store queue 16
Pipeline width 2
Pipeline depth 5 front-end pipeline stages
Register file 32 int, 32 fp
ALUs 2 int add (1 c), 1 int mul (3 c), 1 int div (18 c)

1 fp add (3 c), 1 fp mul (5 c), 1 fp div (6 c)
MMU ports 2 ld/sta, 1 std, 1 sta
L1 I-cache 4-way 32KB, 2 cycles
L1 D-cache 8-way 32KB, 4 cycles (1-cycle tag look-up)
L2 8-way 512 KB, 8 cycles (3-cycle tag look-up)
Memory 3.8 GB/s, 45 ns

FSC deploy an oldest-first issue policy, which selects up to two of
the oldest operand-ready instructions from the two, three and four
queues, respectively; up to two instructions can be selected from
the same queue. We assume perfect memory disambiguation for the
OoO core (i.e., assuming a perfect memory-dependence predictor);
in Freeway, a load waits for unresolved and aliasing older stores;
LSC and FSC execute loads and stores in program order. The IST is
modeled the same way for both LSC and Freeway — we assume a
128-entry 2-way set-associative cache with 2/2 read/write ports.

We estimate power consumption and chip area usingMcPAT [11]
and CACTI v6.5 [12] assuming a 22 nm technology node. Area and
per-access power estimates for the newly added FSC hardware
structures are calculated using CACTI. We compute chip area and
per-component static power consumption and per-access power
values from CACTI. Dynamic power is calculated by combining
the per-access power values with the activity factors obtained from
the timing model, which are then added to the power consumption
numbers provided by McPAT.

We create representative 1B-instruction SimPoints [17] for the
SPEC CPU2017 benchmarks. We sort the benchmarks by increas-
ing number of last-level cache (LLC) misses per-kilo instructions
(MPKI). We notice the maximum MPKI of 48 for gcc_r_5.

5 EVALUATION
We evaluate the following processor cores:

• InO: The baseline stall-on-use in-order core, which is mod-
eled to resemble an ARM Cortex-A7 [2].

• LSC: The load slice core, as discussed in Section 2.1.
• Freeway: The Freeway microarchitecture, as described in
Section 2.2.

• FSC: The Forward Slice Core microarchitecture proposed in
this work.

• OoO: The out-of-order core from Table 2.

We compute per-application performance as instructions per
cycle (IPC) and the overall performance across all the benchmarks
is calculated using the harmonic mean IPC [7].

5.1 Overall Performance Results
Figure 5 reports performance for all the evaluated cores across the
SPEC CPU2017 benchmarks. Overall, FSC achieves substantially
higher performance than InO, LSC and Freeway. Relative to the
baseline InO core, LSC and Freeway improve performance by 44%
and 50% on average, respectively. By generating both higher ILP and
MHP, FSC outperforms the InO core by 64%; this is an additional
gain of 9.7% (or 14 percentage point) over Freeway, the state-of-
the-art sOoO core. Furthermore, it is interesting to note that FSC
performance gets close to that of the OoO core, which achieves a
performance gain of 75% over the InO core. In other words, FSC
performs within 6.9% (or 11 percentage point) of the OoO core. In
conclusion, by steering instructions to the different FIFO in-order
queues based on the notion of a forward-slice and by dynamically
re-directing instructions that depend on L1 D-cache misses to a
separate holding lane, the FSC is able to bridge a large fraction of
the performance gap between an InO and OoO core.

5.2 CPI Stack Analysis
We now analyze the performance for four representative bench-
marks from the SPEC CPU2017 suite to provide further insight
into why FSC outperforms LSC and Freeway. We select one highly
compute-intensive benchmark (povray_r_1), one highly memory-
intensive benchmark (mcf_r_1), and two benchmarks (blender_r_1
and omnetpp_r_1) with characteristics in-between the two opposite
ends. Figure 6 provides CPI stacks. A CPI stack visualizes where
time is spent and is represented as a stacked bar in which the base
component denotes the fraction of time during which useful work
is done. The other CPI components are added on top of the base
component and represent lost cycles due to branch mispredictions,
L1-D, L2-D and DRAM accesses, plus other stall events.

0.0

0.5

1.0

1.5

2.0

povray_r_1 blender_r_1

C
P
I

Base Branch L1-D L2 DRAM Other

0

2

4

6

8

omnetpp_r_1 mcf_r_1

C
P
I

Figure 6: CPI stacks for select benchmarks comparing InO,
LSC, Freeway, FSC and OoO. FSC improves performance by at-
tacking different performance bottlenecks for different workloads.

povray_r_1 is a compute-intensive benchmark that spends al-
most half of its time waiting for L1 D-cache accesses on an in-order
core. LSC and Freeway steer the L1 D-cache hit accesses and their
consumers to separate queues, i.e., loads go to the B-queue and
the load consumers go to the A-queue. This dramatically reduces
the L1-D component for LSC and Freeway. FSC bridges the gap
between LSC/Freeway and OoO by further reducing the L1-D and
L2-D components. The L1-D component is improved by getting
rid of imperfect backward slice identification in LSC/Freeway. Re-
directing instructions that depend on L2 D-cache accesses to the HL
enables younger independent DEL instructions to execute sooner.

blender_r_1 spends 20% of its time on DRAM stalls. LSC sig-
nificantly reduces the L1-D component, which Freeway reduces
further by adding one additional queue over LSC. FSC improves
the base component compared to LSC and Freeway by exposing
more ILP.

omnetpp_r_1 is a memory-intensive benchmark that spends
about half of its execution timewaiting for DRAM. LSC and Freeway
reduce the DRAM stalls by 10% and 15%, respectively, relative to
the baseline in-order core. FSC reduces the DRAM CPI component
by 20% by virtue of re-directing DEL instructions that wait for long-
latency loads to the HL. Moreover, omnetpp_r_1 also benefits from
improved ILP compared to the other sOoO cores.

mcf_r_1 is a highly memory-intensive benchmark that spends
72% of its execution time waiting for DRAM. LSC, Freeway and FSC
reduce the DRAM CPI component by 9%, 15% and 39%, respectively.
Re-directing instructions that depend on long-latency loads from
the DEL to the HL clears the way for independent instructions in
the DEL. This, in turn, expedites the execution of independent load

instructions in the DLL. This explains the significant reduction in
the DRAM component for FSC compared to Freeway and LSC.

5.3 Detailed Analysis
We now investigate where the performance benefit is coming from
in terms of the Dependent (DEL and DLL) Lanes and the Holding
Lane. We therefore consider a number of FSC variants, see also
Figure 7 for their normalized performance:

• ML+DL: We consider FSC with only two lanes, the main
lane (ML) and a unified Dependent Lane (DL), i.e., DEL and
DLL are unified in a single lane. There is no Holding Lane.

• ML+DEL+DLL:We consider FSC with three lanes: ML, DEL
and DLL. There is no Holding Lane.

• FSC: The final FSC microarchitecture with four lanes: ML,
DEL, DLL and HL.

The ML+DL configuration improves performance by 44% on
average compared to an in-order core. Load-consumers are dis-
patched to the dependent lane which prevents stalling the main lane
as in a stall-on-use in-order core. This allows executing younger
independent instructions earlier, which in turn results in higher
ILP and MHP, and thus higher performance. Unfortunately, in the
ML+DL configuration, consumers of long-latency loads may pre-
vent younger independent load-consumers that depend on shorter-
latency loads from being executed. This constraints the perfor-
mance benefits.

The ML+DEL+DLL configuration improves performance by an
additional 14 percentage point on average over the ML+DL configu-
ration by steering forward-slice instructions to separate queues (i.e.,
loads are sent to the DLL and non-loads are sent to the DEL). This
split-steering enables young independent arithmetic instructions to
execute ahead of older load-dependent loads. Vice versa, loads may
issue from the DLL before older load-consumers that are stalled
in the DEL. Unfortunately, independent instructions may be stuck
behind older instructions in the DEL.

The final FSC proposal overcomes the latter issue by adding the
Holding Lane to which instructions are re-directed if they have
been waiting for more than 4 cycles at the DEL head. Adding the
HL improves performance by an additional 6 percentage point on
average. The introduction of the Holding Lane enables independent
instructions to execute ahead of older DEL instructions that depend
on an L1 D-cache miss. This is particularly helpful for some of the
memory-intensive benchmarks (bwaves_r_x, parest_r_1, cam4_r_1
and foto_r_1), for which the Holding Lane improves performance
by up to 20%.

5.4 Lane Distribution
Figure 8 reports how instructions (or more precisely, micro-ops)
are distributed across the four FSC lanes. On average, 47% of the
instructions are steered to the ML, 10% to the DLL and 43% to the
DEL; 28% of the DEL instructions (or 12% of the total number of
instructions) are re-directed to the HL. For a number of benchmarks
we note that a substantial fraction (more than 40%) of instructions is
steered to the DEL, see for example deeps_r_1 (45%), exch_r_1 (59%)
and x264_r_3 (61%). These instructions have long forward slices
containing mostly arithmetic instructions. The benchmarks with
the largest fraction instructions steered to the DLL are xalan_r_1

0.0

0.5

1.0

1.5

2.0

2.5

N
o

rm
al

iz
e

d
 I

P
C

InO ML+DL ML+DEL+DLL FSC

Figure 7: Normalized performance for the following FSC variants: ML+DL, ML+DEL+DLL and FSC with four queues (ML, DEL,
DLL and HL). All benchmarks significantly benefit from discerning forward slices (i.e., ML+DL variant). Many benchmarks benefit from splitting
up into the DEL and DLL queues. Several memory-intensive benchmarks benefit from adding the HL.

0%

20%

40%

60%

80%

100%

M
ic
ro
-o
p
s

ML DEL DLL HL

Figure 8: Distribution of micro-ops across the FSC lanes. The majority of instructions are sent to the ML and DEL lanes; a significant
number of instructions are re-directed from the DEL to the HL for several benchmarks.

0.0

0.5

1.0

1.5

2.0

2.5

ILP MHP

N
o

rm
al

iz
ed

 t
o

 In
O

InO LSC Freeway FSC OoO

Figure 9: MHP and ILP normalized to an InO core for LSC,
Freeway, FSC and OoO. FSC significantly improves MHP and ILP
over LSC and Freeway.

(18%), parest_r_1 (17%) and xz_r_2 (16%); these benchmarks have
a relatively large fraction of load-dependent loads. A substantial
fraction of instructions are re-directed from the DEL to the HL for
several benchmarks, see for example cact_r_1 (42%), lbm_r_1 (42%)
and nab_r_1 (39%). These benchmarks have a fairly large number
of arithmetic instructions that depend on L1 D-cache misses.

5.5 ILP and MHP
We now quantify how FSC improves ILP and MHP compared to
LSC and Freeway. We compute ILP as IPC assuming a perfect L1
D-cache; that is, all memory accesses hit in the L1 D-cache (there
are cold misses but no conflict or capacity misses in the L1 D-cache).
We define MHP as the number of outstanding cache misses if at
least one is outstanding; note MHP accounts for both on-chip and
off-chip misses. Figure 9 reports ILP and MHP normalized to the

in-order core for the different core microarchitectures. The overall
conclusion is that FSC significantly improves both ILP and MHP.

FSC improves ILP by 80%, 17% and 12% compared to InO, LSC
and Freeway, respectively. FSC steers arithmetic instructions to
two queues (ML and DEL), unlike InO. In addition, FSC re-directs
arithmetic forward-slice instructions that depend on an L1 D-cache
miss to the Holding Lane so that younger independent arithmetic
instructions can execute out-of-order, unlike LSC and Freeway.
FSC’s ILP is within 13% of an OoO core. OoO outperforms FSC in
terms of ILP because an OoO core selects instructions for execution
on a functional unit as soon as their input register dependences
have been resolved.

FSC improves MHP by 93%, 11% and 10% compared to InO, LSC
and Freeway, respectively. FSC steers forward-slice loads to the
DLL, so that younger independent loads can issue from the ML. In
contrast, InO and LSC steer all loads to a single queue. Freeway
also steers loads to multiple queues, but suffers from imprecise
backward slice identification, as previously discussed. FSC’s MHP
is within 8% of an OoO core. The reason for the remaining gap is
that independent loads in the DLL may be stuck behind loads that
depend on a long-latency load.

5.6 Hardware Overhead
FSC adds hardware structures compared to a baseline in-order core.
Table 3 lists the size of these hardware structures (in number of
bytes andmm2). We add a register allocation table (RAT) for register
renaming, a reorder buffer for a maximum of 32 instructions, and
an 8-entry store queue (SQ). The steering bit vector has 64 entries
which amounts to 8 bytes. FSC implements four 8-entry instruction

0.0

0.5

1.0

1.5

2.0

2.5

N
o

rm
al

iz
ed

 IP
C

InO CESP FSC OoO

Figure 10: Normalized performance for CESP, FSC and OoO. FSC improves performance by 4.5% on average, and up to 12.6%, compared to
CESP.

Table 3: Area and power overhead for the various FSC struc-
tures over a baseline in-order core.

Structure Details Overhead Area Power
(Bytes) (mm2) (mW)

RAT 32 entries 24 0.0061 4.15
PRF 32 int / 32 fp 768 0.0195 5.67
SBV 64 entries 8 0.0001 <0.01
ML 8 entries 176 0.0044 2.60
DEL 8 entries 176 0.0044 1.76
DLL 8 entries 176 0.0044 0.64
HL 8 entries 176 0.0044 0.74
ROB 32 entries 320 0.0081 6.44
MSHR 8 entries 52 0.0056 0.48
SQ 8 entries 512 0.0039 1.15
Total 2,388 0.0609 19.48

queues (ML, DEL, DLL and HL). We assume a physical register file
(PRF) with 32 integer and 32 floating-point registers. The MSHR is
extended to support 8 outstanding misses.

We use CACTI [12] to estimate chip area. CACTI accounts for
the area of circuit-level structures such as hierarchically repeated
wires, arrays, logic and the clock distribution network. The chip area
incurred by FSC over a baseline in-order core amounts to 0.061mm2.
Relative to our baseline InO core which occupies approximately
5.98mm2, we find that the FSC chip area overhead is around 1%.
When compared to our baseline OoO core with a chip area of
8.29mm2, FSC occupies 37% less chip area.

5.7 Power Consumption
We use McPAT [11] to calculate InO and OoO core power con-
sumption. The power consumed by the additional FSC hardware
structures is modeled using CACTI [12]. Table 3 reports power
consumption for the newly added components.

Overall, the added hardware structures increase power con-
sumption by 19.48mW compared to our baseline in-order core.
When added to the power consumption of the baseline in-order
core (2.99W), the total power consumption for FSC amounts to
3.01W. Freeway increases power consumption over an InO core
by 39.83mW. This is because of the extra hardware structures (IST
and RDT) to support IBDA.

The total power consumption of the OoO core amounts to 6.95W.
Therefore, FSC consumes 56% less power than the OoO core. This

large saving in power comes from eliminating out-of-order wake-
up, select and issue logic required for the OoO core. FSC replaces
the complex OoO logic with simple FIFO queues.

5.8 Comparison Against CESP
Palacharla et al. [13] propose the complexity-effective superscalar
processor (CESP) architecture which steers chains of dependent
instructions into generic in-order queues. Figure 10 compares FSC
against CESP with four queues. It is important to note that CESP’s
steering logic is more complex than FSC for at least two reasons: (1)
CESP steers instructions into four queues as opposed to FSC which
steers instructions into three queues, and (2) CESP requires a table
access to find out in which queue the producer instruction resides so
that chains of dependent instructions are steered to the same queue
— in contrast, FSC simply steers instructions to the appropriate
queue based on a single SBV bit and instruction type (load vs. non-
load). In spite of its smaller hardware complexity, we find that FSC
outperforms CESP by 4.5% on average, and up to 12.6%. The reason
is that CESP stalls dispatch when an independent instruction cannot
be steered to an empty queue. In contrast, FSC steers instructions to
queues based on whether an instruction belongs to a forward slice
or not. Moreover, instructions that depend on L1 D-cache misses
are re-directed to the HL so that younger instructions can go ahead
and execute.

5.9 Sensitivity Analyses
We conduct a couple sensitivity analyses to comprehensively ex-
plore the design space.
Lane Size. Figure 11(a) reports performance sensitivity to lane
size while keeping the maximum number of in-flight instructions
constant at 32. (All lanes have equal sizes.) We show performance
results for a couple representative benchmarks along with the aver-
age across all. We conclude that 8-entry lanes are close to optimal
on average, which is what we assume throughout the paper.
Waiting Cycles. Figure 11(b) reports performance sensitivity to the
number of waiting cycles before re-directing an instruction from the
DEL to the HL. We find that performance is relatively insensitive on
average, although we note a 1% performance degradation for more
than 8 cycles compared to 4 cycles. Especially compute-intensive
benchmarks, such as namd_r_1, seem to suffer more. The reason
is that independent load-consumers are stuck behind other load-
consumers for a longer period of time. A waiting time of 4 cycles

0.00
0.25
0.50
0.75
1.00
1.25

namd_r_1 leela_r_1 bwav_r_4 gcc_r_5 AVG

N
o

rm
al

iz
ed

 IP
C

4 8 16 32

(a) FSC lane size

0.94

0.96

0.98

1.00

namd_r_1 leela_r_1 bwav_r_4 gcc_r_5 AVG

N
o

rm
al

iz
ed

 IP
C

4 8 12 16

(b) Number of waiting cycles

Figure 11: Sensitivity analyses with respect to (a) FSC lane
size and (b) number of waiting cycles before re-directing an
DEL instruction to the HL. A lane size of 8 entries is optimal on
average. Four waiting cycles is optimal on average.

0.0

1.0

2.0

3.0

4.0

Without HW Prefetching With HW Prefetching

N
o

rm
al

iz
ed

 IP
C

InO LSC Freeway FSC OoO

Figure 12: Normalized performance for LSC, Freeway, FSC
and OoO without and with a 16-stream stride-based hard-
ware prefetcher at L1. Performance is normalized to the InO
core without prefetcher in all configurations. FSC improves
performance by 75% compared to an InO baseline with hardware
prefetching.

(i.e., L1 D-cache access time) is optimal, which is what we assume
throughput the paper.
Hardware Prefetching. We did not assume hardware prefetch-
ing in our setup so far, for ease of analysis. We now consider a
baseline architecture with hardware prefetching by adding a stride-
based prefetcher at L1, which tracks up to 16 independent streams.
Figure 12 reports normalized performance without and with the
stride-based prefetcher enabled for all the core microarchitectures.
For all configurations, performance is normalized to the InO core
without hardware prefetching. It is interesting to note that the per-
formance improvement achieved by the sOoO cores compared to
the InO baseline is higher when hardware prefetching is enabled
versus disabled. The reason is that as performance improves with
hardware prefetching enabled, a smaller fraction of time is spent
on stalls due to cache misses, hence a similar improvement in in-
struction scheduling leads to a higher impact on performance. This
is especially the case for the memory-intensive benchmarks. On
average, we report that FSC performs 76% better than InO, versus

51% and 59% for LSC and Freeway, respectively, with hardware
prefetching enabled.
Memory Disambiguation. We further find that SAR degrades
performance by 1% compared to perfect memory disambiguation
(no results shown here due to space constraints). The performance
impact of SAR mainly comes from the last STA micro-op arriving
at the head of the four lanes. We find that the last STA micro-op
typically resides in the DEL. As FSC periodically re-directs instruc-
tions from the DEL to the HL, it does not take long for the STA
to reach the head of the DEL, resulting in a minimal performance
impact.
Four-Wide Superscalar Pipeline. We considered a two-wide su-
perscalar baseline throughout the paper. For a 4-wide superscalar
pipeline with a 192-entry reorder buffer size, we find that FSC out-
performs Freeway by 15.5% on average (again, no results shown due
to space constraints). Note that this relative performance improve-
ment is larger than for the two-wide superscalar baseline (9.7%
average improvement). The performance benefit primarily comes
from extracting ILP across the four lanes. In contrast, Freeway has
limited capabilities to extract ILP which widens the performance
gap for wide superscalar architectures.

6 RELATEDWORK
A significant body of prior work has contributed to making proces-
sors more complexity-effective and power-efficient. We now point
out the most closely related work.
Complexity-Effective Architectures. Palacharla et al. [13] pro-
pose the complexity-effective superscalar processors (CESP) archi-
tecture which steers chains of dependent instructions to in-order
queues. Dispatch stalls when an independent instruction cannot
be steered to an empty queue. Salverda and Zilles [14] evaluate
CESP in the context of a realistic baseline and point out a large
performance gap with a traditional OoO core because of frequent
dispatch stalls. A similar steering policy is used by Kim et al. [9] in
their Instruction-Level Distributed Processing (ILDP) work, which
proposes an ISA with in-order accumulator-based execution units.
Our experimental results show that FSC outperforms CESP.

Salverda and Zilles [15] analyze the fundamental challenges
of fusing small in-order cores on demand into larger cores. They
find that fusing small cores is not appealing if those cores sup-
port in-order execution only; some form of out-of-order execution
capability is needed to achieve high performance. In particular,
they propose a cost-based steering policy that uses a complex load-
latency predictor such that instructions do not get stuck behind
long-latency loads. In contrast, FSC moves instructions to the Hold-
ing Lane based on a simple down-counter. Overall, FSC features
a low-cost and effective instruction steering policy that enables
out-of-order execution capabilities among in-order queues.
Decoupled Access-Execute.DAE [19] is the first work to separate
access and execute phases of a program through coordinated queues.
Proposals such as speculative-slice execution [23], flea-flicker multi-
pass pipelining [3], braid processing [22] and OUTRIDER [6] also
exploit critical instruction slices [24] for improving performance.
More recently, Clairvoyance [20] and SWOOP [21] exploit the de-
coupled nature of access and execute phases for improving energy

efficiency. These compiler-based techniques involve new instruc-
tions, advanced profiling information, or binary translation for
separating critical instruction slices, unlike FSC.
Restricted Out-of-Order Microarchitectures.We extensively
discussed the Load Slice Core [5] and Freeway [10] throughout
the paper. Shioya et al. [18] propose the front-end execution ar-
chitecture which executes instructions that have their operands
ready in the front-end of the pipeline; other non-ready instruc-
tions are dispatched to the out-of-order back-end. CASINO [8]
pursues a similar goal by augmenting an in-order core with an
additional speculative queue from which ready instructions are
executed ahead of a traditional in-order instruction queue. CASINO
adds significant complexity over an in-order core because of the
CAM-based selection logic in the speculative queue and dynamic
memory disambiguation.

A number of proposals take an OoO core as a starting point and
reduce complexity by bypassing some of the out-of-order structures.
FSC eliminates all out-of-order structures and is therefore more
area- and power-efficient. Long-term parking [16] saves power
in an OoO core by allocating back-end resources for critical in-
structions while buffering non-critical instructions in the front-end.
More recently, Alipour et al. [1] leverage instruction criticality and
readiness to bypass the out-of-order back-end. Instructions that do
not benefit from out-of-order scheduling and instructions that do
not suffer from being delayed are sent to an in-order FIFO queue.

7 CONCLUSION
Slice-out-of-order cores were recently proposed to tackle the in-
order issue bottleneck in stall-on-use in-order processors by allow-
ing loads and stores, plus their backward slices, to bypass older
instructions in the dynamic instruction stream. sOoO cores improve
ILP and MHP, yet they leave significant performance on the table.
In particular, backward slice analysis is imprecise while incurring
a non-trivial hardware cost.

In this paper, we propose Forward Slice Core (FSC), a novel core
microarchitecture that steers instructions to in-order FIFO queues
based on the notion of forward slices of loads (i.e., the direct and
indirect load-consumers). Forward slices are constructed in a sin-
gle pass as opposed to backward slice analysis, which is iterative,
imprecise and hardware-inefficient. In addition, FSC re-directs in-
structions waiting for an L1 D-cache miss to the Holding Lane.
Finally, FSC implements store-address replication to alleviate the
need for expensive dynamic memory disambiguation logic. FSC
outperforms the state-of-the-art sOoO core, Freeway, by 9.7% on
average across the SPEC CPU2017 benchmarks while being more
hardware-efficient.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable comments.
This work was supported in part by European Research Council
(ERC) Advanced Grant agreement no. 741097, and FWO projects
G.0434.16N and G.0144.17N. Josué Feliu was supported through a
postdoctoral fellowship by the Ministerio de Ciencia, Innovación y
Universidades (FJC2018-036021-I).

REFERENCES
[1] M. Alipour, S. Kaxiras, D. Black-Schaffer, and R. Kumar. Delay and bypass:

Ready and criticality aware instruction scheduling in out-of-order processors.

In Proceedings of the 26th IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 424–434, 2020.

[2] ARM. ARM Cortex-A7 processor. http://www.arm.com/products/processors/
cortex-a/cortex-a7.php.

[3] R. D. Barnes, S. Ryoo, and W. W. Hwu. "flea-flicker" multipass pipelining: an
alternative to the high-power out-of-order offense. In Proceedings of the 38th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
319–330, 2005.

[4] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An evaluation of
high-level mechanistic core models. ACM Transactions on Architecture and Code
Optimization (TACO), 11(3):28, 2014.

[5] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout. The load slice
core microarchitecture. In Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), pages 272–284, 2015.

[6] N. C. Crago and S. J. Patel. OUTRIDER: Efficient memory latency tolerance with
decoupled strands. In Proceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA), pages 117–128, 2011.

[7] L. Eeckhout. Computer Architecture Performance Evaluation Methods. Synthesis
Lectures on Computer Architecture. Morgan and Claypool Publishers, 2010.

[8] I. Jeong, S. Park, C. Lee, and W. W. Ro. CASINO core microarchitecture: Gen-
erating out-of-order schedules using cascaded in-order scheduling windows.
In Proceedings of the 26th IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 383–396, 2020.

[9] H. Kim and J. E. Smith. An instruction set and microarchitecture for instruction
level distributed processing. In Proceedings of the 29th Annual International
Symposium on Computer Architecture (ISCA), pages 71–81, 2002.

[10] R. Kumar, M. Alipour, and D. Black-Schaffer. Freeway: Maximizing mlp for slice-
out-of-order execution. In Proceedings of the 25th International Symposium on
High-Performance Computer Architecture (HPCA), pages 558–569, 2019.

[11] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. Mc-
PAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore
and Manycore Architectures. In Proceedings of the International Symposium on
Microarchitecture (MICRO), pages 469–480, Dec. 2009.

[12] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. Cacti-p: Architecture-
level modeling for sram-based structures with advanced leakage reduction tech-
niques. In 2011 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 694–701, 2011.

[13] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar pro-
cessors. In Proceedings of the 24th Annual International Symposium on Computer
Architecture (ISCA), pages 206–218, June 1997.

[14] P. Salverda and C. Zilles. Dependence-based scheduling revisited: A tale of
two baselines. In Proceedings of the Sixth Annual Workshop on Duplicating,
Deconstructing and Debunking (WDDD), held in conjunction with ISCA, 2007.

[15] P. Salverda and C. Zilles. Fundamental performance constraints in horizontal
fusion of in-order cores. In Proceedings of the 14th Annual International Symposium
on High Performance Computer Architecture (HPCA), pages 252–263, 2008.

[16] A. Sembrant, T. Carlson, E. Hagersten, D. Black-Shaffer, A. Perais, A. Seznec,
and P. Michaud. Long term parking (LTP): Criticality-aware resource allocation
in ooo processors. In Proceedings of the 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 334–346, 2015.

[17] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically charac-
terizing large scale program behavior. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 45–57, 2002.

[18] R. Shioya, M. Goshima, and H. Ando. A front-end execution architecture for
high energy efficiency. In Proceedings of the 47th International Symposium on
Microarchitecture (MICRO), pages 419–431, 2014.

[19] J. E. Smith. Decoupled access/execute computer architectures. In Proceedings of
the 9th Annual International Symposium on Computer Architecture (ISCA), pages
112–119, 1982.

[20] K. A. Tran, T. E. Carlson, K. Koukos, M. Själander, V. Spiliopoulos, S. Kaxiras, and
A. Jimborean. Clairvoyance: Look-ahead compile-time scheduling. In Proceedings
of the International Conference on Code Generation and Optimization (CGO), pages
171–184, 2017.

[21] K. A. Tran, A. Jimborean, T. E. Carlson, K. Koukos, M. Själander, and S. Kaxiras.
SWOOP: Software-hardware co-design for non-speculative, execute-ahead, in-
order cores. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 328–343, 2018.

[22] F. Tseng and Y. N. Patt. Achieving out-of-order performance with almost in-
order complexity. In Proceedings of the 35th Annual International Symposium on
Computer Architecture (ISCA), pages 3–12, 2008.

[23] C. Zilles and G. Sohi. Execution-based prediction using speculative slices. In
Proceedings of the 28th Annual International Symposium on Computer Architecture
(ISCA), pages 2–13, July 2001.

[24] C. B. Zilles and G. S. Sohi. Understanding the backward slices of performance
degrading instructions. In Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), pages 172–181, June 2000.

http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.arm.com/products/processors/cortex-a/cortex-a7.php

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Load Slice Core
	2.2 Freeway
	2.3 Shortcomings of Slice-Out-of-Order Cores

	3 Forward Slice Core
	3.1 Identifying Forward Slices
	3.2 Instruction Steering
	3.3 Holding Lane
	3.4 Store-Address Replication
	3.5 Code Example
	3.6 Hardware Complexity

	4 Experimental Setup
	5 Evaluation
	5.1 Overall Performance Results
	5.2 CPI Stack Analysis
	5.3 Detailed Analysis
	5.4 Lane Distribution
	5.5 ILP and MHP
	5.6 Hardware Overhead
	5.7 Power Consumption
	5.8 Comparison Against CESP
	5.9 Sensitivity Analyses

	6 Related Work
	7 Conclusion
	References

