
Bandwidth-Aware On-Line Scheduling
in SMT Multicores

Josué Feliu, Julio Sahuquillo, Member, IEEE, Salvador Petit, Member, IEEE, and José Duato

Abstract—The memory hierarchy plays a critical role on the performance of current chip multiprocessors. Main memory is shared by
all the running processes, which can cause important bandwidth contention. In addition, when the processor implements SMT cores,
the L1 bandwidth becomes shared among the threads running on each core. In such a case, bandwidth-aware schedulers emerge as
an interesting approach to mitigate the contention. This work investigates the performance degradation that the processes suffer due
to memory bandwidth constraints. Experiments show that main memory and L1 bandwidth contention negatively impact the process
performance; in both cases, performance degradation can grow up to 40% for some of applications. To deal with contention, we devise
a scheduling algorithm that consists of two policies guided by the bandwidth consumption gathered at runtime. The process selection
policy balances the number of memory requests over the execution time to address main memory bandwidth contention. The process
allocation policy tackles L1 bandwidth contention by balancing the L1 accesses among the L1 caches. The proposal is evaluated on a
Xeon E5645 platform using a wide set of multiprogrammed workloads, achieving performance benefits up to 6.7% with respect to the
Linux scheduler.

Index Terms—bandwidth-aware scheduling; process selection; process allocation; L1-bandwidth, bandwidth contention; SMT

F

1 INTRODUCTION
Simultaneous multithreading (SMT) processors exploit
both instruction-level and thread-level parallelism by
issuing instructions from different threads in the same
cycle. Thread-level parallelism increases the chance of
having instructions ready to be issued thus reducing the
vertical waste at the issue stage [1]. Because of differ-
ent threads can launch instructions in the same cycle,
threads are continuously sharing processor resources.
Thus, the performance of SMT cores strongly depends
on how resources are shared among threads.

The subset of processor resources being shared de-
pends on the actual SMT implementation but typi-
cally includes, among others, functional and arithmetic
units, instruction queues, renaming registers and first-
level caches. If at any point of the execution time,
the demand for a given resource exceeds its capability,
the performance can be seriously affected. Thus, smart
thread to core (t2c) mapping policies can help alleviate
the contention in shared resources in current multicore
multithreaded processors. On the contrary, a naive policy
could stress the contention on some resource so creating
a new performance bottleneck.

A critical resource in any current chip multiprocessor
(CMP) is the main memory bandwidth, which is shared
among all the processor cores. For a given system, the
higher the number of cores the higher the potential
contention due to main memory bandwidth constraints.
Climbing the memory hierarchy, LLC caches (and caches
of higher levels) are also typically shared by a subset

• The authors are with the Department of Computer Engineering (DISCA),
Universitat Politècnica de València, Camı́ de Vera s/n, València 46022,
Spain. E-mail: jofepre@gap.upv.es, {spetit,jsahuqui,jduato}@disca.upv.es

or all the cores; thus, bandwidth contention can rise at
different points of the memory hierarchy. Main mem-
ory [2], [3] and LLC bandwidth [4], [5], [6] have been
addressed in recent research work that illustrates the
potential performance improvements that bandwidth-
aware scheduling policies can offer by providing a better
sharing of the memory hierarchy resources.

In summary, research work on CMPs has focused on
scheduling strategies to tackle bandwidth contention,
and research work based on SMT processors has concen-
trated on core management policies for shared resources.
However, to the best of our knowledge, L1 bandwidth,
which is private to cores in CMP systems but shared to
threads in SMT cores, has not been addressed yet neither
in scheduling nor resource sharing strategies.

This paper proposes a scheduling algorithm for multi-
core SMT processors that deals with memory bandwidth
at different points of the memory hierarchy. The pro-
posed scheduler consists of two main policies, process
selection and process allocation.

The process selection step is based on the main mem-
ory bandwidth the processes consume, which is gath-
ered at runtime with performance counters. This policy
contributes to enhance the performance by choosing an
adequate subset of processes of the workload to be run
during each quantum. Previous work [3], [6] dealing
with bandwidth contention requires information from
prior executions to feed the scheduler, which makes
this approach impractical on real systems. This work
also devises a process selection policy with the aim of
fairly balancing memory bandwidth across the workload
execution time. However, unlike previous work, the
proposed policy, referred to as On-line process selection
policy, does not require any prior information on the



processes.
Once the processes to be run have been selected, the

process allocation strategy determines the target core for
each process. This work shows that, i) there is a strong
connection between the performance of SMT cores and
the L1 bandwidth they consume and, ii) the bandwidth a
process consumes (in a 2-thread SMT) is strongly related
to that of its co-runner. These findings suggest that
the more balanced the L1 bandwidth consumption, the
higher the performance. For this purpose, the devised
process allocation policy gathers L1 bandwidth require-
ments of individual threads at runtime and, dynamically
updates the process to core mappings.

Finally, this work introduces the consumed slots plots,
as a visual and intuitive approach to analyze the sched-
uler performance. As an example, Figure 1 shows, for
each quantum, the number of consumed slots (i.e. the
number of threads running at each OS quantum) during
the execution of a workload with the Linux scheduler
and the Bandwidth-Aware On-line Scheduler (BAOS)
proposed. The figure highlights that scheduling brings
performance benefits in two main ways. First, the time
required to complete the whole multiprogrammed work-
load is shortened. Second, performance is also improved
by finishing earlier any thread of the workload as it is
shown in the shaded area enclosed between the con-
sumed slots plots of both schedulers.

Experimental results on a Xeon E5645 processor show
that the BAOS scheduler can significantly improve the
performance with respect to the Linux scheduler. The
achieved speedup varies depending on the evaluated
metric and the workload but it grows up to 6.7%, with
an geometric mean of 4.6% for the evaluated mixes using
the average IPC.

The rest of this paper is organized as follows. Section
2 discusses related work. Section 3 describes the exper-
imental platform. Section 4 analyzes the effects of L1
and main memory bandwidth on performance. Section
5 presents the scheduler. The evaluation methodology
is described in Section 6, and the performance of the
proposal is evaluated in Section 7. Finally, Section 8
presents some concluding remarks.

2 RELATED WORK

Some preliminary work on scheduling has focused on
main memory bandwidth contention. Antonopoulos et
al. [2] proposed to schedule processes so that their band-
width consumption matches the peak memory bus band-
width. In contrast, Xu et al. [3] proved that contention
can rise even when memory bandwidth requirements
are below the peak bandwidth due to irregular access
patterns and thus, they distribute the memory accesses
over the workload execution to minimize contention.

Other work has focused on cache contention. Eklov
et al. [7] presented a method for measuring application
performance and main memory bandwidth utilization
as a function of the available shared cache capacity.

0

2

4

6

8

10

12

3100 3300 3500 3700 3900 4100

C
o

n
su

m
ed

sl
o

ts

Quantum

BAOS scheduler Linux CFS scheduler

Fig. 1: Evolution of consumed slots during the execution
of a sample workload.

Similarly, Casas et al. [8] presented a methodology to
predict the performance of an application when the
available bandwidth and space through the memory
hierarchy are reduced. Some scheduling algorithms have
also been designed addressing cache contention. Tang et
al. [4] studied the impact of sharing memory resources
and found that improperly sharing the LLC can degrade
the performance, while Zhuravlev et al. [5] proposed
a scheduling algorithm that, among other resources,
addresses contention due to LLC space. In a similar way,
Knauerhase et al. [9] devised a scheduler that profiles
task execution with hardware counters to provide co-
schedules that reduce cache interference. Fedorova et al.
[10] proposed a cache-fair scheduling algorithm that gives
more execution time to those processes more affected
by unbalanced cache sharing. More recent scheduling
strategies consider several levels of the memory hierar-
chy. Feliu et al. [6], [11] addressed bandwidth contention
along the memory hierarchy of CMPs.

The predominant approach in current processors com-
bines multicore and multithreading. In this kind of
processors, thread allocation plays a key role on per-
formance due to the multiple and heterogeneous levels
of resource sharing. Settle et al. [12] proposed a thread
scheduler on a single-core SMT processor, which used
activity vectors to determine the pairs of threads with the
lowest performance degradation when running simulta-
neously. More recently, Eyerman et al. [13] studied job
symbiosis and proposed a model to predict whether jobs
create positive or negative symbiosis when co-scheduled
without actually running the co-schedule. Concerning
SMT multicores, Čakarević et al. [14] characterized dif-
ferent types of resource sharing in an UltraSPARC T2
processor and improved the execution of multithreaded
applications with a resource sharing aware scheduler.
Acosta et al. [15] showed that processor throughput is
highly dependent on thread allocation and proposed
an allocation policy that combines computation and
memory bounded processes in each core.

Some resource partitioning proposals also deal with
bandwidth contention. Moretó et al. [16] partition the
LLC of CMPs to increase memory level parallelism
and reduce workload imbalance, and cache partitioning
algorithms like SHARP [17] and PriSM [18] manage LLC



cache sharing in CMPs using formal control and proba-
bility theories, respectively. Focusing more in bandwidth
than in cache space, Nesbit et al. [19] propose a resource
sharing mechanism that provides QoS to concurrent run-
ning processes. In particular, authors present an arbiter
that guarantees a minimum bandwidth to the processes
to provide QoS. A similar approach is followed by
Colmenares et al. [20], who implement the Adaptive
Resource Centric Computing (ARCC) in the Tessella-
tion OS. Using ARCC, resources can be distributed to
the processes providing performance isolation and pre-
dictability. Unfortunately both proposals focus on single-
threaded processors and L1-bandwidth sharing among
simultaneous threads is not addressed.

3 EXPERIMENTAL PLATFORM

Experiments have been performed on an Intel Xeon
E5645 processor, composed of six dual-thread SMT cores.
Each core includes two levels of private caches, a 32KB
L1 and a 256KB L2. A third-level 12 MB cache is shared
by the private L2 caches. The system is equipped with
12 GB of DDR3 RAM and runs at 2.4 GHz.

The installed OS is a Fedora Core 10 distribution with
Linux kernel 3.11.4. The library libpfm 4.3.0 is used to
handle hardware performance counters [21] and collects,
for each running thread, the processor cycles and ex-
ecuted instructions, as well as the number of requests
to L1 caches and to the main memory. The scheduler
gathers these values at runtime to obtain bandwidth in-
formation, which is used to guide scheduling decisions.

The SPEC CPU2006 benchmark suite with reference
inputs has been used in the experiments. For evaluation
purposes (see Section 6), the target number of instruc-
tions for each benchmark is set to the number of instruc-
tions executed by the benchmark during 200 seconds
in stand-alone execution. Benchmarks with shorter or
longer execution time are relaunched or killed, respec-
tively, to run exactly that amount of instructions.

4 PERFORMANCE DEGRADATION ANALYSIS

4.1 Performance Degradation due to Main Memory
Bandwidth Contention

The goal of this analysis is not to perform an in-depth
study of the performance degradation caused by main
memory bandwidth contention, but to provide an overall
overview of how this contention affects the performance
of the processes with the aim of motivating the use of
a main memory bandwidth-aware process selection. A
deeper analysis of the effects of bandwidth contention
on performance can be found in [11].

To check the performance degradation caused by
main memory bandwidth contention we designed a mi-
crobenchmark that presents a main memory transaction
rate (TRMM ) of 55 trans/µs in stand-alone execution.
The microbenchmark is designed to minimize the cache
space contention, distributing the accesses among all the

0%

10%

20%

30%

40%

50%

60%

70%

p
er

lb
en

ch

b
zi

p
2

gc
c

m
cf

go
b

m
k

h
m

m
e

r

sj
en

g

lib
q
u
an

tu
m

h
26

4
re

f

o
m

n
et

p
p

as
ta

r

xa
la

n
cb

m
k

b
w

av
es

ga
m

es
s

m
ilc

ze
u

sm
p

gr
o

m
ac

s

ca
ct
u
sA

D
M

le
sl

ie
3d

n
am

d

d
ea

lII

so
p

le
x

p
o

vr
ay

G
em

sF
D

TD lb
mP

er
fo

rm
an

ce
 d

e
gr

ad
at

io
n

1 MM-bounded co-runner 5 MM-bounded co-runners

Fig. 2: IPC degradation due to main memory bandwidth
contention.

cache sets, so that the measured performance degra-
dation is caused by bandwidth contention [11]. The
performance degradation that each benchmark suffers
is analyzed when it runs concurrently with one and
five instances of the designed microbenchmark, respec-
tively. The former scenario evaluates a situation with
only one microbenchmark, which emulates one memory-
bounded co-runner1. The latter evaluates the scenario
with highest main memory bandwidth contention. In
this case, the system executes six processes (one on
each core): the studied benchmark and five instances of
the microbenchmark. Because of the high TRMM of the
designed microbenchmark, we guarantee that these five
co-runners are enough to entirely consume the available
main memory bandwidth.

Figure 2 shows the performance degradation of the
benchmarks in the devised experiment. When running
with only one memory-bounded co-runner, the highest
performance degradation observed is around 45% in
xalancbmk, but it is smaller than 10% in half of the
benchmarks. However, when running with five memory-
bounded co-runners, performance degradation increases
dramatically to the extent that half of the benchmarks
suffer a degradation above 30% and five of them exceed
50%. Such degradations show the convenience of using a
process selection based on the main memory bandwidth
requirements of the processes.

4.2 Effects of L1 Bandwidth on Performance
Current microprocessors usually deploy a cache hier-
archy organized in two or three levels of caches. The
first-level cache, the closest one to the processor, is the
most frequently accessed one. Consequently, L1 caches
are critical for performance and thus, they are designed
to provide fast access and high bandwidth.

This section analyzes the relationship between L1
bandwidth consumption and processor performance.
First, we present a summary of the analysis of the
behavior in stand-alone execution [22]. Then, we study

1. The term co-runner is used to refer to the processes running
concurrently that share the available bandwidth at a contention point.
Regarding main memory, the co-runners of a process are all the
processes running concurrently, while when addressing L1 bandwidth,
the co-runner is the process running on the same core.



0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

IPC RPC

0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

(a) Bzip2

0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

(b) Mcf

0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

(c) Hmmer

0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

(d) H264ref

0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

(e) Astar

0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

(f) Xalancbmk

0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

(g) Bwaves

0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

(h) CactusADM

0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

(i) GemsFDTD

Fig. 3: IPC and RPC evolution over time for a set of benchmarks.

how the interaction between two co-runners running in
the same core affects their achieved performance and L1
bandwidth consumption.

4.2.1 Stand-Alone Execution

Figure 3 depicts the results of the execution of several
quanta for a representative subset of benchmarks. Each
plot presents, for a given benchmark, the instructions per
cycle (IPC) and the number of instructions that perform a
L1 data cache read per cycle (RPC)2. Thus, RPC is related
with L1 bandwidth consumption.

The presented plots help detect the strong connection
between RPC and IPC metrics. As observed, both metrics
show an almost identical shape during the entire execu-
tion time across all the benchmarks. The metrics follow
the same trend (rises and drops) in a synchronized way.
This means that high (or low) IPC is typically correlated
with high (or low) L1 bandwidth consumption. Note
that, as soon as the L1 bandwidth starts to decrease
(or increase), the performance of the process follows the
same trend. Therefore, a key issue for performance is to
schedule processes to cores with the aim of maximizing
L1 bandwidth consumption.

2. Notice that the number of reads does not correspond with the
number of loads in the x86 ISA. Some instructions (e.g. arithmetic)
can access to the cache since the destination or source operand can be
a memory location.

4.2.2 Analyzing Interferences Between Co-Runners

While current microprocessors implement LLC caches,
which are shared by a subset or all the cores, L1 caches
are designed to be private to cores. In case of single-
threaded cores, all available L1 bandwidth is devoted
to the same process. In such a system, processes do not
compete for L1 bandwidth. In contrast, in current SMT
processors, those threads running concurrently on the
same core share the L1 cache. Since, as shown above, the
IPC of a process depends on the L1 bandwidth it uses,
its performance suffers when several threads run on the
same SMT core because they compete for the available
L1 bandwidth.

This section analyzes how sharing the L1 bandwidth
limits the thread performance. To this end, multiple
experiments running a couple of benchmarks on a single
dual-threaded core were performed. To clearly show
the impact of limited bandwidth on performance, the
L1 bandwidth utilization of the benchmarks that run
concurrently must fulfill two key characteristics. First, at
least one benchmark with high L1 bandwidth require-
ments must be included to accentuate the impact of the
contention on performance. Second, at least one of the
co-runners must present a non-uniform shape. Other-
wise, if the bandwidth consumption of both co-runners
is uniform, no significant insights will be appreciated on
the resultant plot.

Figure 4 presents the results of the described exper-



0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

IPC RPC WPC OPC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

cactusADM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

bzip2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

bwaves

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

h264ref

(a) cactusADM with h264ref

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130
In

st
ru

ct
io

n
s 

p
er

 c
yc

le

Time (s)

h264ref

(b) bzip2 with h264ref

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

Time (s)

hmmer

(c) bwaves with hmmer

Fig. 4: IPC, RPC, WPC, and OPC evolution over time when running a pair of benchmarks on a single SMT core.

iment for three pairs of benchmarks for the execution
interval ranging from 30 to 130 seconds. For analysis
purposes, each plot shows the dynamic evolution of
the IPC of a given benchmark, and then differentiates
between the RPC, the number of instructions that per-
form a L1 data cache write per cycle (WPC), and other
instructions per cycle (OPC)3. Each pair of benchmarks
is presented by a figure on the top row of plots and
the corresponding one in the bottom row. The pairs of
processes that simultaneously run on the same core are
cactusADM with h264ref (Figure 4a), bzip2 with h264ref
(Figure 4b), and bwaves with hmmer (Figure 4c). Note
that the benchmarks on the top row present non-uniform
L1 bandwidth utilization in stand-alone execution (see
Figure 3), while the ones in the bottom row show uni-
form L1 bandwidth utilization when running without
co-runner.

Several observations can be appreciated in this figure
that can help design thread allocation policies. First,
when a pair of processes runs concurrently on the same
core, its L1 bandwidth consumption and IPC signifi-
cantly drop with respect to that achieved in stand-alone
execution. Although such a drop was expected, it is
interesting to notice that in some cases this drop is above
40% (e.g., bwaves or cactusADM, see Figure 3g and Figure
3h, respectively), which shows the importance of the L1
contention point. The second observation is that the IPC
and RPC of each process are strongly related with that
of its co-runner. In particular, when a thread experiences
a drop in the IPC, a positive side effect occurs in the co-
runner, which turns into an increase in its number of
retired instructions.

A deeper look into the plots reveals more precisely
how the co-runners affect each other. For instance, lets
focus on the couple cactusADM and h264ref. The most

3. The number of other instructions is calculated as the total number
of instructions minus the number of instructions that perform a read
or a write in the L1 cache.

interesting effect is the one caused by cactusADM on the
behavior of h264ref. The decreasing trend in the IPC of
cactusADM, in isolated execution, causes a synchronized
increasing trend in the IPC of h264ref when they run
concurrently on the same core. Note that in isolation,
h264ref shows a uniform IPC. However, the key aspect
lies in the RPC, that is, the L1 bandwidth consumption.
As the number of committed instructions in cactusADM
is reduced, so does its RPC, which causes a reduction in
the L1 bandwidth consumed by the process. In this way,
there is more L1 bandwidth available to h264ref, which
turns into an increase in its RPC. The IPC improvement
is not exclusively caused by the increase in RPC since
WPC and OPC also grow. Nonetheless, experimental
results show that RPC is usually the component with

0

10

20

30

40

50

60

70

0 2E+10 4E+10 6E+10 8E+10 1E+11

L1
 M

P
K

I

Instructions

Bwaves running with hmmer Bwaves alone

0

10

20

30

40

50

60

70

0 2E+10 4E+10 6E+10 8E+10 1E+11

L1
 M

P
K

I

Instructions

Hmmer running with bwaves Hmmer alone

Fig. 5: L1 MPKI evolution over time when running a pair
of benchmarks on a single SMT core.



highest weight on the overall IPC and presents the
most similar shape to the IPC curve among the different
studied components.

A similar behavior is observed with the other two
pairs of benchmarks. The IPC of h264ref when running
with bzip2 grows synchronized with the IPC drop of
bzip2. Although all the IPC components (RPC, WPC, and
OPC) rise, RPC increase is that presenting the greatest
magnitude. Similarly, in the last pair of benchmarks,
bwaves and hmmer, the drops of the IPC, and particularly
RPC, of bwaves leaves more L1 bandwidth available
to hmmer, which takes advantage of this bandwidth to
improve its IPC.

4.3 Impact of Cache Space Contentions on L1 Band-
width Consumption
The impact of memory resource consumption (band-
width and space) on shared caches has been addressed
in previous work [7], [8], with the aim of estimating
the performance of applications when the memory re-
sources are being shared between different processes
and thus, their availability is reduced with respect to
standalone execution. Previous approaches rely on mi-
crobenchmarks, which are synthetic benchmarks that
are run concurrently with the target application, but on
distinct cores. This way makes performance interferences
only to appear on the studied shared resource. Unfortu-
nately, these approaches are not suitable for study space
contention on L1 caches in SMT processors, since the
microbenchmark and the application should be run on
the same core in order to share the same L1 cache;
consequently, performance interferences other than L1
cache space will rise.

Unlike previous work, this section tries to provide
insights about how L1 cache space contention affects the
cache performance of a given benchmark, which turns
into a reduction of the L1 bandwidth consumption. For
this purpose, we analyze how the L1 misses per kilo in-
struction (L1 MPKI) of two processes running simultane-
ously on the same core increases over isolated execution.
We use this metric because it is only affected by cache
space. That is, neither pipeline resources contention nor
cache bandwidth consumption significantly affect the L1
MPKI of a given process. As example, Figure 5 depicts
the L1 MPKI corresponding to the co-runners of Figure
4c, both when they run simultaneously on the same
core and in standalone execution. Notice that X-axis
represents the number of committed instructions instead
of time to match, in the figure, the standalone execution
of each process with its concurrent execution.

Results show that the L1 MPKI of both processes rise
when they run simultaneously due to space contention.
As a result of the increase in the L1 MPKI, the out-of-
order execution engine cannot hide most of the L1 miss
penalty (i.e., latency of extra L2 cache accesses). This
fact, jointly with SMT pipeline contention, slowdowns
the execution time. Therefore, IPC and RPC, that is, L1
bandwidth consumption, decrease.

This conclusion can be confirmed by the fact that
L1 MPKI rises and drops in Figure 5 are synchronized
with reductions and increases, respectively, of the L1
bandwidth consumption in Figure 4c. In summary, band-
width variation takes into account both L1 bandwidth
and cache space contention; therefore, bandwidth uti-
lization can serve as a good indicator of performance
degradation due to L1 cache contention.

5 BANDWIDTH-AWARE ON-LINE SCHEDULER

With multiprogrammed workloads and different levels
of resource sharing, task scheduling is usually carried
out in two main steps. In the first step, called process
selection, the set of processes to be executed in the next
quantum is selected. In the second step, called process
allocation, each selected process is mapped to a hard-
ware thread of the processor. In a multithreaded CMP,
all the processes selected to be run the next quantum will
share the main memory bandwidth, but only the subset
of processes assigned to a given core will share its L1
bandwidth. Thus, each scheduling step is responsible for
a resource sharing level.

Algorithm 1 presents the main steps of the Bandwidth-
Aware On-Line Scheduler (BAOS) proposed. To address
bandwidth contention at the two discussed contention
points, the proposal consists of a process selection and
allocation that are aware of the main memory and L1
bandwidth requirements, respectively. That is, the de-
vised policies guide the scheduling decisions based on
the predicted bandwidth utilization of the processes at
their corresponding level of the memory hierarchy.

With the purpose of providing the estimations of these
bandwidth utilizations, a third step is included. This
step makes use of performance counters to collect, for
each individual process that was run during the last
quantum, its number of L1 and main memory accesses,
as well as its number of executed cycles. The collected
values are used to calculate the transaction rates per
microsecond for the main memory bandwidth (TRMM )
and L1 bandwidth (TRL1) performed by each process.

The bandwidth utilization of a given process during
the last quantum is used as the predicted bandwidth
utilization for its next execution quantum. Such a simple
prediction has shown adequate accuracy. For example,
the L1 bandwidth utilization during a given quantum
differs, on average for all the SPEC CPU2006 bench-
marks, about 5.5% from the utilization in the previous
one.

Algorithm 1 BAOS scheduler: main steps
1: Process selection - Aware of MM bandwidth requirements
2: Process allocation - Aware of L1 bandwidth requirements
3: Update the bandwidth requirements for the next quantum

of each process p executed in the previous quantum:
- Gather consumed L1 bandwidth (TRp

L1)
- Gather consumed main memory bandwidth (TRp

MM )



5.1 Main Memory Bandwidth-Aware On-Line Pro-
cess Selection

As discussed in Section 4.1, when running multipro-
grammed workloads with significant memory require-
ments, main memory bandwidth contention inflicts im-
portant performance degradation. Such a degradation
can even exceed 50% of the IPC of the processes, which
illustrates the magnitude of the problem. Therefore, it
is interesting to design a process selection policy aware
of the main memory bandwidth requirements of the
processes to mitigate these performance drops.

The main goal of the devised process selection pol-
icy consists in evenly distributing the amount of main
memory accesses that all the processes of the workload
perform throughout its complete execution. By balancing
the memory transactions along the execution time, the
policy tries to minimize the contention in the main mem-
ory access, and prevents most of the memory transac-
tions to be performed in a subset of the quanta suffering
high contention, while the memory is much less stressed
in other quanta. The proposed policy shares the key idea
of distributing the memory accesses along the execution
time with the scheduler proposed by Xu et al. [3]. Nev-
ertheless, while Xu’s proposal requires prior knowledge
of the main memory bandwidth requirements of the
processes before running them with the scheduler, the
policy we devise works without requiring any prior
information.

To balance the main memory transactions during the
execution time, the policy makes use of the On-line
Average Transaction Rate (OATR), which defines the
overall main memory requests that should be performed
at the next quantum in order to evenly distribute them
along the execution time. The IABW calculated by Xu et
al. to distribute the memory requests over the workload
execution time [3] is fixed before mix execution since it
is calculated with prior information about main memory
requirements and execution time of the workload. On
the contrary, the OATR changes dynamically during the
workload execution based on the changes in the average
main memory bandwidth utilization of the processes,
which is calculated after each quantum expires.

As the execution progresses, the OATR reaches a
value that is more realistic than the IABW since it
is calculated using the bandwidth utilization gathered
while the processes run concurrently. This is unlike the
IABW, which is calculated off-line from the bandwidth
utilization measured in stand-alone execution. Xu et al.
correct this issue using a polynomial regression, which
is not required by the OATR.

The pseudocode of the process selection policy is
presented in Algorithm 2. The first step updates the
BWMM of each process of the workload with its av-
erage TRMM of the previously executed quanta. Next,
the second step calculates the OATR as the average
BWMM of the processes of the workload, multiplied by
the number of hardware threads of the experimental

Algorithm 2 On-Line Process Selection Policy
1: Update the average main memory bandwidth utilization

(BWp
MM ) for each process p of the workload

2: Calculate the OATR:

OATR =

∑N

p=0
BW

p
MM

N
∗#CPUs

3: Select the process p at the process queue head and set
BWremain = OATR− TRp

MM , CPUremain = #CPUs− 1

4: while # selected process < #CPUs do
5: Select the process p that maximizes:

FITNESS(p) = 1∣∣ BWRemain
CPURemain

−TR
p
MM

∣∣
6: Update BWRemain and CPURemain

7: end while

platform. The resultant OATR is used in the algorithm
as the target bandwidth utilization that the processes
running in the next quantum should achieve to balance
the main memory accesses along the workload execution
time.

The first process selected to run in the next quantum
is chosen in the third step. To avoid process starvation,
mainly due to extreme bandwidth requirements of a
given benchmark, the process at the head of the process
queue, which is the one not executed for longer, is
always selected to run. After that, both the remain-
ing bandwidth (BWRemain) and unallocated hardware
threads (CPURemain) are updated accordingly. The re-
maining processes are selected in the next steps using
the fitness function (fifth step) until all the hardware
threads are allocated or no more processes are in the
process queue.

The fitness function quantifies, for each process p, the
gap between its predicted main memory transaction rate
for the next quantum (TRp

MM ) and the average band-
width remaining for each unallocated hardware thread
(BWRemain/CPURemain). The process with the best fit
is the one that maximizes the fitness function and it is
selected to run during the following quantum, updating
the BWRemain and CPURemain variables accordingly.

Due to the lack of previous information, the scheduler
has to face a cold start the first quanta of the execution
of a new workload, since it has no prior information
about the processes. Besides, the average main memory
transaction rate of the processes (BWMM ) can take a few
quanta to reach a dependable value, which can increase
the length of such cold start. To mitigate a possible
negative impact on performance, we propose to let the
Linux kernel drive the scheduling decisions during a few
quanta at the beginning of the execution, while the pro-
posed scheduler collects enough bandwidth utilization
information of the processes. We found experimentally
that a short period of about thirty quanta (over execu-
tions that last more than five thousand quanta) is large
enough to avoid significant performance losses.



5.2 Dynamic L1 Bandwidth-Aware Process Alloca-
tion

The analysis presented in Section 4.2 illustrates that the
high L1 bandwidth utilization of two threads running
on the same core may produce significant performance
degradation. Thus, the allocation of the processes to be
run simultaneously on a given core has an important
influence on their performance. Additionally, it should
also be considered the fact that their bandwidth re-
quirements can widely vary over the execution time.
To address these issues, this section proposes a process
allocation policy that is aware of the L1 bandwidth
requirements of the processes. Notice that, although
overall SMT contention is addressed with the proposed
process allocation, it uses the L1 bandwidth utilization
to determine the allocation of processes to cores.

The key idea of the process allocation policy consists
in balancing the overall L1 bandwidth utilization of the
running processes (they have been previously selected to
run by the process selection policy) among all the proces-
sor cores. In this way, the policy tries to promote thread
to core mappings that do not saturate the available L1
bandwidth of some cores while it is underused in others.

The L1 bandwidth aware process allocation used in
this scheduler is based on the Dynamic t2c policy we
proposed in [22]. In [22] the policy itself was responsible
for gathering the L1 bandwidth consumption of the
processes, but in the current implementation this part
has been moved to Algorithm 1.

A dynamic process allocation policy presents two
main advantages with respect to a static process allo-
cation policy (also described in [22]). A dynamic policy
is more convenient than a static one since it does not
require prior information on the processes. Furthermore,
it also reacts to non-uniform shapes in the consumed L1
bandwidth. For instance, L1 bandwidth requirements of
benchmarks like astar or mcf can be properly addressed.
That is, the dynamic policy can allocate to the same core
astar, when it presents low L1 bandwidth requirements,
together with a process with high L1 bandwidth con-
sumption. And then, when astar increases its bandwidth
utilization, the policy changes its co-runner to run astar
with a process with lower bandwidth requirements.

Algorithm 3 presents the pseudocode of the pro-
posed process allocation policy. Since the experimental
platform supports simultaneous execution of only two
threads in each core, finding the thread to core assign-
ment that achieves the optimal balance of L1 bandwidth
consumption among cores is simplified. For instance,
threads can be ordered according to their TRL1 (first
step). The RPC used to study the effects of L1 band-
width contention on performance could be used in this
algorithm since it is actually the same metric expressed
in different units. However, the algorithm uses TRL1 for
consistency reasons. Then, the threads with highest and
lowest L1 bandwidth requirements are assigned to the
same core (third and fourth steps). This rule is iteratively

Algorithm 3 Dynamic Process Allocation Policy
1: Sort the selected processes in ascending TRL1

2: while there are unallocated processes do
3: Select the processes Phead and Ptail with maximum and

minimum bandwidth requirements
4: Assign Phead and Ptail to the same core
5: end while

applied to obtain the remaining pairs of co-runners.
Notice that the maximum number of threads that must
be sorted each time the policy is executed is equal to the
number of hardware threads, since only the processes
selected by the process selection policy are considered.
This restriction limits the computational cost of sorting
the processes, which has been measured experimentally
and is negligible compared with the quantum length
and the benefits provided by a good thread to core
assignment.

If the SMT processor supports the execution of three
or more threads it is possible to balance L1 requirements
following a similar approach to that one explained for
the process selection policy. The alternative algorithm
would calculate the cumulative TRL1 of all the threads
that have been selected to run the next quantum and
would divide this value by the number of cores. Then,
threads could be properly allocated to the cores in order
to balance the TRL1 differences among L1 caches using
a fitness function.

Finally, remark that the number of process migrations
among cores is not limited by the proposed policy.
Although, an overhead is incurred when migrating the
architectural state of the process and extra time is wasted
warming up the L1 cache, we found that such overhead
is negligible when working with long quanta like the
ones used by modern operating systems [23].

6 EVALUATION METHODOLOGY

To evaluate the performance of the BAOS scheduler, both
process selection and process allocation policies have
been implemented in a user-level scheduler that controls
which processes are allowed to run and sets their core
affinities. For performance comparison purposes, the
Linux process selection and process allocation policies,
as well as one state-of-the-art process selection policy,
explained in Section 7.1, and two state-of-the-art process
allocation policies, explained in Section 7.2, have also
been considered.

By implementing a single user-level scheduler frame-
work shared by all the policies, we ensure that any
possible overhead incurred by process management or
handling performance counters is the same for the stud-
ied schedulers, so offering a fair comparison.

The Linux policies correspond to the Completely Fair
Scheduler (CFS) [24]. In summary, this scheduler tries
to give the same CPU utilization to all the processes,
keeping process affinity to cores as much as possible
in order to avoid constant process migrations. To set



the Linux process selection policy, all the processes are
allowed to run, which lets the Linux kernel to decide
which processes effectively run during each quantum.
Similarly, to study the Linux process allocation policy,
the affinities of the processes have been configured to
allow any process to run on any core, so the Linux kernel
finally determines the process allocation.

As mentioned in Section 3, the execution time of
the benchmarks when building the mixes is fixed to
200 seconds in stand-alone execution [3]. The number
of instructions that each benchmark runs during this
time is measured offline, and the scheduler finishes a
given benchmark execution when it surpasses its tar-
get number of instructions. In this way, we avoid the
benchmarks to present different weights in the mix
execution. Otherwise, the performance of a given mix
would be better when running more instructions from
benchmarks with higher IPC. Furthermore, fixing the
benchmark execution time also prevents that scheduling
policies prioritizing long jobs first could bring better
performance [3]. Finally, we try to minimize the number
of quanta where there are less runnable processes than
hardware threads, which would reduce contention.

A set of twelve mixes has been designed to evaluate
the scheduler performance. Each mix consists of twenty
four benchmarks, that is, the number of processes dou-
bles the available hardware contexts. See Section 1 of
the supplementary material for further details of the mix
composition.

6.1 Performance Metrics

A wide set of metrics has been analyzed for evalu-
ation purposes. First we use the average IPC of the
threads composing a workload. This is the plain metric
to compare throughputs. Unfair scheduling strategies
may favor this metric if they prioritize the execution of
those benchmarks with highest IPC [25]. These scenarios,
however, are not allowed on the described evaluation
methodology. To deal with fairness, the harmonic mean
of weighted IPC [26] is also used, which captures fairness
additionally to performance.

In addition to these metrics the turnaround time of
the mix execution has also been evaluated. This metric
is widely used because it refers to the elapsed time
since the mix is launched until the last process finishes.
Unfortunately, the turnaround time does not take into
account the fact that at the end of the mix execution
the number of running processes will probably be lower
than the number of hardware threads of the processor.
As illustrated in Figure 1, these free hardware threads
could be used to run other workloads. To consider them
in the evaluation, we define the consumed slots metric as
the accumulated number of hardware threads used in
each OS quantum required to complete the execution of
a given workload. Notice that the consumed slots is a
more meaningful metric than the turnaround time, since
it gives lower weight to the quanta where the number of

running processes is lower than the number of hardware
threads.

7 PERFORMANCE EVALUATION

First, we analyze the performance benefits provided by
both the proposed process selection and the process
allocation policies in an isolated way. Then, we study
the performance of the complete scheduler with respect
to Linux.

The different performance evaluation studies can be
carried out by properly selecting the desired policies in
the implemented scheduling framework shared by all
the policies. This way allows a fair comparison since the
policy to be analyzed is the only difference between the
two studied scheduling approaches. When evaluating
the policies in isolation, the scheduling step not being
analyzed is set to the Linux policy.

The plotted results in all the experiments correspond
to the average values of twenty executions and 95%
confidence intervals.

7.1 Process Selection Policies Evaluation
In this section, the performance of the designed On-line
process selection policy is compared to that achieved
by a dynamic process selection policy based on Xu’s
scheduler [3] and the Linux policy implemented in the
Completely Fair Scheduler [24], relative to the perfor-
mance of the naive process selection policy.

The Dynamic policy distributes the amount of main
memory accesses that all the processes of the running
mix perform over the execution time of the mix. How-
ever, unlike the devised On-line process selection policy,
the Dynamic policy requires to know the main memory
transaction rate and execution time of all the processes
of the mix prior to its execution. This information is
used to calculate the IABW, which represents the target
bandwidth that the selected processes to run at a given
quantum should achieve to balance the main memory
accesses along the mix execution time. Unfortunately,
the use of prior information of the processes implies
an important drawback, since it makes the approach
impractical on real systems.

The naive process selection policy is implemented as
a random policy, which yields the main memory band-
width consumption to vary over a broad range during
each quantum. Thus, this policy presents executions
combining periods with high bandwidth contention and
periods where the available bandwidth is underutilized.

Figure 6 presents the speedups achieved by the Linux,
Dynamic and On-line process selection policies relative
to the naive policy regarding IPC-based metrics. Results
regarding the average IPC metric (Figure 6a) show that
the Dynamic, and On-line policies improve the perfor-
mance of the Linux and naive policies. The speedups
achieved by the Dynamic and On-line policies usually
fall in between 3% and 5%, being higher for the Dynamic
policy in all the mixes but two. With regard to the Linux



0%

1%

2%

3%

4%

5%
Sp

ee
d

u
p

Linux PS Dynamic PS On-line PS

(a) Average IPC

0%

3%

6%

9%

12%

15%

Sp
e

e
d

u
p

Linux PS Dynamic PS On-line PS

(b) Harmonic mean of weighted IPC

Fig. 6: Speedup of the process selection (PS) policies with respect to the naive policy.

policy, it achieves much lower speedups since only mix
8 exceeds 2%.

Figure 6b depicts the speedups of the policies re-
garding the harmonic mean of weighted IPC, which in
addition to performance evaluates fairness. The achieved
speedups with this metric are much higher for the
three evaluated policies with respect to the naive policy,
which indicates that the Linux, Dynamic and On-line
policies perform a much fairer process selection. The
Dynamic policy achieves the best performance, showing
the highest speedup in eight mixes and an average
speedup of 11.4% across the evaluated mixes. Close to
its performance, the On-line policy achieves the best
speedup in four mixes, with an average speedup about
11%. Linux achieves the worst speedup relative to the
naive policy with an average value of 8.7%.

Finally, Figure 7 presents the speedups regarding the
turnaround time of the mixes. Results show that all the
process selection policies widely improve the perfor-
mance of the naive policy with speedups that usually
exceed 12%. The reduction in the time required to com-
plete the execution of the mixes shows the significance of
the main memory bandwidth contention point and how
smart policies can mitigate such contention and improve
the performance. Comparing the performance of the
evaluated policies, results suggest that Linux performs
worse than the Dynamic and On-line process selection
policies, since it achieves significantly lower speedup
in mixes like 2, 3, 6 or 10. Regarding the Dynamic
and On-line policies, we can see that the On-line policy
achieves better performance than the Dynamic policy in

0%

4%

8%

12%

16%

20%

Sp
ee

d
u

p

Linux PS Dynamic PS On-line PS

Fig. 7: Speedup of the process selection policies (PS) w.r.t.
the naive policy regarding turnaround time.

eight mixes. In addition, the average speedup for the
evaluated mixes is 12.6% and 12.8% for the Dynamic
and On-line policies, respectively, which shows that the
On-line policy performs slightly better.

The achieved speedups regarding the turnaround time
help explain the relatively low speedups observed with
the average IPC metric. Notice that the process selection
of the naive policy significantly enlarges the execution
time of the mixes, which causes the distribution of the
overall main memory accesses in a longer interval, so
reducing the contention. In this way, the processes see
its performance improved and the average IPC of the
mix is enhanced, but it is not a desirable behavior since
it is achieved at the expense of a higher turnaround time.

In summary, the three process selection policies evalu-
ated significantly improve the performance of the naive
policy, with speedups that usually exceed 10% regarding
the harmonic mean of weighted IPC and turnaround
time metrics. Among the policies, the best results are
obtained with the Dynamic and On-line policies that
perform better than Linux in all the evaluated mixes.
Finally, notice that the On-line policy is able to achieve
performance comparable to (if not better than) that
achieved by the Dynamic policy, despite the fact this
policy uses bandwidth information obtained in prior ex-
ecutions of the processes to calculate the IABW. This can
be explained by the fact that the bandwidth information
used by the Dynamic policy is gathered in stand-alone
execution, and thus despite being representative of the
bandwidth requirements of the processes, it loses some
accuracy when running with co-runners, because it does
not consider the interferences that affect their bandwidth
utilization.

7.2 Process Allocation Policies Evaluation

In this section, the performance of the Dynamic thread
allocation policy used in the proposed scheduler is com-
pared against that of the Static policy [22], a state-of-
the-art policy proposed by Acosta et al. [15] (from now
on referred to as TCA policy), and the Linux thread
allocation policy of the Completely Fair Scheduler [24],
with respect to the performance of a naive process
allocation policy.



0%

1%

2%

3%

4%

5%
Sp

e
e

d
u

p
Linux PA TCA PA Static PA Dynamic PA

(a) Average IPC

0%

1%

2%

3%

4%

5%

Sp
ee

d
u

p

Linux PA TCA PA Static PA Dynamic PA

(b) Harmonic mean of weighted IPC

Fig. 8: Speedup of the process allocation (PA) policies with respect to the naive policy.

Regarding the TCA policy, Acosta et al. [15] presented
two thread allocation policies designed for robust and
naive IFetch policies, respectively. The authors stated
that the main reason that causes a negative interaction
between two threads running concurrently on a core is
their memory behavior and ILP, thus, they used the IPC
of each process, as an estimation of both of them, to
guide the thread to core mapping. To implement the al-
gorithm, the IPC of each process during its last execution
quantum, measured with performance counters, is used
as predicted IPC for the next quantum. It replaces the
IPC prediction mechanism devised by the authors, which
works similarly but does not consider the interferences
that the co-runners can cause to the IPC of a given
process.

The Static policy allocates threads to cores in the same
way as the Dynamic policy, but using the average L1
bandwidth consumption of the processes measured in
stand-alone execution. Thus, the policy must know this
information for each process, which reduces its suitabil-
ity for real situations. Finally, as done in the evaluation
of the process selection policies, the naive process al-
location policy is implemented as random. Therefore,
during a single quantum, one core can present high
L1 bandwidth utilization causing important contention
while other core’s L1 bandwidth is underutilized.

Figure 8 compares the performance of the different
process allocation policies with respect to the naive
policy using IPC-based metrics. Figure 8a presents the
achieved speedups of the average IPC, while Figure 8b
shows the speedups of the harmonic mean of weighted
IPC.

0%

2%

4%

6%

8%

10%

Sp
ee

d
u

p

Linux PA TCA PA Static PA Dynamic PA

Fig. 9: Speedup of the process allocation policies (PA)
w.r.t. a naive policy regarding turnaround time.

Figure 8a shows that the Dynamic process allocation
policy achieves the best performance in all the mixes.
Speedups relative to the naive process allocation fall
in between 3% and 5% (except for mixes 5 and 10),
while the Static policy only achieves speedups above
3% in three mixes. This fact shows that the Static policy
offers good performance in some mixes where there is
higher uniformity in the L1 bandwidth requirements of
the processes, but its results are much worse in other
mixes where a higher number of processes present non-
uniform shapes. Finally, the Linux and TCA thread
allocation policies get similar performance but always
lower than the Dynamic policy.

The differences among the policies are reduced when
considering fairness, as shown in Figure 8b. The Dy-
namic process allocation policy achieves speedups above
2% in all mixes except three of them, while the Static,
TCA, and Linux policies fall below 2% in seven, nine
and eight mixes, respectively. Using this metric, we
can see that the Linux policy performs better than the
TCA policy, which means that the TCA policy does not
equally distribute the performance degradation among
all the processes, but unfairly damages the performance
of some of them above the others.

Figure 9 compares the achieved speedup regarding the
turnaround time. At a first glance, the results show that
the speedups are increased compared to those achieved
with the IPC-based metrics. The plot confirms that
the Dynamic policy achieves the highest performance
among the process allocation policies evaluated, with a
maximum speedup close to 10% and an average value
of 5.3%, while the Static policy achieves an average
speedup of 4.9%. The Linux and TCA policies achieve
a lower speedup with average value about 4.1%.

In short, the Dynamic process allocation policy
achieves the highest performance in both IPC-based and
time-based metrics. Since this policy does not require
prior information of the processes but collects the L1
bandwidth utilization of the processes at runtime using
performance counters, we can conclude that this is the
most adequate process allocation policy for the designed
scheduler.



0%

1%

2%

3%

4%

5%

6%

7%
Sp
ee
d
u
p

(a) Average IPC

0%

1%

2%

3%

4%

5%

Sp
ee
d
u
p

(b) Harmonic mean of weighted IPC

Fig. 10: Speedup of the proposed scheduler relative to Linux scheduler with IPC based metrics.

7.3 BAOS Scheduler Evaluation

This section analyzes the performance of the BAOS
scheduler proposed (On-line process selection and Dy-
namic process allocation) with respect to the Linux
scheduler.

Figure 10 presents the performance benefits reached
using the IPC-based metrics described above. Figure 10a
shows the speedup of the average IPC achieved by the
BAOS scheduler over the Linux scheduler for the studied
mixes. The proposed scheduler improves Linux in all
mixes, with speedups ranging from above 3% to above
7%, and with nine of twelve mixes achieving over 4%
speedup and five exceeding 5%. Since the average IPC
is a metric focused on performance, the results show that
the proposed scheduler effectively addresses bandwidth
contention at the L1 cache and main memory, which
results in a significant performance increase.

To ensure that performance improvements are not
unfairly obtained by favoring the execution of certain
processes, Figure 10b compares the speedups with the
harmonic mean of weighted IPC metric. The BAOS
scheduler achieves speedups ranging from around 2%
to 4.5% with respect to the Linux scheduler. Although
they are slightly reduced compared to those obtained
with the average IPC metric, they show that the pro-
posed scheduler works fairer than the Linux scheduler
in addition to improve its performance.

Figure 11 presents the speedup achieved by the
BAOS scheduler regarding the turnaround time. The
plot shows that the proposed scheduler shortens the
execution time of all the evaluated mixes with speedups
over 2% (except mix 9). Five mixes achieve a speedup
between 3% and 4%.

Notice that dealing with bandwidth contention, the
improvements achieved in throughput, as the average
IPC speedups, do not directly correspond to reductions
in the turnaround time of the mixes. In fact, when the
turnaround time of the mix is shortened the bandwidth
contention rises, since the same number of memory or
cache accesses are concentrated in a shorter period of
time. In contrast, sometimes the throughout is enhanced
at the expenses of a longer execution time since the
memory requests have more time to be distributed.
An important advantage of the proposed scheduler is

that it improves the throughput without enlarging the
turnaround time of the mixes.

The growth of the confidence intervals in the
turnaround time speedups is caused by the high vari-
ability of the turnaround time of the mixes with the
Linux scheduler. For instance, the typical deviation of the
turnaround time of different executions of mix 2 with the
Linux scheduler triples the one obtained by the BAOS
scheduler.

Next, the analysis focuses on how the BAOS and Linux
schedulers consume the execution slots dynamically and
how the slots are being released at the end of the
execution, where the number of remaining processes is
lower than the number of hardware threads. We define
an execution slot as an available hardware threads. Thus,
a consumed slot means that one thread is running on a
given slot.

Figure 12 presents the evolution of the consumed
slots during the execution of a subset of the studied
mixes, which shows how the hardware contexts are
released earlier with the BAOS scheduler (due to space
constraints the plots for the remaining mixes are pre-
sented in Section 2 of the supplementary material). The
plot for each mix presents in the y-axis the number of
consumed slots, that is, the number of threads running at
each OS quantum. It ranges from twelve, the maximum
number of threads that can run simultaneously in the
experimental platform (six dual-thread cores), to zero,
which is the point where there are no more processes
pending (i.e., the workload execution finishes). The x-
axis represents the sequence of OS quanta, which allows

0%

1%

2%

3%

4%

Sp
ee
d
u
p

Fig. 11: Speedup of the proposed scheduler w.r.t. Linux
scheduler using the turnaround time metric.



0

2

4

6

8

10

12

3100 3300 3500 3700 3900 4100

C
o

n
su

m
ed

sl
o

ts

Quantum

BAOS scheduler Linux CFS scheduler

(a) Mix 1 (b) Mix 2 (c) Mix 4

(d) Mix 9 (e) Mix 11 (f) Mix 12

Fig. 12: Consumed slots in the workloads. The proposed scheduler saves slots in the green (light) area, while Linux
does it in the red (dark) area.

comparing the measured execution time.
The plots show that the benefits provided by the BAOS

scheduler, area colored in green (or light gray), go be-
yond the reduction in the turnaround time of the mixes.
The proposed scheduler usually finishes the processes
that form a workload earlier, allowing the scheduler to
put some cores into a low power state or use them to run
a different workload. Notice that an early completion of
the processes can only be achieved without enlarging the
execution time of the mixes by reducing the bandwidth
contention along the memory hierarchy, which is the
main goal of the proposed scheduler.

For instance, Figure 12b, Figure 12e and Figure 12f
present the evolution of the consumed slots of mixes
2, 11 and 12, which showed the highest speedups with
the previous metrics. As observed, the BAOS scheduler
significantly reduces the number of slots required to
complete the execution of the mixes.

On the other hand, Figure 12a, Figure 12c and Figure
12d present the consumed slots plots for some mixes that
showed the lowest speedups in the metrics previously
studied. Even in these cases, the BAOS scheduler is
able to bring forward the completion of the processes
with respect to the Linux scheduler, saving a noticeable
amount of execution slots. Note that in mix 1 (Figure
12a), although Linux saves more execution slots from
quantum 3700 to 3800 approximately (bounded by the
area shaded in red color (dark grey)), the proposed
scheduler saves a higher number of slots through the
overall execution, which compensates this loss. With a
lower magnitude, the same effect can also be observed
in mixes 9 and 11.

8 CONCLUSIONS
In this work, we have addressed the bandwidth con-
tention at main memory and L1 caches in commercial

multithreaded multicore processors.
Regarding main memory contention, the experiments

carried out in this work have shown its significance in
the experimental platform, where performance degra-
dation can drop by 50% the IPC of some processes.
On the other hand, regarding L1 bandwidth contention,
two interesting findings have been observed in the de-
signed experiments: i) performance and L1 bandwidth
consumption of a given process follow the same shape
over the execution time regardless the process runs in
stand-alone execution or with co-runners, and ii) when
two processes run simultaneously on a multithreaded
core, the implicit drops in the L1 bandwidth and IPC of
a process trigger the opposite effect in the co-runner.

To deal with the observed bandwidth contention,
a scheduling algorithm has been proposed aimed at
reducing bandwidth contention. The devised On-line
scheduler consists of two main policies: process selection
and process allocation. First, the former policy addresses
the main memory bandwidth contention distributing the
main memory accesses of the processes of a workload
along its execution time. Then, the latter policy tackles
L1 bandwidth contention by balancing the L1 accesses
of the selected processes among the L1 caches. Both
policies only use the bandwidth consumption of the pro-
cesses, gathered with performance counters, to guide the
scheduling. Thus, no prior information of the running
processes is required, which represents an important
feature of this scheduler that makes it feasible for real
systems.

Experimental evaluation on a Xeon E5645 has shown
that the proposed scheduler mitigates bandwidth con-
tention at both L1 cache and main memory. Compared
to the Linux scheduler, performance benefits (i.e., IPC)
rise up to 6.7%, with a geometric mean of speedups by
4.6%. In addition, the devised scheduler works fairer



than Linux, with speedups of the harmonic mean of
weighted IPC ranging from 1.9% to 4.4%.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de
Economı́a y Competitividad (MINECO) and by FEDER
funds under Grant TIN2012-38341-C04-01, and by the
Intel Early Career Faculty Honor Program Award.

REFERENCES
[1] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous Multi-

threading: Maximizing On-Chip Parallelism,” SIGARCH Comput.
Archit. News, vol. 23, no. 2, pp. 392–403, May 1995.

[2] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Papatheodorou,
“Realistic Workload Scheduling Policies for Taming the Memory
Bandwidth Bottleneck of SMPs,” in HiPC, 2004, pp. 286–296.

[3] D. Xu, C. Wu, and P.-C. Yew, “On Mitigating Memory Bandwidth
Contention Through Bandwidth-Aware Scheduling,” in PACT,
2010, pp. 237–248.

[4] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M.-L. Soffa, “The
Impact of Memory Subsystem Resource Sharing on Datacenter
Applications,” in ISCA, 2011, pp. 283–294.

[5] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing
Shared Resource Contention in Multicore Processors Via Schedul-
ing,” in ASPLOS, 2010, pp. 129–142.

[6] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “Understanding
Cache Hierarchy Contention in CMPs to Improve Job Schedul-
ing,” in IPDPS, 2012, pp. 508 –519.

[7] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten,
“Cache Pirating: Measuring the Curse of the Shared Cache,” in
ICPP, 2011, pp. 165–175.

[8] M. Casas and G. Bronevetsky, “Active Measurement of Memory
Resource Consumption,” in IPDPS, 2014, pp. 995–1004.

[9] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using
OS Observations to Improve Performance in Multicore Systems,”
IEEE Micro, vol. 28, no. 3, pp. 54–66, may 2008.

[10] A. Fedorova, M. Seltzer, and M. D. Smith, “Improving Perfor-
mance Isolation on Chip Multiprocessors via an Operating System
Scheduler,” in PACT, 2007, pp. 25–38.

[11] J. Feliu, S. Petit, J. Sahuquillo, and J. Duato, “Cache-Hierarchy
Contention Aware Scheduling in CMPs,” in IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, March 2014, pp. 581–590.

[12] A. Settle, J. Kihm, A. Janiszewski, and D. Connors, “Architectural
Support for Enhanced SMT Job Scheduling,” in PACT, 2004, pp.
63–73.

[13] S. Eyerman and L. Eeckhout, “Probabilistic Job Symbiosis Model-
ing for SMT Processor Scheduling,” in ASPLOS, 2010, pp. 91–102.

[14] V. Čakarević, P. Radojković, J. Verdú, A. Pajuelo, F. J. Cazorla,
M. Nemirovsky, and M. Valero, “Characterizing the Resource-
Sharing Levels in the UltraSPARC T2 Processor,” in MICRO, 2009,
pp. 481–492.

[15] C. Acosta, F. J. Cazorla, A. Ramirez, and M. Valero, “Thread to
Core Assignment in SMT On-Chip Multiprocessors,” in SBAC-
PAD, 2009, pp. 67–74.

[16] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero, in Transactions
on High-Performance Embedded Architectures and Compilers III, 2011,
ch. Dynamic Cache Partitioning Based on the MLP of Cache
Misses, pp. 3–23.

[17] S. Srikantaiah, M. Kandemir, and Q. Wang, “SHARP Control:
Controlled Shared Cache Management in Chip Multiprocessors,”
in MICRO, 2009, pp. 517–528.

[18] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic
Shared Cache Management (PriSM),” in ISCA, 2012, pp. 428–439.

[19] K. J. Nesbit, J. Laudon, and J. E. Smith, “Virtual Private Caches,”
in ISCA, 2007, pp. 57–68.

[20] J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird, M. Moreto, D.
Chou, et. al., “Tessellation: Refactoring the OS Around Explicit
Resource Containers with Continuous Adaptation,” in Design
Automation Conference (DAC), 2013, pp. 1–10.

[21] S. Eranian, “What Can Performance Counters Do for Memory
Subsystem Analysis?” in ACM SIGPLAN Workshop on Memory
Systems Performance and Correctness, 2008, pp. 26–30.

[22] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-Bandwidth Aware
Thread Allocation in Multicore SMT Processors,” in PACT, 2013,
pp. 123–132.

[23] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski,
T. Wenisch, et. al., “Composite Cores: Pushing Heterogeneity Into
a Core,” in MICRO, 2012, pp. 317–328.

[24] I. Molnar, “Modular Scheduler Core and Completely Fair Sched-
uler [CFS],” http://lwn.net/Articles/230501/.

[25] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a
Simultaneous Multithreaded Processor,” in ASPLOS, 2000, pp.
234–244.

[26] K. Luo, J. Gummaraju, and M. Franklin, “Balancing Thoughput
and Fairness in SMT Processors,” in ISPASS, 2001, pp. 164–171.

Josué Feliu received the BS and MS degrees
in computer engineering from the Universitat
Politècnica de València (UPV), Spain, in 2011
and 2012, respectively. He is currently working
towards a PhD degree at the Department of
Computer Engineering (DISCA) of the same uni-
versity. His PhD research focuses on scheduling
strategies for multicore, multithreaded and future
heterogeneous manycore processors.

Julio Sahuquillo received his BS, MS, and PhD
degrees in Computer Engineering from the UPV,
Spain. Since 2002 he is an associate professor
at the DISCA department at the UPV. He has
published more than 100 refereed conference
and journal papers. His current research topics
include multi- and manycore processors, mem-
ory hierarchy design, and power dissipation. He
has cochaired several workshops, collocated in
conjunction with IEEE supported conferences.

Salvador Petit received the PhD degree in com-
puter engineering from the UPV, Spain. Cur-
rently, he is an associate professor in the DISCA
department at the UPV where he has taught
several courses on computer organization. His
research topics include multithreaded and mul-
ticore processors, memory hierarchy design, as
well as real-time systems.

José Duato received the MS and PhD degrees
in electrical engineering from the UPV, Spain.
He is currently a professor with the DISCA de-
partment at the UPV. He has published more
than 380 refereed papers. He proposed a pow-
erful theory of deadlock-free adaptive routing for
wormhole networks. Versions of this theory have
been used in the design of the routing algo-
rithms for the MIT Reliable Router, the Cray T3E
supercomputer, the internal router of the Alpha
21364 microprocessor, and the IBM BlueGene/L

supercomputer.


