
Perf&Fair: a Progress-Aware Scheduler
to Enhance Performance and Fairness

in SMT Multicores
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Abstract—Nowadays, high performance multicore processors implement multithreading capabilities. The processes running
concurrently on these processors are continuously competing for the shared resources, not only among cores, but also within the core.
While resource sharing increases the resource utilization, the interference among processes accessing the shared resources can
strongly affect the performance of individual processes and its predictability. In this scenario, process scheduling plays a key role to
deal with performance and fairness.
In this work we present a process scheduler for SMT multicores that simultaneously addresses both performance and fairness. This is
a major design issue since scheduling for only one of the two targets tends to damage the other. To address performance, the
scheduler tackles bandwidth contention at the L1 cache and main memory. To deal with fairness, the scheduler estimates the progress
experienced by the processes, and gives priority to the processes with lower accumulated progress.
Experimental results on an Intel Xeon E5645 featuring six dual-threaded SMT cores show that the proposed scheduler improves both
performance and fairness over two state-of-the-art schedulers and the Linux OS scheduler. Compared to Linux, unfairness is reduced
to a half while still improving performance by 5.6%.

Index Terms—scheduling, fairness, SMT, multicore, performance estimation.

F

1 INTRODUCTION

S IMULTANEOUS multithreading (SMT) [1] allows the pro-
cessor to exploit both instruction-level and thread-level

parallelism. This fact has yield some recent chip multipro-
cessors (CMPs) like Intel Core i7 and IBM POWER8 to
implement this architectural paradigm. Two kind of shared
resources can be distinguished in these systems: intra-core
and inter-core resources, which are the shared resources
within the core or in the uncore part of the system, re-
spectively. Shared intra-core and inter-core resources vary
with the processor architecture. The instruction queue, the
L1 cache, and the issue width are typical examples of shared
intra-core resources, while the last level cache (LLC) and the
main memory are resources commonly shared among cores.

Processes compete among them at run time for shared
resources and sharing policies are implemented to regulate
their usage. These policies should provide performance and
fairness to concurrently running applications. However, de-
signing fair sharing policies is challenging due to two main
issues. First, processes present different requirements for the
multiple shared resources, and second, the shared use of a
resource affects differently the individual performance of
the distinct processes.

Several notions of fairness can be found in the literature.
In this paper, a system is considered fair when all the run-
ning processes present the same slowdown with respect to
their isolated execution. Unfairness causes important unde-
sirable behaviors on the system [2], [3], [4]: i) it complicates
priority-based scheduling since jobs with lower priorities
can achieve more progress than those with higher priorities,

• The authors are with the Department of Computer Engineering (DISCA),
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ii) it makes difficult to guarantee worst-case execution times
(WCET), which is particularly important on embedded
systems, iii) it reduces performance predictability, which
complicates the analysis and optimization of both hardware
and software implementations, and iv) it enables denial of
service attacks.

Several proposals try to provide fairness from a resource
perspective, such as the memory controller [2], [5] or the
shared caches [6]. Unfortunately, fairly sharing a resource
does not guarantee system fairness. Thus, other proposals
are built over the concept of progress [7], as a way of
providing system fairness. The key challenge of this kind of
fairness-oriented schedulers lies on estimating the progress
of each process at run time. Progress can be seen as the num-
ber of instructions a process commits running concurrently
with respect to the number of instructions it would have
committed running in isolation during the same period of
time. Whereas measuring the instructions completed by the
processes in a schedule can be straightforwardly done using
performance counters, the difficulty rises in estimating the
number of instructions the process would have committed
in isolation.

Despite the current relevance of fairness, it is not com-
monly acceptable to improve it at expense of overall work-
load performance. However, targeting fairness and perfor-
mance at the same time is not an easy task. For example, a
prevalent approach to improve performance consists in bal-
ancing the memory requests of a multiprogrammed work-
load along its execution time [8], [9]. In contrast, to improve
fairness, the processes with less accumulated progress can
be given priority over processes with superior progress.
Unfortunately, both strategies can easily conflict. In such
a case, preference should be given to one of the targets



(performance or fairness), penalizing the other.
The main contribution this paper makes is the design

and implementation of the Perf&Fair scheduler, a scheduling
algorithm that addresses both performance and fairness in
multicores consisting of SMT cores when the number of pro-
cesses exceeds the number of hardware threads. From the
best of our knowledge this is the first scheduling algorithm
on a real system that explicitly addresses performance and
fairness simultaneously. Notice that the goal of this work is
not to replace the kernel OS scheduler, but allow it to use the
proposed policy when the target workload comprises CPU
and memory intensive applications such as the SPEC CPU
benchmarks.

To deal with fairness, the proposed scheduler estimates
the progress that processes experience at runtime. This is
done using estimates of their standalone IPC, which are pe-
riodically obtained running the processes in low-contention
co-schedules. To address performance, the proposal tackles
bandwidth contention at the main memory and L1 caches
using a bandwidth-aware scheduling algorithm [8], [9].

Experimental results on a Intel Xeon E5645 with SMT
cores show that, compared to the Linux OS scheduler, the
proposed scheduler reduces unfairness on average to a half.
At the same time, the performance in terms of turnaround
time is enhanced by 6% (geometric mean).

The rest of this paper is organized as follows. Section
2 describes the experimental platform. Section 3 discusses
how the progress made by the processes is estimated.
Section 4 summarizes previous work on bandwidth-aware
scheduling. Section 5 presents the Perf&Fair scheduler. Sec-
tion 6 describes the evaluation methodology and Section 7
analyzes the experimental results. Section 8 goes over the
related work. Finally, Section 9 presents some concluding
remarks.

2 EXPERIMENTAL PLATFORM

All the experimental evaluation has been performed on a
Intel Xeon E5645 processor with six dual-thread SMT cores.
Each core includes two levels of private caches, a 32KB L1
cache and a 256KB L2 cache. A third-level 12 MB cache is
shared by all the cores. The system is equipped with 12
GB of DDR3 RAM, runs at 2.4 GHz, and the Intel Turbo
Boost mode is disabled to prevent uncontrolled frequency
increases when only one thread is running on a core.

The installed OS is a Fedora Core 10 distribution with
Linux kernel 3.11.4. The library libpfm 4.3.0 is used to handle
hardware performance counters [10]. The devised scheduler
collects at runtime for each running thread: the processor
cycles, the committed instructions, and the number of L1,
LLC, and main memory requests. This information is used
by the scheduler to guide scheduling decisions.

The SPEC CPU2006 benchmark suite with reference
inputs has been used in the experiments. For evaluation
purposes (see Section 6), the target number of instructions
for each benchmark is set to the number of instructions ex-
ecuted by the benchmark during 100 seconds in standalone
execution.

3 ESTIMATING PROGRESS

Accurately estimating how a process progresses at runtime
with respect to its isolated execution is a key challenge

to provide fairness in the devised job scheduler. For es-
timating progress, we use Equation 1 that accumulates,
for the elapsed execution time (in steps of quanta), the
ratio between the measured IPC that a process achieves
running alongside other processes (IPC i

co−runners) and the
estimated IPC that such a process would have achieved in
isolation (IPC i

alone) during the same amount of time. The
former is directly measured using the number of committed
instructions and number of cycles gathered with the avail-
able performance counters. The difficulty lies on estimating
isolated performance.

Progress =

Q∑
i=0

IPC i
co−runners

IPC i
alone

(1)

To estimate standalone IPC of a process, the proposed
scheduler arranges a low-contention co-schedule, aimed at
minimizing the performance interference among the sched-
uled processes. The IPC of a target process is measured
during the execution of the low-contention co-schedule and
used as estimate of its standalone performance for the n
following quanta in which the process is scheduled. Two
main reasons can cause deviations in the IPC estimates: i)
the standalone IPC is assumed valid for a too long period
(number of quanta), and ii) thread interferences are higher
than expected. The Perf&Fair scheduler proposed in this
work uses a 8 seconds period length between estimates, and
bandwidth thresholds of 19 trans/µs on the LLC and 3.5
trans/µs on main memory to determine if a given processes
is heavy- or light-sharing, depending on whether it will
impact on the performance of its co-runners or not, respec-
tively. The two deviation sources and the related parameters
used in the Perf&Fair scheduler are further discussed in
Appendix 1, available in the online supplemental material.

4 BACKGROUND ON BANDWIDTH-AWARE
SCHEDULING

Numerous schedulers have been proposed dealing with
main memory or LLC bandwidth contention. Most of these
proposals reduce contention by balancing the overall band-
width utilization along the workload execution time. For
this purpose, these approaches use a target main memory
bandwidth that should be consumed on each quantum.
Basically, these approaches differ among them on the way
this target bandwidth is calculated.

Some works define the target bandwidth based on hard-
ware parameters such as the peak main memory band-
width [11]. Other works [8] use off-line information of the
processes to determine the target bandwidth utilization. In
[8], Xu et al. compute an Ideal Average Bandwidth (IABW)
from the average bandwidth utilization, when running in
isolation, of all the processes that compose the workload.

In a more recent work, Feliu et al. [12] define the On-
line Average Transaction Rate (OATR) to be used as the target
bandwidth for each quantum. This metric also pursues to
evenly distribute the overall bandwidth utilization along the
workload execution time. However, unlike the IABW, the
OATR dynamically estimates the average on-line bandwidth
utilization of the processes at run-time, and thus it does
not require off-line information. The Perf&Fair scheduler
proposed in this work follows this approach and uses the



OATR as the target bandwidth utilization for each quantum.
See Section 5.2 for further details on the OATR calculation.

Regarding SMT cores, performance highly suffers due
L1 bandwidth contention [13]. Therefore, the bandwidth-
aware process allocation tries to reduce the intra-core in-
terference by balancing the bandwidth utilization of the
selected processes among L1 caches. Lower interference
should not only improve performance but also fairness,
since the interference causes wider performance differences
among the running processes. Such L1-bandwidth aware
process allocation has also been implemented in a process
scheduler [12].

5 PERF&FAIR SCHEDULER

The proposed Perf&Fair scheduler confronts a twofold goal:
enhancing performance and reducing unfairness. On the
one hand, to improve performance the scheduler minimizes
main memory and L1 cache bandwidth contention. Regard-
ing main memory bandwidth, the scheduler tries to balance
the overall memory requests of the processes along the mix
execution time. Concerning L1 bandwidth, processes are
allocated to cores balancing the overall L1 requests among
all the L1 caches. On the other hand, to lessen unfairness the
scheduler estimates the progress made by each process and
prioritizes the processes with lower accumulated progress.

Two distinct scheduling modes are implemented in the
Perf&Fair scheduler referred to as IPC estimation -oriented
mode and performance & fairness -oriented mode. The former
mode applies when any process needs to estimate its iso-
lated IPC. The latter guides the scheduling to enhance per-
formance and fairness, and applies when all the processes
have a valid IPC estimate. As a good trade-off between IPC
estimation accuracy and impact of number of estimation
quanta on performance, IPC estimates for each process are
kept valid for 40 quanta [14].

Performance counters play an essential role to imple-
ment the proposed scheduler and are used to dynamically
compute IPC and bandwidth utilization of the processes.
The IPC of the processes is used to estimate their progress.
The main memory and L1 bandwidth utilization of the
processes guide the process selection and process allocation,
respectively. Finally, the main memory and LLC bandwidth
utilization of the last executed quantum of the processes are
also used to determine at runtime if they belong to the light-
or heavy- sharing category as explained in Section 3.

Note that our aim is to propose a scheduling algorithm
that addresses both performance and fairness simultane-
ously in multicores consisting of SMT cores. Nevertheless, if
support to user-defined priorities (i.e., Linux nice priorities)
is required, these can be determined with respect to the
progress made by each process similar to how the Linux
CFS scheduler uses the nice value to weight the proportion
of processor a process is to receive [15]. In this context,
a process with higher priority should progress faster than
a process with a lower priority. Although it is possible
to extend the proposed algorithm to allow a process to
progress n% faster than others, where n depends on the nice
value, the implementation and evaluation of this extension
is out of the scope of this work.

Algorithm 1 presents the pseudocode of the proposed
scheduler, which differentiates between both scheduling

Algorithm 1 Progress-Aware scheduler
1: Update IPC and bandwidth utilization for each process P

run in the last quantum

PROCESS SELECTION
2: if the IPC estimation of any process P has expired then

IPC-ESTIMATION MODE (Qlength=100ms)

3: Reserve an entire core to P
4: if P is a light-sharing process then
5: while IPC estimation of any light-sharing process PLS

is close to expire
and there are free cores do

6: Reserve an entire core to PLS

7: end while
8: end if
9: Select as many light-sharing processes as available

hardware threads, prioritizing those with lower progress
10: else

PERFORMANCE & FAIRNESS MODE (Qlength=200ms)

11: Calculate OATR =

∑N

p=0
Avg BW

p
MM

N
×#CPUs

12: Set BWRemain = OATR, CPURemain = #CPUs
13: Set MaxP = Maximum progress ∀ PX ∃ Process queue
14: while CPURemain > 0 do
15: ∀ Pi with Progress(Pi) + 1 < MaxP do
16: Select the process P that maximizes
17: FITNESS(p) = 1∣∣ BWRemain

CPURemain
−BW

p
MM

∣∣
18: Update BWRemain− = BW p

MM , CPURemain −−
19: end while
20: end if

PROCESS ALLOCATION
21: Allocate the threads that reserved an entire core to a core
22: Sort the remaining selected processes in ascending BWL1

23: while there are unallocated processes do
24: Allocate the processes Phead and Ptail to the same core
25: end while

modes in the process selection: IPC estimation-oriented mode
(lines 3 to 9) and performance- & fairness-oriented mode
(lines 11 to 19), and the process allocation. Below, the main
parts of the scheduler are discussed.

5.1 IPC Estimation-Oriented Mode

This mode (lines 2 to 9 of the algorithm) is triggered when
a valid IPC estimate is required (line 2) for any process P.
A low-contention scenario is scheduled to avoid intra-core
interference and minimize the inter-core ones. The former
interference is removed by allocating P to an entire core (line
3). The inter-core interference is minimized by only selecting
light-sharing processes in the co-schedule.

If a process P is a light-sharing process (line 4), and there
are other light-sharing processes with a relatively short time
before expiring its current IPC estimate (half the number
of quanta between standalone IPC estimates), then each of
them is allocated to an individual core (line 6) [14]. This
way allows multiple IPC estimates to be obtained during
the same quantum, thus reducing the number of quanta
devoted to IPC estimates.

After that, light-sharing processes are allocated to the
remaining cores. In particular, as many light-sharing pro-
cesses as available SMT hardware threads are co-scheduled
(line 9). For the sake of fairness, the scheduler prioritizes the



light-sharing processes that have accumulated less progress.
Notice that if not enough light-sharing processes are avail-
able in a given quantum, the exceeding hardware threads
are kept free.

To increase performance, the estimation quanta length
is set to 100ms (half the quantum length on Performance
& Fairness -oriented mode). As discussed before, estima-
tion quanta highly constrain the process selection, which
strongly affects the performance. By halving the quantum
length, the accuracy of the estimations is slightly reduced,
which affects fairness, but important performance benefits
can be achieved. Finally, notice that even for a quantum
length of 100ms there is minor scheduling overhead.

5.2 Performance- & Fairness- Oriented Mode
In order to improve performance without sacrificing fair-
ness, processes must be carefully selected. The main idea
behind this mode consists in selecting the processes fol-
lowing a performance approach but preventing, as much
as possible, unfairness from growing.

Regarding performance, to select the processes, the al-
gorithm calculates first the On-line Average Transaction
Rate (OATR) for the following quantum as the average
main memory bandwidth (Avg BWMM ) of the N processes
of the workload multiplied by the number of hardware
threads (#CPUs) supported by the experimental platform
(i.e., the number of cores times the number of threads per
core). The OATR represents the bandwidth that should be
consumed at the next quantum in order to evenly distribute
the memory requests along the workload execution time.
A similar approach is used in other works to determine
the optimal bandwidth consumption for each quantum [8],
[9]. The OATR needs to be calculated for each quantum
since the average bandwidth utilization of the processes is
dynamically updated at the end of the quantum.

The OATR and the number of hardware threads are ini-
tially assigned to the variables BWRemain and CPURemain,
respectively (line 12). These variables are iteratively updated
inside the loop between lines 14 and 19 as processes are
selected to be run in the next quantum. BWRemain rep-
resents the remaining bandwidth to be distributed among
the processes that will be selected. Once a process P is
selected to be run, its predicted main memory bandwidth
utilization for the next quantum (BWP

MM ) is subtracted from
the BWRemain. BWP

MM is predicted to be equal to the band-
width utilization measured in the last executed quantum of
process P. CPURemain represents the unallocated hardware
threads and it is decremented by one once a process is
selected.

To prevent unfairness from growing, the scheduler re-
stricts the process selection (when it is possible) to the
processes whose current progress is so low that if they
were selected to run in the next quantum (Qi+1), their
progress after Qi+1 could not exceed the current (i.e., after
quantum Qi) maximum progress among all the processes
of the mix. To do that, the algorithm determines the max-
imum progress MaxP achieved among the running pro-
cesses (line 13). Since the progress during a quantum is
defined as IPCco−runners / IPCalone, the maximum increase
of progress that a process can experience in a quantum
is 1. Based on this fact, only processes whose progress

differs more than one unit from MaxP are considered as
schedulable at this point (line 15).

Among the processes that fulfill the previous condition,
the fitness function determines which ones are finally se-
lected (lines 16-17) attending to performance. The fitness
function quantifies, for each process P, the gap between its
predicted main memory bandwidth utilization for the next
quantum (BWP

MM ) and the average bandwidth remaining
per unallocated hardware thread (BWRemain/CPURemain).
This step is similar to the one performed in previous works
focusing exclusively on performance [8], [9]. The process
with the best fit maximizes the fitness function and it is
selected to run during the following quantum, updating
BWRemain and CPURemain accordingly (line 18). After that,
the algorithm proceeds with the next process selection iter-
ation until CPURemain is equal to 0 (line 14).

When the number of processes that fulfill the progress
condition (line 15) is below the number of hardware threads,
all these processes are directly selected to run for the fol-
lowing quantum, updating the BWRemain and CPURemain

variables. The remaining processes, until the number of
hardware threads is reached, are selected using the fitness
function (as explained before), but considering all the re-
maining processes regardless of their accumulated progress.
These steps are not shown in the algorithm due to space
constraints, but match lines 14-19 apart from the condition
in line 15.

5.3 Process Allocation
Regarding process allocation, if the process selection has
been performed by the IPC estimation oriented mode, some
processes will require an entire core for themselves. Thus,
the first step of the process allocation assigns these processes
to entire cores (line 21). After that, the remaining processes
are sorted in a list in ascending L1 bandwidth order (line
22). Then, the processes placed at the head and the tail of
the list are removed from the list and allocated together to
the same core. This action is performed iteratively until the
list is empty (lines 23-25).

6 EVALUATION METHODOLOGY

6.1 Scheduler Implementation
To evaluate the effectiveness of the Perf&Fair sched-
uler, we compare its fairness and performance to
those achieved by the Linux OS scheduler, a state-of-
the-art performance-oriented scheduler [12] (Perf ), and
a state-of-the-art fairness-oriented scheduler [14] (Fair).
The studied algorithms are implemented in a user-
level scheduler. Performance counters are used to up-
date IPC and MM-, LLC- and L1-bandwidth con-
sumption of the different processes at runtime us-
ing the events Offcore Response 0.Any Data.Local DRAM,
Offcore Response 0.Any Data.Local Cache, and Perf Count
HW Cache L1D.Access, respectively. The Linux system calls

and the thread-to-core affinity attribute of the processes
are used to co-schedule the selected processes. The former
determines which processes run at a given quantum and
the latter their allocation to cores. Quantum length is set
to 200ms, except for IPC-estimation oriented quanta in the
Perf&Fair scheduler, which are set to 100ms.
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Fig. 1: Unfairness (lower is better) with different scheduling policies, including 95% confidence intervals.

Linux schedules are also evaluated with the user-level
scheduler to monitor the number of instructions each pro-
cess executes (see Appendix 2, available in the online sup-
plemental material). To mimic the Linux behavior with this
user-level scheduler, all the processes are allowed to run
each quantum on any core, so the Linux kernel scheduler
determines the actual co-schedule (both process selection
and process allocation) [8], [9].

The overhead arising from the algorithm implementa-
tion is negligible considering the quantum lengths at which
scheduling is performed. Overall overhead, including pro-
cess selection, process allocation and progress accounting, as
well as processes and performance counters management, is
by 0.1ms. Note that it is below 0.1% of the quantum length.

A set of thirteen mixes composed of twenty-four SPEC
CPU2006 benchmarks has been designed to evaluate the
proposed algorithm. Mixes have been sorted according
to their average main memory bandwidth consumption
(BWMM ). Further details of the mix design, including a
table of their composition, are presented in Appendix 2.

Since fairness can be achieved at the cost of performance,
it should not be evaluated in isolation but performance
metrics should also be considered. In this work we use
the turnaround time [8], [9] of the mixes as performance
indicator. This metric measures the elapsed time since the
workload is launched to execution until the last process
of the workload is completed. Regarding fairness, we use
the unfairness metric [7], [16], [17], which is defined as
the maximum slowdown divided by the lowest slowdown
across all the processes of the workload. Further details of
the unfairness metric and its calculation are discussed in
Appendix 2.

7 EXPERIMENTAL EVALUATION

This section evaluates the fairness and performance
achieved by the following schedulers:

• Linux: the default Linux Completely Fair Scheduler
(CFS) in our experimental platform.

• Perf&Fair: our proposed algorithm.
• Perf : a performance-oriented bandwidth-aware

scheduler [12] that only deals with main memory and
L1 bandwidth contention to improve performance.
Regarding main memory contention, Perf selects
each quantum those processes that maximize the fit-
ness function (see Section 5.2) without taking into ac-
count any progress consideration. Process starvation
is avoided by selecting each quantum the process
that has not been scheduled for longer. Regarding
L1 bandwidth contention, Perf allocates the selected

processes to hardware threads balancing the L1 uti-
lization among cores as explained in Section 5.3.

• Fair: a progress-aware scheduler [14] designed exclu-
sively to maximize fairness. This algorithm schedules
the processes periodically in low contention scenar-
ios to estimate their isolated performance, which
is used to compute their progress. Then, to max-
imize fairness, the processes with lower accumu-
lated progress are prioritized. It also deals with
L1-bandwidth contention to reduce the interference,
which can also provide performance benefits.

• Oracle: the Perf&Fair algorithm enhanced with of-
fline information. This enhancement uses standalone
IPC traces to compute the progress of the processes
and the Ideal Average Bandwidth (IABW) utilization
[8], which it is used instead of the OATR in the
algorithm. The IABW is conceptually equivalent to
the OATR, but it is obtained using preliminary
knowledge of isolated bandwidth requirements of
the processes, avoiding any estimate.

7.1 Fairness
Figure 1 depicts the unfairness, in percentage, presented by
the Linux, Perf, Fair, Perf&Fair, and Oracle schedulers across
the studied mixes. The Perf scheduler reaches extremely
high levels of unfairness (geometric mean by 149%), which
means that the last process finishes its execution by 2.5×
later than the first process. Notice that the rule included in
Perf to avoid starvation is not able to keep unfairness at a
reasonable level.

The Linux scheduler is the second one with highest
unfairness. Under the Linux scheduler six mixes present
an unfairness around 40% and a geometric mean by 33%.
Although much lower than that shown by the Perf sched-
uler, this level of unfairness still seems high and might be
inappropriate in some systems. In contrast, executions with
the Fair scheduler do not surpass an unfairness of 20%, with
the only exception of mix 5. The Fair scheduler exhibits
an unfairness of 13.5%, approximately 2.5× lower than the
unfairness shown by Linux.

The Perf&Fair scheduler shows similar unfairness as
that of the Fair scheduler. Unfairness only surpasses 20%
in four mixes and the geometric mean is by 18.5%. The
achieved unfairness makes a big difference with respect
to that achieved by Linux, where all the mixes surpass an
unfairness of 20% (except mix 4). In addition, the geometric
mean of the unfairness is reduced from 33% to 18.5%.

Finally, by using offline traces of the standalone per-
formance of the processes, the Oracle scheduler performs
nearly completely fair, reaching an average unfairness by
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Fig. 2: Speedup of the turnaround time with respect to Linux. The bars show the speedup achieved with different scheduling
policies, including 95% confidence intervals. The line shows the average main memory bandwidth of the mixes.

3.5%. The results show that Perf&Fair, without using offline
information, offers a fairness that is close to that obtained
with exact knowledge of the progress made by each process.
The results of the Oracle scheduler also show that despite
not being exclusively focused on improving fairness, the
Perf&Fair scheduling algorithm can perform nearly com-
pletely fair if the progress estimates are completely accurate.
In other words, addressing performance additionally to fair-
ness does not affect the optimal unfairness that the Perf&Fair
scheduler can achieve.

7.2 Performance
Figure 2 presents the speedup of the turnaround time
achieved by the Perf, Fair, Perf&Fair, and Oracle scheduling
algorithms over the Linux scheduler. At a first glance, it
can be observed that, in spite of reaching an unfairness
close to the Fair scheduler, the Perf&Fair scheduler achieves
speedups closer to the Perf scheduler than to the Fair sched-
uler. In fact, it enhances the speedups achieved with the
Fair scheduler in all the mixes. Considering all the evaluated
mixes, the Perf&Fair scheduler reaches the highest geometric
mean of speedup (5.6%), followed by the Perf scheduler
(5%), and the Fair scheduler (2.2%). The figure also plots
the average BWMM of the mixes (solid line and secondary
y axis), which helps understand the achieved results. Note
that the studied mixes are sorted in increasing average
BWMM order. Mixes can be divided in three main groups
which present different behavior according to their average
BWMM .

When the average BWMM is relatively low (below 80
trans/usec), though still significant, bandwidth contention
and progress unbalancing similarly affect the turnaround
time of the mixes. This is because at the end of an unbal-
anced execution the number of available processes is less
than the number of hardware threads during a significant
number of quanta, which penalizes the turnaround time. In
addition, since the bandwidth contention is not as high as
in other workloads, the benefits of a better main memory
bandwidth management decrease and can be canceled due
to highly unbalanced executions. In these scenarios, a fairer
scheduler, through a better progress balancing, can reduce
the number of quanta where there are less available pro-
cesses than hardware threads and reduce the turnaround
time. In fact, it can be observed that the Perf and Fair
schedulers reach similar speedup, despite they schedule
processes following a completely different strategy. More-
over, Perf&Fair effectively combines both performance and
fairness approaches and, by concurrently mitigating band-
width contention while keeping unfairness under control, it
improves the speedups achieved by both Perf and Fair.

As the average required memory bandwidth of the mixes
grows, bandwidth contention becomes a major performance
limitator, which translates in larger turnaround times. When
the bandwidth falls in between 80 and 120 trans/usec,
the Perf scheduler benefits enough from the bandwidth
contention to improve performance over the Fair scheduler.
In this scenario, Perf&Fair still reaches speedups closely
resembling Perf, since it is still able to address bandwidth
contention while keeping a good progress balancing among
the processes.

In the most memory-bounded mixes studied, with above
120 trans/usec, the Perf scheduler, which exclusively ad-
dresses bandwidth contention improves performance over
the Fair scheduler. In this case, Perf&Fair widely improves
the results of both Fair and Linux, but it is not able to reach
speedups as high as those achieved with Perf because it
also deals with unfairness. Therefore, it cannot devote all
selected processes to maximize performance.

Regarding the Oracle scheduler, by using offline traces it
further enhances the performance of Perf&Fair, despite the
benefits are not too large on some workloads (e.g., mix 2 and
mix 3). The use of traces also allows the Oracle scheduler
to improve Perf in workloads with low and medium main
memory bandwidth utilization, since it achieves a better
progress balancing. In the workloads with he highest main
memory bandwidth utilization, Oracle reaches speedups
very close to Perf but slightly below, since the former
scheduler is partially constrained by fairness requirements.

Finally, it should be emphasized that the Perf&Fair
scheduler addresses both performance and fairness without
requiring from offline traces. Thus, if both metrics are con-
sidered together, this scheduler is the one that behaves more
satisfactorily. Moreover, the algorithm is flexible enough
by design and can be modified to provide different trade-
offs between performance and fairness (see Appendix 3,
available in the online supplemental material).

7.3 Processes Completion in a Mix
To provide insights on the obtained turnaround time and
unfairness results, we focus the analysis on mix 9, where
the schedulers present widely different results.

Figure 3 presents how the number of processes of mix
9 evolve over time when this mix is executed under the
studied schedulers. The plot starts at quantum 700, where
no process has yet finished, and shows how the execution of
the processes is being completed. The time at which the last
process of the 24-task mix finishes its execution determines
its turnaround time. The Perf scheduler shows the shortest
turnaround time, closely followed by the Perf&Fair sched-
uler, then the Fair scheduler, and finally the Linux scheduler,
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Fig. 3: Number of remaining processes along the execution
of mix 9 with the studied schedulers.

which shows the largest turnaround time. On the other side,
unfairness is determined as the ratio between the time at
which the first and the last processes of the mix complete
their execution. As observed, the Fair scheduler achieves the
lowest unfairness, followed by the Perf&Fair, Linux and Perf
schedulers.

The figure also illustrates the importance of fairness,
or progress balancing, on the turnaround time of the mix.
For instance, Linux is the first scheduler to complete the
execution of 12 processes, but the last to complete the exe-
cution of the whole mix. This means that in this execution
Linux takes the system to a low loaded state (i.e., with
less applications than hardware threads) faster than other
schedulers (by quantum 1600). However, this behavior is at
the cost of system fairness, since Linux takes longer time to
complete the last five processes of the workload, even if at
this point each process is running alone on a different core.
Another observation is that the Perf scheduler completes the
first process as soon as quantum 812, which yields it to the
highest unfairness. Finally, regarding the Perf&Fair curve it
is interesting to observe how, despite having a turnaround
time close to the Perf scheduler, it presents a process com-
pletion curve resembling that of the Fair scheduler.

8 RELATED WORK

Contention in shared resources has been addressed in
scheduling algorithms, but an important piece of this work
in the past [8], [9], [11], [18], [19], [20] mainly focuses on
performance without taking fairness into account. Some
works address main memory bandwidth contention [8],
[11]. Antonopoulos et al. [11] propose to schedule processes
trying to match the peak memory bus bandwidth. In a more
recent approach, Xu et al. [8] observe that contention exists
below the peak memory bandwidth due to irregular access
patterns and propose to distribute the overall main memory
requests over the workload execution time.

Other work focuses on LLC contention.. Tang et al. [18]
study the impact of sharing memory resources and find
that improperly sharing the LLC can degrade performance,
while Zhuravlev et al. [19] propose a scheduling algorithm
that, among other resources, addresses contention for LLC
space. More recently, Feliu et al. [9] present a scheduling
algorithm that deals with bandwidth contention along mul-
tiple levels of the memory hierarchy. A complete survey on
scheduling techniques to address contention in the shared
CMP resources was presented by Zhuravlev et al. [20].

Scheduling has also been studied in SMT proces-
sors.Parekh et al. [21] proposed some of the first thread-

sensitive scheduling policies to improve the performance
of SMT processors based on metrics such as the IPC, and
the miss rate on the L1 data cache, the L2 cache, and the
data TLB. Other works have studied job symbiosis as a way
to rise performance by co-scheduling jobs with compatible
demands on the shared resources. In recent approaches,
Eyerman et al. [22], [23] and Feliu et al. [24] predict how the
interference among processes affects the performance of dif-
ferent co-schedules without actually running them, which
is used to select the co-schedule with highest performance
on each quantum. With the same goal, but focused on L1
bandwidth, Feliu et al. [13] propose a process allocation
policy to balance the overall L1 requests across all the L1
caches of the processor. A different approach is followed
by Saez et al. [25], who propose a non-work-conserving
scheduler that greatly speedups critical threads while still
achieving slight throughput improvements on ST and SMT
multicores. Also targeting SMT multicores but focused on
multithreaded applications, Funston et al. [26] propose an
SMT metric to select the optimal number of threads per core
depending on the instruction mix of the application.

Regarding fairness, it has been addressed in several
works from a shared resource perspective, trying to provide
fair sharing in a given resource. Some of them focus on
uncore memory resources, and particularly on the memory
controller [2], [5], to improve the system fairness. Mutlu et
al. [2] propose a memory access scheduler that balances the
DRAM-related slowdown experienced by the co-scheduled
processes, and a similar approach is followed by Nesbit et
al. [5] using concepts from network queuing to design a
fair queuing memory system. Finally, Ebrahimi et al. [16]
propose achieving fairness via source throttling, a global
mechanism that addresses unfairness on the entire shared
memory system. Other works deal with fairness in SMT
fetch policies [27], [28] or cache partitioning mechanisms
[6], [29].

Unfortunately, fairly sharing a single resource or a set of
them does not provide system fairness. Thus, other authors
aim to provide fairness by focusing on process scheduling.
Fedorova et al. [30] present a scheduler that targets shared-
cache contention using resource performance, while Xu et
al. [7] mainly target main memory contention and focus
on overall system fairness with a scheduler that monitors
the progress of the processes at runtime. Dealing with
SMT multicores, the first approach to attack unfairness was
proposed by Parekh et al. [21]. However, it is based on the
number of quanta each process is run instead on its actual
progress during these quanta. In a more recent work, Feliu
et al [12] propose a scheduling algorithm that estimates the
progress experienced by the processes and gives priority to
the processes with lower progress to reduce unfairness.

Apart from scheduling algorithms, techniques such as
the CPU accounting mechanisms for multicore and SMT
multicore processors [31], [32] can improve the accuracy
of the progress estimates, which enables a better control of
system fairness.

The discussed work tends to focus either on performance
or fairness when scheduling processes. Unlike these ap-
proaches, the Perf&Fair scheduler deals with both of them
simultaneously in SMT multicores.



9 CONCLUSIONS

While existing scheduling algorithms focus either on perfor-
mance or fairness, this work presents the Perf&Fair sched-
uler for SMT multicores, aimed at providing the best of
both worlds, by simultaneously addressing performance
and fairness in multiprogrammed workloads. The design
of such a kind of algorithms is a major challenge since
improving a given factor can easily damage the other one.

To deal with performance, the proposed scheduler bal-
ances the bandwidth consumption among the available
resources and along the execution time of the workload.
To reduce unfairness, the scheduler estimates the progress
made by the processes, and gives priority to the processes
with lower accumulated progress.

Experimental results obtained in a Intel Xeon E5645
with six dual-threaded SMT cores show that the Perf&Fair
scheduler accomplishes its two-fold goal. Regarding per-
formance, the Perf&Fair scheduler achieves speedups of
the turnaround time of the mixes that slightly enhance
the performance of a state-of-the-art performance-aware
scheduler, with the only exception of extreme bandwidth-
contention workloads. Across the set of evaluated work-
loads the speedup of the Perf&Fair and the performance-
aware schedulers over Linux are, on average, by 5.6% and
5%, respectively. The key is that such a level of performance
is achieved while unfairness is reduced from a geometric
mean of 149% and 33% of the performance-aware and Linux
schedulers, respectively, to only 18.5% in the proposed
Perf&Fair scheduler.
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