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Abstract—In order to improve CMP performance, recent research has focused on scheduling strategies to mitigate main memory
bandwidth contention. Nowadays, commercial CMPs implement multi-level cache hierarchies that are shared by several multithreaded
cores. In this microprocessor design, contention points may appear along the whole memory hierarchy. Moreover, this problem is
expected to aggravate in future technologies, since the number of cores and hardware threads, and consequently the size of the
shared caches increases with each microprocessor generation.
This paper characterizes the impact on performance of the different contention points that appear along the memory subsystem. The
analysis shows that some benchmarks are more sensitive to contention in higher levels of the memory hierarchy (e.g., shared L2) than
to main memory contention.
In this paper we propose two generic scheduling strategies for CMPs. The first strategy takes into account the available bandwidth
at each level of the cache hierarchy. The strategy selects the processes to be co-scheduled and allocates them to cores in order to
minimize contention effects. The second strategy also considers the performance degradation each process suffers due to contention
aware scheduling. Both proposals have been implemented and evaluated in a commercial single-threaded quad-core processor with a
relatively small two-level cache hierarchy. The proposals reach, on average, a performance improvement by 5.38% and 6.64% when
compared with the Linux scheduler while this improvement is by 3.61% for an state-of-the-art memory-contention aware scheduler
under the evaluated mixes.
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1 INTRODUCTION
Multi-core processors have become the common imple-
mentation for high-performance microprocessors. These
Chip MultiProcessors (CMP) incorporate additional
cores on the same chip with each technology generation,
and they have the potential to provide higher levels of
processing performance than their single-core counter-
parts, while attacking power, cooling and package costs
problems.

Most of these CMPs are Symmetric MultiProcessing
(SMP) systems, whose main performance bottleneck lies
in the interconnection between the computational multi-
core chip and the main memory. In most processors,
the most important component of this bottleneck has
typically been the main memory latency. However, as
the number of cores and their multithreading capabilities
increase, the contention for the available main memory
bandwidth is becoming a major concern since it prevents
current and future many-core designs from scalability.

When the number of jobs exceeds the number of
cores, bandwidth contention aware strategies can help
the scheduler to reduce main memory contention by
avoiding the concurrent execution of memory-hungry
applications. From now on, we will use the term band-
width contention or simply contention to refer to the
contention caused by bandwidth constraints. The strate-
gies take into account the total bandwidth required by

• The authors are with the Department of Computer Engineering (DISCA),
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applications and schedule a set of them to execute con-
currently, considering that their accumulated bandwidth
requirements do not exceed the available bandwidth.
Otherwise, performance could severely be damaged due
to main memory contention. Nevertheless, previous re-
search has shown that the scheduler must try to ap-
proach a given bandwidth threshold to maximize the
system performance. This trade-off has been explored in
several research works [1], [2], [3].

On the other hand, with the aim of hiding, as much
as possible, the huge memory latencies that current
DRAM memories present, many commercial processors
implement large Last Level Caches (LLC) and other mi-
croarchitectural mechanisms like prefetching or simulta-
neous multithreading. As an example, Figure 1 presents
a memory hierarchy of the eight-core IBM Power 5 pro-
cessor [4], which closely resembles the scheme followed
by some processors like Intel Dunnington [5].

The latter processor supports the execution of two
hardware threads per core. Therefore, a significant num-
ber of jobs can compete for accessing a low-level cache
structure. For example, up to 8 processes can try to
access the L3 cache in each quad-core. Other designs,
like the quad-core Xeon presents a similar memory
hierarchy with shared L2 caches [6]. Moreover, recent
commercial designs [7] present large L3 shared caches
with huge latencies (close to several tens of cycles) and
can accommodate by around four to eight hardware
threads per core. Therefore, the cache contention is a
major design concern, which is expected to exacerbate
in future microprocessor generations.



In summary, current L2 and L3 caches are commonly
shared by an increasing number of threads, thus band-
width contention can appear at any level of the cache
hierarchy. Therefore, these potential contention points
must be tackled by the scheduler policy in order to
maximize the system performance.

This paper has two main contributions. First, we
characterize the performance sensitiveness of the set of
benchmarks to each contention point in the memory
hierarchy of a quad-core Intel Xeon X3320, showing that
some benchmarks are even more sensitive to L2 cache
contention than to main memory contention. Second, we
propose two cache-hierarchy contention aware schedul-
ing approaches for multi-core processors with shared
caches. The first algorithm aims to prevent contention
along the hierarchy by considering the bandwidth re-
quired by each process at each contention point. The
second algorithm extends the first one by taking into ac-
count the degradation that benchmarks suffer when they
are scheduled by memory contention-aware schedulers.

Despite that the processor studied in this work does
not include multithreading capabilities and its cache
hierarchy is relatively small when compared with the
hierarchy of more recent processors, experimental results
show that the proposal reaches performance improve-
ments up to 9.56% in comparison with the Linux sched-
uler, while these benefits are always around or lower
than 5% for an state-of-the-art memory-contention aware
scheduler. Moreover, in some mixes the latter proposal
triples the speedup achieved by the memory-contention
aware scheduler.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes the
platform where the experiments are carried out. Section
4 presents the benchmark behavior and analyzes per-
formance degradation due to both main memory and
L2 contention. Section 5 introduces the scheduling pro-
posals and Section 6 evaluates its performance. Finally,
Section 7 presents some concluding remarks.

2 RELATED WORK

Most research on bandwidth-aware multi-core sched-
ulers focuses on mitigating the performance penalties
due to either main memory contention [2], [3], [8], [1],
[9] or LLC contention [10], [11], [12], [13], [14], [15], [16].

Regarding main memory contention, Antonopoulos et
al. ([2], [3]) proposed several scheduling policies based
on the memory bus bandwidth consumption of the
processes running at the same time (from now on co-
runners). In [2], the bus bandwidth consumption val-
ues are obtained by modifying the source code of the
running applications, while in [3], less intrusive imple-
mentations based on processor performance information
are explored. In both cases, the proposed policies try
to match the total bandwidth requirements of the co-
runners to the peak memory bus bandwidth. In a pos-
terior work addressing SMP clusters [8], Koukis et al.

consider the network bandwidth as well. Other works
also address the trade-off between energy consumption
and execution time taking into account the memory
contention [9].

In a recent work, Xu et al. [1] prove that irregular
memory access patterns can produce fine-grained con-
tention when the required bandwidth is close to the peak
bandwidth. To deal with this situation, they propose
the use of the average bandwidth requirements of the
applications instead of the whole available bandwidth.
Authors estimate the Ideal Average Bandwidth (IABW)
of a workload as the number of main memory accesses
divided by the total execution time. In practice, the
IABW is an approximation, since the exact average band-
width consumption due to memory accesses depends on
the final schedule. Therefore, the IABW is adjusted using
polynomial regression methods.

Tang et al. [17] study the impact of sharing memory
resources on datacenter applications. Authors analyze
the impact of thread-to-core mapping, according to the
memory behavior of the applications, when considering
sharing memory resources. They found that there is
both a sizable benefit and a potential degradation from
improperly sharing resources. Authors present both a
heuristic-based and an adaptive approach to enhance the
thread-to-core assignment policies in the datacenter.

Regarding LLC contention, two orthogonal ap-
proaches are used: cache partitioning [10], [11], [12], [13]
and cache-aware scheduling [14], [15], [16]. Cache par-
titioning mechanisms avoid cache starvation of the co-
runners by implementing new hardware-based metrics
and mechanisms that maximize throughput and/or im-
prove fairness among co-runners. However, as pointed
out by Sato et al. in [14] these mechanisms can
severely limit the overall performance if applications
with cache requirements exceeding the cache capacity
are co-scheduled. On the other hand, Fedorova et al. [15],
[16] show that contention-aware scheduling based on
cache miss rate is effective and only requires accounting
information already provided by hardware counters in
modern microprocessors. However, they focus on sce-
narios where the number of jobs matches the number
of cores, and hence, avoiding bandwidth contention by
distributing bandwidth requirements along time is not
considered.

In contrast to previous works, we propose a global
solution that tackles the bandwidth contention problems
that can arise at each level of the memory hierarchy. We
only found in the literature one proposal by Kaseridis et
al. [18] with such wide target. They rely on additional
hardware based resource profilers and cache partitioning
algorithms to avoid cache contention. However, unlike
their work, we use existing hardware counters exten-
sively and avoid contention points only by scheduling
decisions. Thus, our solution does not require hardware
modifications in existing platforms.
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Fig. 1. Contention points related to the memory hierarchy
of the IBM Power 5

3 EXPERIMENTAL PLATFORM

The workload characterization is performed in a shared-
memory quad-core Intel Xeon X3320 processor [6]. The
processor has four cores without hyperthreading support
and runs at 2.5 GHz with 4GB of DDR2 RAM.

The cache hierarchy of the quad-core consists of two
3MB L2 caches (LLC), each one shared by a pair of
cores and private L1, 32KB for data and 32KB for in-
structions. It resembles the cache hierarchy presented
in Figure 1, but with a two-level cache hierarchy. The
main memory and each shared cache of the hierarchy are
contention points since the structures of the lower level
share the available bandwidth. As observed, the higher
the number of cores and caches, the higher the num-
ber of contention points. Therefore, recent processors
with deeper and wider memory hierarchies and future
many-core processors should achieve better performance
enhancements under cache-hierarchy contention aware
schedulers.

The system runs a Fedora Core 10 Linux distribution
with the kernel 2.6.29, which supports the monitoring
software used in this work. This software, namely perf-
mon2 [19], uses the library libpfm to access the hard-
ware performance counters during processes execution
and supports run-time measurement for co-running pro-
cesses. Among the available statistics, the tool provides
the number of cache misses for each cache structure.

4 PERFORMANCE DEGRADATION ANALYSIS

This section analyzes the performance behavior of the
SPEC CPU2006 benchmark suite 1. First, we study the
performance when running each benchmark alone in
the experimental platform. Then, we analyze the perfor-
mance degradation due to L2 contention and main mem-
ory contention. Finally, we measure the performance
degradation caused by contention-aware schedulers.

1. Since the memory requirements of the mixes, which consist of
8 to 12 benchmarks, exceed the available physical memory, some
benchmarks were launched with the train input data set, while those
with low memory requirements and/or low execution time with train
(just a few tens of quantums) were launched with the reference input
data set.

To perform this study, each SPEC benchmark was
concurrently launched with synthetic microbenchmarks,
and, the number of executed cycles, instructions re-
tired, L2 and L1 cache misses were measured. The mi-
crobenchmark is designed to inject synthetic traffic in the
memory hierarchy and, depending on the requirements,
it can mimic the behavior of either a main memory-
bounded or L2-bounded application. Therefore, different
microbenchmark configurations allow us to study dif-
ferent workload conditions. Microbenchmark design is
described in Appendix I.

In addition to bandwidth, cache space also acts as an
important contention point. Thus, both bandwidth con-
tention and cache contention contribute to performance
degradation. Nevertheless, the use of cache misses is also
a good indicator as how contentious the cache usage is.

4.1 Benchmarks Characterization
In order to avoid interference from other co-runners,
each benchmark was characterized running alone ac-
cording to three main performance indexes: Instructions
Per Cycle (IPC), Transaction Rate due to L1 misses
(TRL1), and Transaction Rate due to L2 misses (TRL2)
2, both presented in transactions per microsecond. The
transaction rate is used to refer to the number of trans-
actions occurred over the memory system.

Figure 2 depicts the IPC for each integer and floating-
point benchmark, while Figure 3 and Figure 4 show
their TRL1 and TRL2, respectively. A high correlation
between the IPC and TRL2 is observed since the five
benchmarks with the lowest IPC (mcf, astar, milc, soplex
and lbm) present a relatively high TRL2 values. TRL1

has a less impact, although when this value surpasses
40 transactions per microsecond the IPC is always lower
than 1 (mcf, cactusADM, leslie3d, soples, GemsFDTD and
lbm), except for libquantum and bwaves.

A given benchmark can be classified as memory-
bounded when its TRL2 is high enough to significantly
increase main memory contention. In such a case, the

2. Although the overall Transaction Rate includes transactions other
than cache misses (e.g. writebacks), this paper focuses in these ones
since they are the most impacting on bandwidth consumption.

Fig. 2. IPC for each SPEC CPU2006 benchmark
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Fig. 3. TRL1 for each SPEC CPU2006 benchmark
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Fig. 4. TRL2 for each SPEC CPU2006 benchmark

benchmark will show a low IPC and will potentially
affect the IPC of the co-runners. Likewise, a benchmark
is considered to be L2-bounded when its TRL1 can cause
L2 contention, which will affect the performance of those
applications sharing the same L2. The effect of this type
of contention is expected to grow in future many-core
processors where the LLC cache structures are being
shared by an increasing number of cores, most of them
implementing multithreading capabilities. Note that L2-
bounded does not necessarily means memory-bounded.
This is the case of the leslie3d benchmark, with a TRL1

by about 80 trans/usec but a TRL2 around 2 trans/usec.

4.2 Degradation due to main memory contention

To check the performance degradation caused by main
memory contention, we designed two experiments. The
first experiment is aimed at checking the impact of the
traffic created by the co-runners on the performance of a
given benchmark. The second studies how the number
co-runners and the core they are launched affect the
performance of the benchmarks.

The first experiment was designed assuming that the
system is fully loaded; that is, each core is busy running
a process. To this end, each benchmark is concurrently
launched with 3 memory-bounded instances of the mi-
crobenchmark. To explore the effects of having different
traffic amounts, the microbenchmarks was configured to

Fig. 5. IPC degradation due to main memory contention
varying the TRL2 of the co-runners

obtain TRL2 values ranging from 5 to 70 trans/usec for
each instance. The highest value of the range (i.e. 70) is
the maximum value the microbenchmark can achieve in
the experimental platform.

Figure 5 presents the results of this experiment. As
observed, the amount of memory traffic generated by the
microbenchmark can strongly affect the performance of
the applications. In some cases, performance drops ex-
ceed 50%. This is the case of mcf, libquantum, milc, soplex
and lbm, when the three instances of the microbench-
mark are tuned to have a TRL2 equal to 70 transac-
tions/microsecond. Few applications, like hmmer, gamess,
nand or povray, are lightly affected since they show very
low transaction rate between L2 and main memory. As
expected, the lower the TRL2 of the microbenchmark the
smaller the performance degradation. However, some
benchmarks, like libquantum, milc, soplex and lbm, show
important performance drops (greater than or close to
10%) even for an TRL2 of the microbenchmarks equal to
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5 trans/usec.
The second experiment varies the number of co-

runners as well as the core in which they are executed.
The microbenchmark instances were launched with a
TRL2 equal to 50 trans/usec. Figure 6 shows the four sce-
narios analyzed and Figure 7 presents the results. Notice
that scenario d experiences a performance degradation
similar to that of scenario c. This means that memory
is already saturated with 2 co-runners for almost all
the studied benchmarks. Regarding the scenarios with
one co-runner (a and b), most benchmarks suffer higher
IPC degradation when the microbenchmark runs in a
core that shares the LLC with the core running the
benchmark (scenario b). Only a few memory-bounded
benchmarks (milc, GemsFDTD and lbm) suffer higher
degradation when the microbenchmark does not share
the LLC (scenario a).

In shorts, some benchmarks suffer more degradation
from the cache hierarchy contention (e.g. mcf, libquantum
and soplex) while others (e.g. milc, GemsFDTD and lbm)
are mainly affected by memory bandwidth contention.
Therefore, it is critical to consider both when scheduling
on machines with a complex memory hierarchy.

4.3 Degradation due to L2 Contention

To evaluate the performance degradation caused by L2
contention the microbenchmark parameters were tuned
to stress the L2 cache but not the main memory, that
is, L2 accesses will result in hits. Since each L2 cache is
shared by a pair of cores, experiments focused only on a
single L2 cache. Two processes were launched together,
one SPEC benchmark and one L2-bounded instance of
the microbenchmark. Hence, there was no benchmark
running on the other pair of cores. We vary the induced
TRL1 of the co-runner from 20 to 290 trans/usec, which
is the maximum value reachable in the platform.

Figure 8 shows the results. As observed, the IPC
of some benchmarks, like mcf and soplex, is strongly
affected (IPC degradation is even higher than 10%) by
the traffic created by other processes competing for the
L2 cache. In addition, 12 benchmarks from 27 have
a degradation higher than or close to 5% when they
are co-scheduled with an L2-bounded instance of the
microbenchmark with TRL1 equal to 290 trans/usec.
This means that some benchmarks are highly sensitive
to the L2 accesses of the co-runners. In fact, in some
benchmarks like bzip2, h264ref, omnetpp, xalancbmk or
povray the IPC degradation due to L2 contention can
be higher than the caused by main memory contention,
when the corresponding benchmark runs concurrently
with one instance of the microbenchmark. For example,
in bzip2 the degradation caused by main memory con-
tention when running concurrently with one memory-
bounded microbenchmark is 2%, while one L2-bounded
microbenchmark can degrade performance up to 5%.

Therefore, in this work we claim that, since the current
industry trend is to increase the number of cores as

Fig. 8. IPC degradation due to L2 contention varying the
TRL1 of the co-runners

well as their multithreading capabilities, a bandwitdh-
aware scheduling policy for each level of the cache
hierarchy can help the scheduler to improve the system
performance.

4.4 Degradation due to contention aware schedul-
ing
The last experiment analyzes the IPC degradation suf-
fered by the benchmarks assuming a fixed main mem-
ory bandwidth utilization generated by all the pro-
cesses running concurrently. The IPC degradation is
evaluated for a bandwidth utilization of 30 transactions
per microsecond, which is the average IABW of the
evaluated mixes (see Appendix IV). This experiment
reproduces the common situation created by state-of-the-
art contention-aware schedulers, which try to achieve
a constant bandwidth utilization as close as possible
to the IABW. Therefore, the experiment obtains an IPC
degradation that approaches to the suffered by each
benchmark when it is executed under this kind of sched-
ulers.

In order to simulate the described situation, the bench-
marks are executed concurrently with three instances
of the microbenchmark. The TRL2 of the microbenmark
is tunned to reach an overall amount of 30 memory
transactions per microsecond.

Figure 9 shows the results of this experiment. The
observed degradation is highly correlated with the TRL2

presented by the benchmarks (Figure 4). Benchmarks
with low TRL2 are not sensitive to the contention be-
tween L2 and main memory since their main memory
accesses are not frequent. In fact, benchmarks with TRL2

lower than 2 trans/usec suffer an IPC degradation below
5% (except dealII, bzip2 and libquantum, althougth the
TRL2 of the last two is close to 2 trans/usec). In contrast,
all the benchmarks with TRL2 above 2 trans/usec suffer
a higher IPC degradation, which surpasses 10%, with the
only exception of astar.

Depending on the degradation level, benchmarks can
be classified in two categories. The little sensitive group
includes the processes with an IPC degradation below
5%, which are little affected by the contention aware



Fig. 9. IPC degradation with total BTRL2 of 30 trans/usec
when running with three co-runners

scheduling. On the other hand, benchmarks with an
IPC degradation between 5% and 35% are included in
the sensitive category, since their degradation due to
contention aware scheduling is higher. Both categories
can be considered as bounded well since only two
benchmarks present degradations between 5% and 10%.

The degradation observed in this experiment moti-
vated us to design the scheduling algorithm proposed
in Section 5.3. This scheduler uses the measured degra-
dation to execute the processes with higher degradation
in those execution periods with less main memory band-
width requirements.

5 CACHE HIERARCHY AWARE SCHEDULING

5.1 Baseline memory-contention aware scheduler
Numerous schedulers have been proposed dealing with
main memory contention. Most proposals work as fol-
lows. First, they block the running processes, read the
performance counters, and update the accounting of
bandwidth requirements from the counter values. Then,
the scheduler selects which processes will be executed
concurrently during the next quantum according to their
expected bandwidth utilization.

Typically, schedulers have pursued to keep full utiliza-
tion of the available bandwidth, by selecting processes
trying to match the peak memory bus bandwidth [3].
However, recent works proved that contention could
exist before the bandwidth utilization reaches the peak
bandwidth.

This work uses as baseline the scheduler proposed
by Xu et al. [1], which defines an Ideal Average Band-
width (IABW) that quantifies the main memory band-
width demand of a workload. By scheduling jobs whose
memory bandwidth requirements approach the IABW,
performance degradation is reduced since bandwidth
utilization is balanced along the workload execution
time, so reducing contention.

5.2 Cache-hierarchy contention aware scheduler
The performance degradation analysis discussed above
leads to the necessity of a job scheduling policy that

is aware of the available bandwidth in each potential
contention point of the cache hierarchy, and not only
of the main memory bandwidth (as stated in previous
proposals). Therefore, the scheduler must be aware of
the cache transaction rates that each process experiences
in any cache structure of the hierarchy.

The pseudocode of the cache-hierarchy contention
aware scheduler is discussed in the Appendix II. The
scheduler addresses the target bandwidth at each con-
tention point and schedules the processes in n steps (as
many as levels with at least two shared caches). The
strategy follows a top-down approach, that is, in the first
step processes are selected to match a target MM band-
width (upper contention point in Figure 1). Then, the last
level cache (LLC) bandwidth is addressed by balancing
the transactions of caches in the immediately higher
level. After that, contention points of the following levels
with at least two shared caches of the memory hierarchy
are addressed (if they exist). At the end, the jobs are
allocated to concrete cores so that the bandwidth along
the cache hierarchy is balanced. Notice that using cache
bandwidth to guide the scheduling strategy also takes
into consideration cache space contention implicitly.

5.3 IPC-degradation cache-hierarchy contention
aware scheduler

To improve the scheduling performance, the bench-
mark characterization is used to provide useful informa-
tion to enhance scheduling and allocation decisions. As
mentioned above, the cache-hierarchy contention aware
scheduler calculates the IABW of the mix and then, tries
to schedule processes to approach the bandwidth utiliza-
tion as close as possible to the IABW for the next quan-
tum. The IPC-degradation cache-hierarchy contention
aware scheduler uses the benchmark characterization
(see Section 4.4), which classifies benchmarks as sensitive
and little sensitive. This classification is used to estimate
how the performance of the processes is degraded when
scheduled by memory-contention aware schedulers. As
observed in Figure 9, the performance degradation ex-
perienced by processes widely differs among them, so
the scheduler can use this information to enhance the
performance.

The key idea of this scheduling technique consists on
favoring the performance of sensitive benchmarks. To
this end, when a sensitive benchmark is selected to run
during the next quantum, the scheduler selects its co-
runners to reach an estimated main memory bandwidth
consumption below the calculated IABW. To compensate
this variation, little sensitive benchmarks will be sched-
uled to execute in situations where the total bandwidth
consumed is above the IABW. Nevertheless, since sen-
sitive processes are executed in favorable situations, a
global performance enhancement is expected.

To include this technique in the scheduling algorithm,
a penalty coefficient is used. This coefficient is defined
as a proportional part of the IPC degradation suffered



Algorithm 1 IPC-degradation cache-hierarchy con-
tention aware scheduler
Require: Benchmarks submitted with execution time, TRLLC

in stand alone execution.

1: WIABW =

∑P

p=0
(TR

p
LLC

+PenaltyCoefp)∗Tp∑P

p=0
Tp

#cores

2: while there are unfinished jobs do
3: Block the executing processes and place them at the

queue tail.
4: for each process P executed in the last quantum do
5: for each cache level L do
6: Update TR for process P in cache level L
7: end for
8: end for
9: BWRemain = WIABW

10: Select the process P head at the queue head.
11: BWRemain− = TRP head

LLC + PenaltyCoefP head

12: CPURemain = #cores−1
13: while CPURemain > 0 do
14: select the process P that maximizes

15: FITNESS(p) = 1∣∣ BWRemain
CPURemain

−(BWP
required

+Penalty Coefp)
∣∣

16: BWRemain− = (TRP
LLC+PenaltyCoefP ),

CPURemain −−
17: end while
18: for each level i in the cache-hierarchy with shared caches

beginning from the LLC do

19: AVGTR(Li−1)=
∑

TRL(i−1)

#Caches at Li

20: for each cache in level Li do
21: BWRemain = AVGTR(Li−1), CPURemain = # cores

sharing the cache
22: while CPURemain > 0 do
23: From the remaining processes selected to share

the immediately lower memory level, select the
process P that maximizes

24: FITNESS(p) = 1∣∣ BWRemain
CPURemain

−BWP
required

∣∣
25: BWRemain− = BWP

required, CPURemain −−
26: end while
27: end for
28: end for
29: Unblock the processes, and allocate them in the chosen

cores.
30: Sleep during the quantum.
31: end while

by each benchmark. Different coefficient values were
checked for performance, resulting the best penalty co-
efficient as a fifth of the process IPC degradation for
sensitive benchmarks. Otherwise, zero is used as penalty
coefficient. See Appendix III for further details.

Algorithm 1 presents the proposed algorithm consid-
ering the degradation due to contention aware schedul-
ing. It extends the cache-hierarchy contention aware
scheduler presented above. The approach can logically
be seen as divided in a initialization step and three
phases. In the initialization step the WIABW is calculated
using the penalty coefficient of each process (line 1),
which was not used to calculate the IABW.

In the first phase (lines 2 to 8) the scheduler blocks the

running processes, updates their TR in each cache level
and inserts them at the tail of the processes queue. To
update the TRs of each process, the scheduler collects
the required events using performance counters. These
TR values will be used as the predicted TRs for the next
execution quantum.

In the second phase (lines 9 to 17) the scheduler
chooses the processes that will run during the next
quantum according to their main memory bandwidth
requirements. The process at the queue head is always
selected to avoid process starvation, while the remaining
ones are selected, until the number of cores is reached,
according to the fitness function (line 15). The inclusion
of the penalty coefficient causes the calculated WIABW
of a mix to be higher than the IABW. When a sensitive
process is selected, the penalty coefficient is subtracted
(in addition to the TRLLC) from the remaining band-
width (line 16), so the remaining processes will achieve
an overall TRLLC lower than both WIABW and IABW,
thus favoring its execution.

Finally, in the third phase (lines 18 to 28) the scheduler
deals with the contention for the bandwidth located at
the shared levels of the cache hierarchy (referred to as
L3 bandwidth and L2 bandwidth in Figure 1) as the
cache hierarchy aware scheduler does. The processes are
assigned to each cache structure at each level according
to their TR in that level so that the overall transactions at
each cache level are balanced among the different cache
structures.

In summary, the sensitive processes run in execution
periods and with co-runners where the main memory
transaction rate is lower favoring their performance. On
the other hand, little sensitive processes run in scenarios
with higher main memory transaction rate but they
do not suffer a increase of their degradation for this
situation.

6 SCHEDULER EVALUATION

6.1 Evaluation methodology
To evaluate the effectiveness of the proposal we designed
a set of ten mixes. Mixes 1 to 7 contain a number of
benchmarks twice as large as the number of cores, while
mixes 8 to 10 triple this value. Mix design is discussed
in Appendix IV.

The execution time widely varies among the different
benchmarks. To avoid that a scheduling policy priori-
tizes the longest jobs to provide the best performance
in most mixes, we consider that each benchmark in the
mix executes in the experiments as many instructions as
it executes during a fixed amount of time running alone
as done in [1]. In particular, we gathered the number
of instructions that each benchmark runs during two
minutes. When a benchmark is used in a experiment it
is killed or relaunched (as many times as required) to
complete the target number of instructions.

For evaluation purposes, we compared the per-
formance of both scheduling proposals: i) cache-



Fig. 10. Speedup over native Linux OS

hierarchy contention aware scheduler (CaS), and ii) IPC-
degradation cache-hierarchy contention aware scheduler
(DaS) against two schedulers: a state-of-the-art memory-
contention aware scheduler (MaS) and the Linux OS
scheduler. The four schedulers were implemented as
user-level schedulers, which run above the OS sched-
uler. They use Linux ptrace attach, ptrace detach and
sched setaffinity functions to force the OS to follow the
desired scheduling. The studied schedulers share most
of the code and overhead of managing processes and
mainly differ in the process selection and allocation
functions, so that the schedulers are fairly compared.

The implemented Linux scheduler selects all the pro-
cesses to be run each quantum and leaves the native
Linux OS scheduler to decide which processes are ex-
ecuted and the cores to which they are allocated. The
MaS selects the processes to be executed according to
their main memory bandwidth requirements, but does
not allocate them to cores, which is a task performed
by the OS scheduler. Finally, both CaS and DaS select
the processes and allocate them to cores according to
their respective algorithms. Quantum length was fixed
to 200ms in the experiments.

6.2 Scheduler Performance
Figure 10 shows the speedup achieved by MaS and both
proposed schedulers: CaS and DaS over the native Linux
scheduler, considered as baseline. As observed, regard-
less of the benchmark, the proposals always provide
better performance than the memory-contention aware
scheduler. For MaS, the achieved speedup widely varies
across mixes, ranging from 1.63% to 5.22%, with an
average speedup of 3.61%, showing it can improve the
performance of the mixes as stated in [1]. For CaS, the
achieved speedup ranges from 3.38% to 7.26%, averaging
5.38%. These results show that a scheduler considering
the contention across the memory hierarchy can improve
the performance of a scheduler that only considers the
main memory contention. The achieved speedup is im-
proved by DaS, whose speedup ranges from 3.66% to
9.56%, averaging 6.64%. The average speedup achieved
by DaS almost doubles the average speedup achieved
by MaS. Furthermore, in half of the mixes (2, 6, 8, 9 and
10), DaS triples the speedup of MaS. The main reason
behind the performance of CaS is that it balances the

Fig. 11. TRL1 differences between the L2 shared caches

transactions among contention points along the cache hi-
erarchy. Since the experimental platform has two shared
L2 caches, the scheduler allocates jobs to cores taking
into account that L1 misses must be balanced between
both L2 caches. In this way, the L2 bandwidth contention
is reduced, which turns into performance enhancements.

To estimate how well this balancing works, we mea-
sured the TRL1 affecting to both L2 caches and calculated
their difference. Figure 11 presents the results. The his-
togram represents the frequency of the TRL1 difference
between both L2 caches for MaS and CaS. Results are
presented in intervals of 25 transactions per microsec-
ond. The higher the frequency of the lower intervals (i.e.
smaller difference) the better the TR is balanced between
L2 caches.

For example, if we compare MaS bar versus CaS bar in
mix 1, we can observe that for MaS, 40% of time (bottom
bar) the TRL1 difference between both L2 caches is less
than 25 transactions/us. The immediately upper bar
indicates that by 30% of times the difference falls in the
range [25-50] and so on. In contrast, for CaS, the [0-25]
interval frequency increases up to 50% of time, resulting
in better TRL1 distribution and better performance.

Results show a strong correlation between the fre-
quency distribution and the speedup. For instance, mixes
2, 6, 8 and 10 present the widest distribution variation
between both schedulers, which translates in the highest
speedup variations. This can be appreciated in the lowest
interval (i.e. 0-25) in mix 2, but also in the reduction of
the intervals above 50 trans/usec in mixes 6, 8 and 10.

To provide a sound understanding of why TR bal-
ancing improves the performance, let’s look inside the
dynamic execution of a mix. In particular, let’s focus on

Fig. 12. TRL1 difference in the first 160 quanta



Fig. 13. TRL1 difference evolution with time

mix 2 where CaS improves by 50% the speedup achieved
by MaS. Figure 12 shows the TRL1 difference of each
quantum during the first 160 quanta of execution for
both schedulers. The plot shows that the TRL1 difference
for MaS is usually higher than for CaS. An even more
important observation is that the peaks of this difference,
which cause most of the contention are reduced by CaS,
both in number and size.

Figure 13 presents the dynamic TRL1 differences using
MaS, CaS and DaS during the first 1375 quanta of execu-
tion of mix 2. TRL1 differences, which are mainly caused
by the mcf benchmark appear before in CaS than in MaS.
Notice that this speedup is not achieved at expense of
increasing the peak heights, since the heights are reduced
too. This effect is improved by DaS that places the peaks
ahead of CaS. Moreover, TRL1 differences between the
peaks are also improved. Looking at the DaS plot, it can
be appreciated that in many intervals the TRL1 difference
falls always below 50 transactions/usec. Notice that the
difference usually falls above this value in MaS.

Finally, to compare the benefits of DaS against CaS,
we measured the percentage of benchmarks in each mix
that reduce their execution time (speedup) and those that
enlarge it (slowdown). Figure 14 shows the results. The
first two intervals with negative values in the range refer
to slowdown while the remaining ones (positive values)
refer to benchmarks favored by DaS. As observed, 9
of 10 mixes are benefited for DaS. Moreover, 6 mixes
present by 60% of their benchmarks favored by the DaS
policy. The penalty coefficient included in DaS cause the
sensitive benchmarks to execute in scenarios with less
contention. Thus, these benchmarks present speedup. On
the other hand, little sensitive benchmarks are executed

Fig. 14. Speedup of the benchmarks of each mix with
DaS against CaS

in scenarios with higher bandwidth contention, slowing
down their execution but with a lower impact on overall
performance.

Mix 4 is the only mix where the percentage of bench-
marks with slowdown is higher than the percentage of
benchmarks with speedup. Even in this mix, the execu-
tion time using DaS is better than for CaS. Notice that
the individual speedup of the benchmarks does not take
into account the fact that at the end of the mix execution,
some benchmarks can be executed when the number of
processes is lower than the number of cores. When this
situation is long enough, IPC of individual benchmarks
is improved since there is less contention, but the mix
execution time will not necessarily be improved.

7 CONCLUSIONS

This work has addressed the cache sharing contention
in typical CMPs, and has proven that the system perfor-
mance can drop due to bandwidth contention located at
different levels of the memory hierarchy.

First, we have analyzed the benchmarks degradation
on a commercial CMP processor due to bandwidth
contention at the different contention points across the
memory hierarchy. We found that, contrary to expected,
and depending on the co-runners, some benchmarks
are more sensitive to contention in higher levels of the
memory hierarchy (e.g., shared L2) than to main memory
contention.

These results lead us to claim that shared caches will
increase their pressure in performance in future micro-
processor generations. To deal with this performance
concern, we have proposed two scheduling algorithms
for generic CMPs. Both proposals do not require any
additional hardware support, instead they only need the
information provided by performance counters already
available in current microprocessors.

The first proposed algorithm (cache-hierarchy con-
tention aware scheduler) selects the processes taking
into account the main memory bandwidth to reduce
the global contention. As contention points can appear
at each level of the memory hierarchy, the proposal
follows a top-down multi-level approach that takes n
steps (as many as shared cache levels) to plan a globally
balanced schedule for the next quantum. The second



proposal (IPC-degradation cache-hierarchy contention
aware scheduler) adds the studied degradation due to
contention aware scheduling to the first algorithm. This
degradation shows that some processes suffer a higher
degradation assuming a fixed main memory bandwidth
utilization generated by all the processes running con-
currently. The algorithm favors the performance of the
sensitive processes selecting the processes to run concur-
rently with a lower main memory bandwidth utilization.

Experimental results show that, compared to the na-
tive Linux scheduler, the achieved speedups range from
3.38% to 7.26% and from 3.66% to 9.56%, for the former
and latter scheduler, respectively. The average speedup
for the second algorithm is 6.64% and almost doubles
the speedup achieved by a state-of-the-art memory-
contention aware scheduler.
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