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Abstract—Symbiotic job scheduling, i.e., scheduling applications that co-run well together on a core, can have a considerable impact
on the performance of processors with simultaneous multithreading (SMT) cores. SMT cores share most of their microarchitectural
components among the co-running applications, which causes performance interference between them. Therefore, scheduling
applications with complementary resource requirements on the same core can greatly improve the throughput of the system.
This paper enhances symbiotic job scheduling for the IBM POWER8 processor. We leverage the existing cycle accounting mechanism
to build an interference model that predicts symbiosis between applications. The proposed models achieve higher accuracy than
previous models by predicting job symbiosis from throttled CPI stacks, i.e., CPI stacks of the applications when running in the same
SMT mode to consider the statically partitioned resources, but without interference from other applications. The symbiotic scheduler
uses these interference models to decide, at run-time, which applications should run on the same core or on separate cores.
We prototype the symbiotic scheduler as a user-level scheduler in the Linux operating system and evaluate it on an IBM POWER8
server running multiprogram workloads. The symbiotic job scheduler significantly improves performance compared to both an agnostic
random scheduler and the default Linux scheduler. Across all evaluated workloads in SMT4 mode, throughput improves by 12.4% and
5.1% on average over the random and Linux schedulers, respectively.
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1 INTRODUCTION

The current manycore/manythread era generates a lot of chal-
lenges for computer scientists, going from productive parallel
programming, over network congestion avoidance and intelligent
power management, to circuit design issues. The ultimate goal is to
squeeze out as much performance as possible while limiting power
and energy consumption and guaranteeing a reliable execution. A
scheduler is an important component of a manycore/manythread
system, as there are often a combinatorial amount of different
ways to schedule multiple threads or applications, each with a
different performance due to interference among applications.
Picking an optimal schedule can result in substantial performance
gain.

Selecting which applications to run on which cores or thread
contexts has an impact on performance because cores share re-
sources for which threads compete. As such, threads can interfere
with each other, causing performance degradation or improvement
for other threads. The level of sharing is not equal for all cores or
thread contexts: all cores on a chip usually share the memory
system, but a cache can be shared by smaller groups of cores,
and threads on an SMT-enabled core share almost all of the core
resources. Good schedulers should reduce negative interference
as much as possible by scheduling complementary tasks close to
each other.
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The most prevalent architecture for high-end processors is
a chip-multicore processor (CMP) consisting of simultaneous
multithreading (SMT) cores (e.g., Intel Xeon and IBM POWER
servers). Scheduling for this architecture is particularly challeng-
ing, because SMT performance is very sensitive to the char-
acteristics of the co-running applications. When the number of
available threads exceeds core count, the scheduler must decide
which applications should run together on one core. Selecting the
optimal schedule is an NP-hard problem [13], and predicting the
performance of a schedule is a non-trivial task due to the high
degree of sharing on an SMT core.

This paper presents a new scheduler for the IBM POWER8
[23] architecture, which is a multicore processor on which every
SMT core can execute up to 8 threads. It provides both high
single-threaded performance by means of aggressive out-of-order
cores that can dispatch up to 8 instructions per cycle, as well
as high parallelism, with 80 available thread contexts on our
system (10 cores times 8 threads per core). This recent architecture
is chosen for this study because of its high core count, which
makes the scheduling problem more challenging, and because of
the availability of an extensive performance counter architecture,
including a built-in mechanism to measure cycles per instruction
(CPI) stacks.

Previous work on symbiotic job scheduling for SMT uses
sampling to explore the space of possible schedules [24], relies
on novel hardware support [8], or performs an offline analysis
to predict the interference between applications on an SMT core
[27]. In contrast to these works, we propose an online model-
based scheduler [10] that does not require sampling and can be
used on an existing commercial processor. The devised scheduler
leverages the existing CPI stack accounting mechanism on the
IBM POWER8 to build a model that predicts the interference
among threads on an SMT core. Using this model, it is possible



to quickly explore the schedule space, and select the optimal
schedule for the next time slice. As the scheduler constantly
monitors the CPI stacks of all applications, it can also quickly
adapt to phase behavior.

In this work we extend our symbiotic job scheduler [10],
making the following contributions.

1) We redefine the construction of the model such that the
interference of applications running on the same SMT core
is predicted more accurately. This is done by estimating
job symbiosis from throttled single-threaded (STthrottled) CPI
stacks, instead of using isolated ST CPI stacks (see Section
3.2). This also allows the symbiotic scheduler to get rid of
the correction factors used in our previous work [10].

2) The scheduler algorithm is extended to four SMT threads.
Due to state explosion, an approximate optimization algo-
rithm is required to find a (close to) optimal schedule in a
limited time frame. The scheduler implementation has also
been enhanced to allow the applications to run while the
process selection is being performed, avoiding the overhead
of finding out the best schedule.

3) We explain the performance differences among cores that
occur in our experimental platform and associate them to
the non-uniform memory access (NUMA) effects that affect
our system due to the fact that only one memory module is
installed. To deal with these effects we implement a NUMA-
aware symbiotic scheduler, which allocates the application
combinations that perform more memory accesses on the
fastest NUMA node.

4) We evaluate the enhanced symbiotic job scheduler and its
NUMA-aware version on the IBM POWER8 running work-
loads comprising two and four applications per core, i.e.,
SMT2 and SMT4 modes, respectively1.

The proposed NUMA-aware symbiotic scheduler performs
9.9% and 12.4% better than a random scheduler in SMT2 and
SMT4 modes, respectively, across all evaluated workloads, con-
sisting of 8 to 20 applications in SMT2 mode and 16 to 40
applications in SMT4 mode. It also performs 5.2% and 5.1% better
than the default Linux scheduler in SMT2 and SMT4 modes across
the same workloads. Moreover, the performance benefits with
respect to Linux can be as high as 11.0%, achieved in SMT2 mode
and 6-core workloads. The overhead of using a performance model
and exploring the possible schedules is negligible. Furthermore,
our scheduler is completely software-based and with appropriate
training of the model it could also be used for other architectures.

2 RELATED WORK

Simultaneous multithreading (SMT) was proposed by Tullsen
et al. [26] as a way to improve the utilization and throughput
of a single core. Enabling SMT increases the area and power
consumption of a core (5% to 20% [2], [14]), mainly due to
replicating architectural and performance-critical structures, but
it can significantly improve throughput. Recently, Eyerman and
Eeckhout [9] show that a multicore processor consisting of SMT
cores has an additional benefit other than increasing throughput.
SMT is flexible when thread count varies: if thread count is low,
per-thread performance is high because only one or a few threads

1. We do not evaluate the symbiotic scheduler in SMT8 mode since we did
not observe performance benefits in SMT8 mode over SMT4 mode with the
Linux scheduler and our SPEC multiprogram workloads. See Section 5 for
further details.

execute concurrently on one core, whereas if thread count is high,
it can increase throughput by executing more threads concurrently.
As such, a multicore consisting of SMT cores performs as well as
or even better than a heterogeneous multicore that has a fixed
proportion of fast big cores and slow small cores.

The importance of intelligently selecting applications that
should run together on an SMT core has been recognized quickly
after the introduction of SMT. The performance benefit heavily
depends on the characteristics of the co-running applications, and
some combinations may even degrade total throughput, for exam-
ple due to cache trashing [12]. Snavely and Tullsen [24] were the
first to propose a mechanism to decide which applications should
co-run on a core to obtain maximum throughput. At the beginning
of every scheduler quantum, they shortly execute all (or a subset
of) the possible combinations, and select the best performing
combination for the next quantum. Because the number of possible
combinations quickly grows with the number of applications and
hardware contexts, the overhead of sampling the performance
quickly becomes large and/or the fraction of combinations that can
be sampled becomes small. To overcome the sampling overhead,
Eyerman and Eeckhout [8] propose model-based coscheduling.
A fast analytical model predicts the slowdown each application
encounters when coscheduled with other applications, and the
best performing combination is selected. However, the inputs for
the model require hardware support, which is not available in
current processors. Our proposal uses a similar model, but it avoids
sampling overhead and it uses existing performance counters.

Other studies have explored the use of models and profiling
to estimate the SMT benefit. Moseley et al. [18] use regression
on performance counter measurements to estimate the speedup
of SMT when coexecuting two applications. Porter et al. [20]
estimate the speedup of a multithreaded application when enabling
SMT, based on performance counter events and machine learning.
Settle et al. [22] predict job symbiosis using offline profiled cache
activity maps. Feliu et al. [11] propose to balance L1 cache band-
width requirements across the cores in order to reduce interference
and improve throughput. Mars et al. [15] use microbenchmarks
called bubbles to measure first, the pressure on the memory sub-
system that the applications generate, and second, how much the
applications suffer from different levels of pressure in the memory
subsystem introduced by the bubbles. Using this information,
obtained during a characterization phase, the complexity of finding
good co-locations of the applications is reduced. In follow-up
work, Zhang et al. [27] propose a similar methodology to predict
the interference among threads on an SMT core. They develop
microbenchmarks called rulers that stress different core resources,
and by co-running each application with each ruler in an offline
profiling phase, the sensitivity of each application to contention
in each of the core resources is measured. By combining resource
usage and sensitivity to contention, interference can be predicted
and used to guide the scheduling. Our proposal does not require
an offline profiling phase for each new application, and it takes
into account the impact of contention in all shared resources, not
only cache and memory contention.

3 PREDICTING JOB SYMBIOSIS

Our symbiotic scheduler for a CMP of SMT cores is based on
a model that estimates job symbiosis. The model predicts for
any combination of applications, how much slowdown each of
the applications would experience if they were co-run on an
SMT core. It is fast, which enables us to explore all possible



combinations. The model only requires inputs that are readily
obtainable using performance counters.

3.1 Interference model
The model used in our scheduler is based on the model proposed
by Eyerman and Eeckhout [8], which leverages CPI stacks to
predict job symbiosis. A CPI stack (or breakdown) divides the
execution cycles of an application on a processor into various
components, quantifying how much time is spent or lost due to
different events, see Figure 1 on the left. The base component
reflects the ideal CPI in the absence of miss events and resource
stalls. The other CPI components account for the lost cycles,
where the processor is not able to commit instructions due to
different resource stalls and miss events. The SMT symbiosis
model uses the CPI stacks of an application when executed in
single-threaded (ST) mode, and then predicts the slowdown by
estimating the increase of the components due to interference, see
Figure 1 on the right. Eyerman and Eeckhout [8] estimate interfer-
ence by interpreting normalized CPI components as probabilities
and calculating the probabilities of events that cause interference.
For example, if an application spends half of its cycles fetching
instructions, and the other application one third of its execution
time, there is a 1/6 probability that they want to fetch instructions
at the same time, which incurs a delay because the fetch unit
is shared. However, Eyerman and Eeckhout use novel hardware
support [7] to measure the ST CPI stack components during multi-
threaded execution, which is not available in current processors.

Interestingly, the IBM POWER8 has a built-in cycle account-
ing mechanism, which generates CPI stacks both in ST and SMT
mode. However, this accounting mechanism is different from the
cycle accounting mechanisms proposed by Eyerman and Eeckhout
for SMT cores [7], which means that their model [8] cannot
be used readily. Some of the components relate to each other
to some extent (e.g., the number of cycles instructions are dis-
patched [7] versus the number of cycles instructions are committed
for the POWER8), but provide different values. Other counters
are not considered a penalty component in one accounting mech-
anism, while they are accounted for in the other mechanism,
and vice versa. For example, following Eyerman and Eeckhout
approach [7], a long-latency instruction only has a penalty if it
is at the head of the reorder buffer (ROB) and the ROB gets
completely filled (halting dispatch), while for the IBM POWER8
accounting mechanism, the penalty starts from the moment that the
long-latency instruction inhibits committing instructions, which
could be long before the ROB is full. On the other hand, the
entire miss latency of an instruction cache miss is accounted as
a penalty by Eyerman and Eeckhout [7], while for the POWER8
accounting mechanism, the penalty is only accounted from the
moment the ROB is completely drained (which means that the
penalty could be zero if the miss latency is short and the ROB
is almost full). Furthermore, some POWER8 CPI components are
not well documented, which makes it difficult to reason about
which events they actually measure.

Because of these differences, we develop a new model for
estimating the slowdown caused by co-running threads on an
SMT core. The model uses regression, which is more empirical
than the purely analytical model by Eyerman and Eeckhout [8],
but its basic assumption is similar: we normalize the CPI stack
by dividing each component by the total CPI, and interpret each
component as a probability. We then calculate the probabilities that
interfering events occur at the same time, which cause some delay

�

���

�

���

�

���

����� �����

	
��

�������

����

�

���

���

���

���

�

B R M

�

���

���

���

���

�

���

���

����� �����

B' R' M'

��
�����������������
��

�� ���
�!�

�������������#
��$���

%�&��� ���
�!�

#����

�� �

�������������'��'�

����� �����

"��#
��$����������

����
� ��� ���
�!�

Fig. 1. Overview of the model: first, measured CPI stacks are normalized
to obtain probabilities; then, the model predicts the increase of the
components and the resulting slowdown (1.32 for App 1 and 1.25 for
App 2).

that is added to the CPI stack as interference. The components are
divided into three categories: the base component, resource stall
components and miss components. The model for each category
is discussed in the following paragraphs. For now, let us assume
that we have the ST CPI stacks at our disposal, measured off-
line using a single-threaded execution on the POWER8 machine.
This assumption will no longer be necessary in Section 3.3. The
stack is normalized by dividing each component by the total CPI,
see Figure 1. We denote B the normalized base component, Ri
the component for stalls on resource i, and M j the component for
stalls due to miss event j (e.g., instruction cache miss, data cache
miss, branch misprediction). We seek to find the CPI stack when
this application is co-run with other applications in SMT mode,
for which the components are denoted with a prime (B′, R′i, M′j).

3.1.1 Base component

The base component in the POWER8 cycle component stack is
the number of cycles (or fraction of time after normalization)
where instructions are committed. It reflects the fraction of time
the core is not halted due to resource stalls or miss events. During
SMT execution, the dispatch, execute and commit bandwidth are
shared between threads, meaning that even without miss events
and resource stalls, threads interfere with each other and cause
other threads to wait.

We find that the base component in the CPI stack increases
when applications are executed in SMT mode compared to ST
mode. This is because multiple threads can now commit instruc-
tions in the same cycle, so each thread commits fewer instructions
per cycle, meaning that the number of cycles that a thread commits
instructions increases. The magnitude of this increase depends on
the characteristics of the other threads. If the other threads are
having a miss or resource stall, then the current thread can use
the full commit bandwidth. If the other threads can also commit
instructions, then there is interference in the base component. So,
the increase in the base component of a thread depends on the base
component fractions of the other threads: if the base components
of the other threads are low, there is less chance that there is
interference in this component, and vice versa.

We model the interference in the base component using Equa-
tion 1. For a given thread j, B j represents its base component when
running in ST mode (the ST base component), while B′j identifies
the SMT base component of the same thread.

B′j = αB +βBB j + γB ∑
k 6= j

Bk +δBB j ∑
k 6= j

Bk (1)



The parameters αB through δB are determined using regres-
sion, see Section 3.2. αB reflects a potential constant increase in
the base component in SMT mode versus ST mode, e.g., through
an extra pipeline stage. Because we do not know if such a penalty
exists, we let the regression model find this out. The βB term
reflects the fact that the original ST base component of a thread
remains in SMT execution. It would be intuitive to set βB to
one (i.e., the original ST component does not change), but the
next terms, which model the interference, could already cover
part of the original component, and this parameter then covers
the remaining part. It can also occur that there is a constant
relative increase in the base component, independently of the other
applications. In that case βB is larger than 1. γB is the impact of the
sum of the base components of the other threads. δB specifically
models extra interactions that might occur when the current thread
(thread j) and the other threads have big base components, similar
to the probabilistic model of Eyerman et al. [8] (a multiplication
of probabilities). Although not all parameters have a clear mean-
ing, we keep the regression model fairly general to be able to
accurately model all possible interactions.

3.1.2 Resource stall components
A resource stall causes the core to halt because a core resource
(e.g., functional unit, issue queue, load/store queue) is exhausted
or busy. In the POWER8 cycle accounting, a resource stall is
counted if a thread cannot commit an instruction because it is
still executing or waiting to execute on a core resource (i.e., not
due to a miss event). By far, the largest component we see in this
category is a stall on the floating-point unit, i.e., a floating-point
instruction is still executing when it becomes the oldest instruction
in the ROB. This can have multiple causes: the latency of the
floating-point unit is relatively large, there are a limited number
of floating-point units, and some of them are not pipelined. We
expect a program that executes many floating-point instructions to
present more stalls on the floating-point unit, which is confirmed
by our experiments. Along the same line, we expect that when
co-running multiple applications with a large floating-point unit
stall component, the pressure on floating-point units will increase
even more. Our experiments show that in this case, the floating-
point stall component per application indeed increases. Therefore,
we propose the following model to estimate the resource stall
component in SMT mode (R j,i represents the ST stall component
on resource i for thread j):

R′j,i = αRi +βRiR j,i + γRi ∑
k 6= j

Rk,i +δRiR j,i ∑
k 6= j

Rk,i (2)

Similar to the base component model, α indicates a constant
offset that is added due to SMT execution (e.g., extra latency).
β indicates the fraction of the single-threaded component that
remains in SMT mode, while the term with γ models the fact
that resource stalls of the other applications can cause resource
stalls in the current application, even if the current application
originally had none. The last term models the interaction: if the
current application already has resource stalls, and one or more of
the other applications too, there will be more contention and more
stalls.

3.1.3 Miss components
Miss components are caused by instruction and data cache misses
at all levels, as well as by branch mispredictions. In contrast to
resource stall components, a miss event of a thread does not

directly cause a stall for the other threads. For example, if one
thread has an instruction cache miss or a branch misprediction,
the other threads can still fetch instructions. Similarly, on a data
cache miss for one thread, the other threads can continue executing
instructions and access the data cache. One exception is that
a long-latency load miss (e.g., a last-level cache (LLC) miss)
can fill up the ROB with instructions of the thread causing the
miss, leaving fewer or no ROB entries for the other threads. As
pointed out by Tullsen et al. [25], this is a situation that should
be avoided, and we suspect that current SMT implementations
(including POWER8) have mechanisms to prevent this to happen.

However, misses can interfere with each other in the branch
predictor or cache itself. For example, a branch predictor entry
that was updated by one thread can be overwritten by another
thread’s branch behavior, which can lead to higher or lower branch
miss rates. Similarly, a cache element belonging to one thread can
be evicted by another thread (negative interference) or a thread
can put data in the cache that is later used by another thread if
both share data (positive interference). Furthermore, cache misses
of different threads can also contend in the lower cache levels
and the memory system, causing longer miss latencies. Because
we only evaluate multiprogram workloads consisting of single-
threaded applications, which do not share data, we see no positive
interference in the caches.

To model this interference, we propose a model similar to that
of the previous two components:

M′j,i = αMi +βMiM j,i + γMi ∑
k 6= j

Mk,i +δMiM j,i ∑
k 6= j

Mk,i (3)

Although the model looks exactly the same, the underlying
reasoning is slightly different. α again relates to fixed SMT effects
(e.g., cache latency increase). The β term is the original miss
component of that thread, while the γ term indicates that an
application can get extra misses due to interference caused by
misses of the other applications. We also add a δ interaction
term: an application that already has a lot of misses will be
more sensitive to extra interference misses and contention in the
memory subsystem if it is combined with other applications that
also have a lot of misses.

3.2 Model construction and slowdown estimation
The model parameters are determined by linear regression based
on experimental training data. This is a less rigorous approach
than the model presented by Eyerman and Eeckhout [8], which is
built almost completely analytically, but as explained before, this
is due to the fact that the cycle accounting mechanism is different
and partially unknown.

In our previous work [10], the SMT CPI stacks are predicted
from the ST CPI stacks obtained when the applications are running
alone in the system. The model mainly focuses on interference
between events of different threads, but it does not consider the
impact of hardware partitioning. SMT processors share most of
their internal resources, which are fully available for an application
running alone in ST mode. This resource sharing can be imple-
mented either by applying dynamic sharing or partitioning tech-
niques. For instance, resources such as the ROB or the arithmetic
units, among others, are dynamically shared in the POWER8 while
other internal resources, like instruction buffers, register renaming
tables or load/store buffers are partitioned [23]. If the resources are
shared, interference among the threads can rise. On the contrary,
if the resources are partitioned there is no interference among



threads, but the performance gap between the ST and SMT modes
can grow since a given thread cannot use the resources allocated to
another thread. In addition, other characteristics such as instruction
dispatch restrictions, prefetching, or branch prediction capabilities
also differ among ST and the different SMT modes, further
increasing the gap between ST and SMT performance.

Taking the previous rationale into account, and considering
that the goal of the model is to estimate the interference between
applications, this paper refines the model construction we pro-
posed [10]. In particular, the enhanced models determine the SMT
CPI stacks of the applications running in a schedule from their CPI
stacks running in the same SMT mode. This CPI stacks consider
the statically partitioned structures, but there is no interference
on the shared resources caused by other co-running applications.
These CPI stacks will be referred to as throttled-ST (STthrottled)
CPI stacks and, from a practical point of view, replace the ST
CPI stacks used in Section 3.1 to discuss the interference model.
Thus, with the new methodology, the SMT CPI stacks on a 2-
application schedule (SMT2 CPI stacks) will be estimated from
the STthrottled CPI stacks of the applications in SMT2 mode.
Similarly, SMT4 CPI stacks would be predicted from STthrottled
CPI stacks of applications executed in SMT4 mode. Notice the
difference with our previously proposed models [10], were the
SMT CPI stacks were predicted from the ST CPI stacks.

The SMT modes are automatically set by the IBM POWER8
depending on the number of threads running on a core and
therefore, the STthrottled CPI stacks cannot be obtained when the
applications are executed alone. To solve this problem, we imple-
mented a nop-microbenchmark, which is constantly performing
nop operations. The nop-microbenchmark is intended to force the
processor to work in the desired SMT mode while introducing
negligible interference at the shared core resources. Thus, it is
designed with the opposite goal of other microbenchmarks [15],
[27], which are used to introduce contention in the shared re-
sources. Note that obtaining STthrottled CPI stacks is only required
to determine the model parameter values, but does not affect how
the model and the scheduler work during normal execution.

To train the model, we first run all benchmarks alone in
each SMT mode (see Section 5 for the benchmarks we evaluate),
and collect the STthrottled CPI stacks every scheduler quantum
(100 ms). To run an application in SMT2 or SMT4 modes, it
is scheduled on a core with one or three instances of the nop-
microbenchmark, respectively. We keep track of the instruction
count per quantum to determine which part of the program is being
executed in each quantum (we evaluate single-threaded programs
with a bounded total instruction count). We also normalize each
CPI stack to its total CPI.

Next, we execute all possible 2-benchmark mixes and a large
and representative set of 4-benchmark mixes on a single core2.
Notice that the number of possible 4-benchmark mixes exponen-
tially grows with the number of benchmarks and evaluating all of
them would take too much time. During these executions, we also
collect per-thread CPI stacks and instruction counts for each quan-
tum. Next, we normalize each SMT CPI stack to the previously
collected STthrottled CPI of the same instructions. We normalize
to the STthrottled CPI because we want to estimate the slowdown
each application gets versus its execution alone in the same SMT
mode, which equals the SMT CPI divided by the STthrottled CPI

2. The interference models used by the symbiotic scheduler are built with
the data collected from all benchmarks. However, leave-p-out cross-validation
is performed to evaluate their accuracy. See Section 6.1 for further details.

(see the last graph in Figure 1). This is also in line with the
methodology proposed by Eyerman and Eeckhout [8]. Because
the performance of an application differs between STthrottled and
SMT executions due to co-runner interference, and the quanta are
fixed time periods, the instruction counts do not exactly match
between both executions. To solve this problem, we interpolate
the STthrottled CPI stacks between two quanta to ensure that
STthrottled and SMT CPI stacks are covering approximately the
same instructions.

Once the model has been constructed, we can use it to
estimate the SMT CPI stacks from the STthrottled CPI stacks
for any combination of applications. We first calculate each of
the individual components using Equations 1 to 3, and then add
all of the components. The resulting number will be larger than
one, and indicates the slowdown the application encounters when
executed in that combination (see Figure 1 on the right). This
information is used to select combinations with minimal slowdown
(see Section 4).

3.3 Obtaining STthrottled CPI stacks in SMT mode
Up to now, we assumed that we have the STthrottled CPI stacks
available. This is not a practical assumption, since it would require
to keep all of the per-quantum STthrottled CPI stacks in a profile.
This is a large overhead for a realistic scheduler. An alternative
approach is to periodically get the STthrottled CPI stacks (sam-
pling), and assume that the measured CPI stack is representative
for the next quanta. Because programs exhibit varying phase be-
havior, it requires to resample at periodic intervals to capture this
phase behavior. Sampling STthrottled execution incurs performance
overhead, because it has to temporarily stop other threads to
obtain the STthrottled CPI stacks, and it can also be inaccurate if
the program exhibits fine-grained phase behavior. Moreover, this
approach is not easily applicable since the model uses the isolated
performance in the SMT modes, which will require to execute the
nop-microbenchmark during sampling periods.

Instead, we propose to estimate the STthrottled CPI stacks
during SMT execution, similar to the cycle accounting technique
presented by Eyerman and Eeckhout [7]. However, this technique
requires hardware support that is not available in current proces-
sors. To obtain the STthrottled CPI stacks during SMT execution
on an existing processor, we propose to measure the SMT CPI
stacks and ‘invert’ the model: estimating STthrottled CPI stacks
from SMT CPI stacks. Once these estimations are obtained, the
scheduler applies the ‘forward’ model (i.e., the model described
in the previous sections) on the estimated STthrottled CPI stacks
per application to estimate the potential slowdown for thread-
to-core mappings that are different from the current one. By
continuously rebuilding the STthrottled CPI stacks from the current
SMT CPI stacks, the scheduler can detect phase changes and adapt
its schedule to improve performance. Note that, the proposed
approach does not require any sampling phase and thus, it does
not incur any sampling overhead.

Inverting the model is not as trivial as it sounds. The ‘forward’
model calculates the normalized SMT CPI stacks from the normal-
ized STthrottled CPI stacks. As stated in Section 3.1, both stacks
are normalized to the single-threaded CPI. However, without pro-
filing, the STthrottled CPI is unknown in SMT mode, which means
that the SMT components normalized to the STthrottled CPI (B′, R′i
and M′j in Equations 1 to 3) cannot be calculated. Nevertheless, we
can calculate the SMT CPI components normalized to the multi-
threaded CPI (see Figure 2b). By definition, the sum of these
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Fig. 2. Estimating the single-threaded CPI stacks from the SMT CPI
stacks. First, SMT CPI stacks (a) are normalized to the SMT CPI (b);
next, the forward model is applied to get an estimate of the slowdown
due to interference (c); then the SMT CPI stacks are adjusted using
the estimated slowdown to obtain a more accurate normalized SMT CPI
stacks (d); lastly, the inverse model is applied to obtain the normalized
single-threaded CPI stacks (e).

components equals one, which means that they are inaccurate
estimates for the SMT components normalized to the STthrottled
CPI, because the latter add to the actual slowdown, which is higher
than one (see the last graph in Figure 1).

Because we do not know the STthrottled CPI, the model cannot
be inverted in a mathematically rigorous way, which means we
have to use an approximate approach. We observe that the SMT
components normalized to SMT CPI are a rough estimate for
the STthrottled components normalized to the STthrottled CPI (B,
Ri and M j), for two reasons. First, both normalized CPI stacks
add to one. Second, if all the components experience the same
relative increase between the STthrottled and SMT executions (e.g.,
all components are multiplied by 1.3), then the SMT CPI stack
normalized to the SMT CPI would be exactly the same as the
STthrottled stack normalized to the STthrottled CPI. Obviously, this
is usually not the case, but intuitively, if a STthrottled stack has a
relatively large component, it is expected that this component will
also be large in the SMT stack, so the relative fraction should be
similar.

Therefore, a first-order estimation of the STthrottled CPI stack
is to take the SMT CPI stack normalized to the SMT CPI
(see Figure 2b). The resulting STthrottled CPI stack component
estimations are however not accurate enough to be used in the
scheduler. Nonetheless, by applying the ‘forward’ model to these
first-order single-threaded CPI stack estimations (see Figure 2c),
a good initial estimation of the slowdown each application has
experienced in SMT mode can be provided. This slowdown
estimation can be used to renormalize the measured SMT CPI
stacks by multiplying them with the estimated slowdown (see
Figure 2d). This gives new, more accurate estimates for the SMT
CPI stacks normalized to the STthrottled CPI (B′, R′i and M′j).

Next, we mathematically invert the model to obtain new
estimates for the STthrottled CPI stacks (see Figure 2e). The
mathematical inversion involves solving a set of equations. For

two threads, we have two equations per component (one for
each of the two threads), which both contain the two unknown
single-threaded components, so a set of two equations with two
unknowns must be solved (similar to four threads: four equations
with four unknowns). Due to the multiplication of the single-
threaded components in the δ term, the solution for two threads
is in the form of the solution of a quadratic equation. For four
threads, the inversion cannot be done analytically. We therefore
decide to set δ to zero and train the model omitting this component
of the model equation, which simplifies the formulas. This does
not lead to a significant decrease in accuracy. The sum of the
resulting estimates for the single-threaded normalized components
(B, Ri and M j) usually does not exactly equal one. Thus, the
estimation can be further improved by renormalizing them to their
sum.

4 SMT INTERFERENCE-AWARE SCHEDULER

In this section, we describe the implementation of the symbiotic
scheduler that uses the interference model to improve the through-
put of the processor. The goal of our proposed scheduler is to
divide n applications over c (homogeneous) cores, with n > c,
in order to optimize the overall throughput. Each core supports
at least d n

c e thread contexts using SMT. Note that we do not
consider the problem of selecting n applications out of a larger
set of runnable applications, we assume that this selection has
already been made or that the number of runnable applications is
smaller than or equal to the number of available thread contexts.
As described in Section 5, we implement our scheduler as a
user-level scheduler in Linux, and evaluate its performance on an
IBM POWER8 machine. The scheduler implementation involves
several steps which we discuss in the next sections.

4.1 Reduction of the cycle stack components
The most detailed cycle stack that the PMU (Performance Moni-
toring Unit) of the IBM POWER8 can provide involves the mea-
surement of 45 events. However, the PMU only implements six
thread-level counters. Four of these counters are programmable,
and the remaining two measure the number of completed instruc-
tions and non-idle cycles. Furthermore, most of the events have
structural conflicts with other events and cannot be measured
together. As a result, 19 time slices or quanta are required to
obtain the full cycle stack. Requiring 19 time slices to update
the full cycle stack means that, at the time the last components
are updated, other components contain old data (from up to 18
quanta ago). Since the scheduler uses 100ms quanta, this issue
would make it less reactive to phase changes in the best scenario,
and completely meaningless in the worst case.

An interesting characteristic of the CPI breakdown model is
that is built up hierarchically, starting from a top level consisting
of 5 components, and multiple lower levels where each component
is split up into several more detailed components [1]. For example,
the completion stall event of the first level, which measures the
completion stalls caused by different resources, is split in several
sub-events in the second level, which measure, among others, the
completion stalls due to the fixed-point unit, the vector-scalar
unit and the load-store unit. To improve the responsiveness of
the scheduler and to reduce the complexity of calculating the
model, we measure only the events that form the top level of the
cycle breakdown model. This reduces the number of time slices
to measure the model inputs to only two. The measured events



Counter Explanation
PM GRP CMPL Cycles where this thread committed instructions. This is the base component in our model.
PM CMPLU STALL Cycles where a thread could not commit instructions because they were not finished.

This counter includes functional unit stalls, as well as data cache misses.
PM GCT NOSLOT CYC Cycles where there are no instructions in the ROB for this thread, due to instruction cache

misses or branch mispredictions.
PM CMPLU STALL THRD Following a completion stall (PM CMPLU STALL), the thread could not commit instructions

because the commit port was being used by another thread. This is a commit port resource stall.
PM NTCG ALL FIN Cycles in which all instructions in the group have finished but completion is still pending.

The events behind this counter are not clear in [1], but it is non-negligible for some applications.
TABLE 1

Overview of the measured IBM POWER8 performance counters to collect cycle stacks.

are indicated in Table 1. Note that the PM CMPLU STALL
covers both resource stalls and some of the miss events. Because
the underlying model for both is essentially the same, this is
not a problem. Although the accuracy of the model could be
improved by splitting up this component, our scheduler showed
worse performance because of having to predict job symbiosis
with old data for many of the components.

4.2 Selection of the optimal schedule
The scheduler uses the measured CPI stacks and the model to
schedule the applications among cores. To simplify the scheduling
decision, we make the following assumptions:
• The interference in the resources shared by all cores (shared

last-level cache, memory controllers, memory banks, etc.) is
mainly determined by the characteristics of all applications
running on the processor, and not so much by the way these
applications are scheduled onto the cores. This observation
is also made by Radojković et al. [21]. As a result, with a
fixed set of runnable applications, scheduling has no impact
on the inter-core interference and the scheduler should not
take inter-core interference into account.

• The IBM POWER8 cores implement an issue queue divided
in two symmetric halves. Some of the execution pipelines,
such as the fixed-point, floating-point, vector, load and load-
store pipelines are similarly split into two sets. In the SMT
modes, the threads can only issue instructions to a single half
of the issue queue [23]. Thus, two 4-application schedules
such as ABCD and ACBD may reach different performance,
since in the first case application A is sharing some of the
execution pipelines with application B, and in the second case
it shares these pipelines with application C. We have exper-
imentally checked that the performance difference of these
schedules is on average 0.9% across 50 application combi-
nations. Therefore, we assume that they perform equally and
they do not need to be evaluated individually.

Even with these simplifications, the number of possible sched-
ules is usually too large to perform an exhaustive search. The
number of schedules considering n applications and c cores
equals n!

c!( n
c !)

c (assuming n is a multiple of c). For scheduling 16

applications on 8 cores in SMT2 mode, there are already more than
2 million possible schedules. To efficiently cope with the large
number of possible schedules, we use a technique proposed by
Jiang et al. [13]. The technique models the scheduling problem for
two applications per core as a minimum-weight perfect matching
problem, which can be solved in polynomial time using the
blossom algorithm [5].

When scheduling for higher SMT modes (e.g., SMT4), the
number of possible combinations becomes prohibitive for even
a relatively low number of cores. For example, to schedule 20
applications on 5 cores in SMT4, there are more than 2 billion

possible combinations. In addition, the scheduling problem for
more than two applications per core cannot be modeled as a
minimum-weight perfect matching problem. In fact, Jiang et al.
also prove that this problem becomes NP-complete as soon as
n
c > 2.

To address this issue, we use the hierarchical technique also
proposed by Jiang et al. [13]. Using this approach, the applications
are first divided into pairs, and these pairs are then combined
to quadruples, using the blossom algorithm at both levels. Next,
a local optimization step rearranges applications in each pair of
quadruples to obtain better performance. While this technique is
not guaranteed to give the optimal solution, Jiang et al. [13] show it
to perform well in a setup where applications need to be scheduled
in a clustered architecture, where each cluster shares a cache.

In summary, the scheduler does the following steps at the
beginning of each time slice to schedule the application in SMT4
mode. To schedule applications in SMT2 mode, steps 4 and 5 are
not done.

1) Collect the SMT CPI stacks for all applications over the
previous time slice.

2) Use the inverted model to get an estimate of the STthrottled
CPI stacks for each application.

3) Use the SMT2 forward model to predict the performance
of each 2-application combination, and use the blossom
algorithm to find the optimal schedule.

4) Use the SMT4 forward model to predict the performance of
each 4-application combination, combining the pairs of ap-
plications selected in the previous step, and use the blossom
algorithm to find a close to optimal schedule.

5) Apply the local optimization to each pair of 4-application
combinations selected in the previous step to further improve
the selected schedule.

6) Run the best schedule for the next time slice.

4.3 Scheduler implementation
Normally, workload execution and scheduler work are performed
in a serial way. In other words, the applications do not run while
the process selection is being performed. However, depending on
the number of possible schedules that need to be evaluated, this
serialization could cause a considerable overhead. For instance,
scheduling applications in SMT2 mode incurs a negligible over-
head, which is clearly compensated by the speedup reached by
selecting the optimal schedules. In contrast, when scheduling four
or more applications per core, the explosion in the number of
possible schedules can easily cause that the benefits achieved
by running better schedules end up being canceled out by the
overhead of evaluating these schedules.

To avoid this overhead, we let applications run in parallel while
the scheduler evaluates the possible schedules and selects the one
that will be executed in the next quantum. In order to avoid the



workload to slow down this scheduling step, we choose to devote
one of the cores exclusively to it. This design decision implies
that while the scheduler evaluates and selects the schedule for the
next quantum, the number of runnable applications (n) is higher
than the number of available cores (c−1). During this period, we
let Linux perform the task scheduling. As soon as the schedule
for the next quantum is determined, the applications are allocated
on the cores accordingly and executed using the c cores. The
(lower) throughput achieved during the fraction of the workload
execution where the applications run on c−1 cores is included in
the performance results presented for the symbiotic scheduler.

5 EXPERIMENTAL SETUP

We perform all experiments on an IBM Power System S812L
machine, which is a POWER8 machine consisting of 10 cores.
Each core can execute up to 8 hardware threads simultaneously. A
core can be in single-threaded mode, SMT2 mode, SMT4 mode or
SMT8 mode. Mode transitions are done automatically, depending
on the number of active threads. We focus our experimental eval-
uation in SMT2 and SMT4 modes with multiprogram SPEC CPU
2006 workloads. We do not evaluate the SMT8 mode since we did
not notice performance benefits with the Linux scheduler in SMT8
mode over SMT4 mode. On average across 10 32-application
workloads to be run on 4 cores, the Linux scheduler performs
slightly better (0.9%) in SMT8 mode compared to SMT4 mode.
As the number of cores grows, the performance benefits in SMT8
mode are reduced and turn into performance losses. Thereby, on
average across 10 80-application workloads ran with 10 cores,
the Linux scheduler performs 7.8% worse in SMT8 mode than in
SMT4 mode. This behavior should be related with the fact that
SPEC benchmarks aim to stress the processor and the memory
subsystem. Thus, the SMT8 mode should provide performance
benefits, when running multithreaded scale-out applications that
share a considerable amount of code and present a small memory
footprint. Our setup uses an Ubuntu 14.04 Linux distribution with
kernel 3.16.0.

We use all of the SPEC CPU 2006 benchmarks that we were
able to compile for the POWER8 to evaluate our scheduler (21 out
of 29). We run all benchmarks with the reference input set. For
each benchmark, we measure the number of instructions required
to run during 120 seconds in isolated execution and save it as
the target number of instructions for the benchmark. This reduces
the amount of variation in the benchmark execution times during
the experiments. For the multiprogram experiments, we run until
the last application completes its target number of instructions.
When the applications reach their target number of instructions,
their IPC and turnaround time are saved and the application is
relaunched. This method ensures that we compare the same part
of the execution of each application, and that the workload is
uniform during the full experiment.

The time taken to collect the required inputs to train the model
(see Section 3.2) is approximately 12 hours for the SMT2 mode
and almost 50 hours for the SMT4 mode. However, training the
model is a one-time offline step, and then the model can be used
to schedule any workload whenever its characteristics resemble
those of the training applications. The training phase is negligible
compared to the model lifetime, and therefore it has not been
included as a performance overhead in the next sections.

Our target metric is total system throughput (STP), which
we measure by means of the weighted speedup metric [6].
More precisely, we measure the time each application requires

to execute its target number of instructions in the multiprogram
experiment and then divide the isolated time (120 seconds) by the
multiprogram time, adding this number over all applications. To
provide a more solid performance evaluation, we also evaluate the
average normalized turnaround time (ANTT) [6] of the workloads,
which is calculated as the arithmetic average across the normalized
turnaround time of the applications, and corresponds with the
reciprocal of the harmonic mean. Unlike STP, which is a system-
oriented metric, ANTT provides insight into the per-application
performance reached by each scheduler.

We evaluate 160 workloads overall. 80 workloads are devised
to evaluate the SMT2 mode and their number of applications
double the number of cores considered. Thus, they range from
8 (4-core workloads) to 20 (10-core workloads) applications. The
remaining 80 workloads aim to evaluate the SMT4 mode, and
include four application per core, thus ranging from 16 (4-core
workloads) to 40 (10-core workloads) applications.

5.1 NUMA effects on the IBM POWER8

Our IBM POWER8 system has 32 GB of RAM memory on a
single memory module. This apparently small fact presents strong
implications. The IBM POWER8 processor is implemented as
a dual-chip module (DCM) processor but it works as a single
chip processor [3]. More precisely it is built by mounting two
chips (chiplets) containing half the number of cores each. Both
chiplets are interconnected by fast local SMP links and each
one implements a memory controller that governs four DRAM
slots. Figure 3 shows a block diagram of the processor core and
memory subsystem. This design implies that our system includes
2 non-uniform memory access (NUMA) nodes. The first node
is comprised of processor cores 0 to 4, while the second node
contains the remaining five cores. Since the system only includes
a single memory module connected to one of the NUMA nodes, it
is expected that cores in this node have a non-negligible memory
performance difference compared to cores in the other node. To
confirm this behavior, we use the LMbench [17] and STREAM
[16] benchmarks and measure the DRAM latency and bandwidth,
respectively. These applications aim to stress the memory subsys-
tem by accessing the elements of data arrays whose size increases
up to 1792MB.

Figure 4 presents the memory latency that the cores of each
NUMA node experience for each tested array size. Memory
requests access the array in 128-byte strides, which matches the
POWER8 cache line size. We did not appreciate any latency
differences between cores in the same NUMA node. The latency is
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Fig. 3. Logical diagram of the POWER8 and memory subsystem.
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Fig. 4. Memory latency varying the array size.

Function Kernel NUMA node 0 NUMA node 1
Copy a(i) = b(i) 17.7 GB/s 16.8 GB/s
Scale a(i) = q×b(i) 17.3 GB/s 16.5 GB/s
Add a(i) = b(i)+ c(i) 24.3 GB/s 22.5 GB/s
Triad a(i) = b(i)+q× c(i) 24.3 GB/s 22.4 GB/s

TABLE 2
Bandwidth reported by the STREAM benchmark for the two NUMA

nodes.

identical for both NUMA nodes when the array fits in the L1, L2
or L3 caches. However, when the array exceeds the cache size and
the main memory is accessed, the cores on the first NUMA node,
where the memory slot is plugged in, achieve a latency around
20% lower over the cores on the second NUMA node.

Regarding memory bandwidth differences between NUMA
nodes, Table 2 presents the average bandwidth achieved by cores
in both nodes when running the STREAM benchmark. The results
show that the cores on the first NUMA node achieve between 5.1%
and 8.5% more memory bandwidth, depending on the executed
kernel. It is also worth noting that the cores on the first NUMA
node almost reach the theoretical maximum memory bandwidth,
which is 24GB/s.

The Linux OS is aware of the system being a NUMA system.
For instance, the lscpu command identifies two NUMA nodes, the
first one including logical CPUs from 0 to 39, and the second
one including logical CPUs from 40 to 793. Since the kernel
version 3.8, the Linux scheduler is able to perform NUMA-aware
scheduling [4] and allocates each application to the NUMA node
closest to the main memory where most of the application data
resides. In our system, this NUMA node is always the first node
(node 0), since it is the only one with a memory module installed.
This scheduling behavior turns into performance improvements
that must be taken into account in the experimental evaluation.

6 EXPERIMENTAL EVALUATION

We now evaluate how well the scheduler performs compared to the
default scheduler and prior work. Before showing the scheduler
results, we first evaluate the accuracy of the interference prediction
models devised for the SMT2 and SMT4 modes. Then, the system
throughput, the per-application performance, and the stability of
the selected coschedules are analyzed for the SMT2 and SMT4
modes.

6.1 Model accuracy
To study the accuracy of the models, we analyze the error
deviation of the predicted CPI stacks with respect to the measured

3. Each core of the POWER8 accounts for 8 logical CPUs in Linux. Logical
CPUs 0 to 7 identify the 8 threads that can be run in core 0 with SMT8 mode,
logical CPUs 8-15 identify those threads of core 1, and so on.

CPI stacks. The evaluation needs to be done in two steps since
it is not possible to measure both the STthrottled and SMT CPI
stacks together in the same quantum. In a preliminary step, we
measure the per-quantum STthrottled CPI stacks of the applications
off-line, keeping them in a profile with their instruction counts.
These STthrottled CPI stacks will be used to check the model
accuracy. Next, we run the combinations of applications. The
SMT CPI stacks of the applications when running the different
combinations are predicted before each quantum starts from their
profiled STthrottled CPI stacks. When the quantum expires, the
predicted SMT CPI stacks for the schedule are compared against
the measured SMT CPI stacks. As done in the model construction,
the STthrottled CPI stacks of consecutive quanta are interpolated,
if needed, to ensure that the profiled STthrottled CPI stacks closely
match the same instructions as the SMT CPI stacks. We explore all
possible combinations of applications in SMT2 mode and a very
large set of combinations in SMT4 mode, considering multiple
time slices per combination to capture the phase behavior.

We use the leave-p-out cross-validation methodology to eval-
uate the accuracy of the proposed interference models. More
precisely, leave-two-out cross validation and leave-four-out cross
validation are used to measure the error of the SMT2 and SMT4
models, respectively. For each possible pair of applications, leave-
two-out cross validation builds a model using the data from the
remaining 19 applications, and then evaluates the model error
when predicting the SMT CPI stacks for the pair of applications
left out to build the model. The average absolute error and error
histograms are obtained combining the errors measured for each
pair of applications with the model built leaving them out. The
same steps are performed to evaluate the SMT4 model, but
leaving out 4-application combinations. Notice that in this case,
the training data set is significantly reduced with respect to the
model built using all applications.

Regression models accuracy. Figure 5 shows the histograms of
the errors of the interference prediction models (the ‘forward’
model) for the SMT2 (Figure 5(a)) and SMT4 (Figure 5(b))
modes, respectively. It shows the deviation committed when
predicting the per-application slowdown from the STthrottled CPI
stacks of the applications to be co-run.

Since there are fewer applications interfering with each other
on SMT2 schedules than on SMT4 schedules, it is to be expected
that the SMT2 interference model is more accurate than the SMT4
model. On average, the deviation is by 7.6% and 11.5% for the
SMT2 and SMT4 models, respectively. Note that the for the SMT2
model, 45% of the deviations is within [−5%,5%] (29% for the
SMT4 model). Remark that the models proposed in this paper are
more accurate than our previously proposed models [10], because
the presented approach considers the exact amount of private
resources each hardware context has available in each SMT mode.

Inverse models accuracy. The inverse models estimate the
STthrottled CPI stacks from the SMT CPI stacks of the applications
when running concurrently on a schedule. By definition, the
STthrottled CPI stacks add to one. Since the last step of our model
inversion approach is a normalization, the predicted stacks will
also add to one. Thus, the accuracy of the inverse models cannot
be measured by comparing the CPI stacks as a sum of their
components.

Figure 6 shows the distribution of the error for the inverse
models obtained when predicting the completion stalls component
for the SMT2 (Figure 6(a)) and SMT4 (Figure 6(b)) modes.
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Fig. 6. Inverse model error distribution.

Completion stalls is the largest component and clearly dominates
the CPI stack. It presents the highest average absolute error, which
makes it a good estimate to evaluate the accuracy of the inverse
models. The average absolute errors for the completion stalls
component are 9.3% and 15.1%, in SMT2 and SMT4 modes,
respectively. Notice that these average absolute error values do not
highly differ from that obtained with the forward model. Finally,
the frequency where the errors fall in the range [−5%,5%] also
reaches similar frequencies to that of the forward model, being
47% and 24%, respectively, in SMT2 and SMT4 modes.

6.2 Scheduler performance
Now that we have shown that the interference prediction mod-
els are accurate, we evaluate the performance of our proposed
scheduler that uses the models to obtain better schedules. We
also analyze the impact of symbiotic scheduling on per-application
performance and study the stability of the selected coschedules.

To evaluate the results achieved with the symbiotic job sched-
uler, we compare five different schedulers:

1) Random scheduler: applications are randomly distributed
across the cores and contexts. Each time slice, a new schedule
is randomly determined.

2) Linux CFS scheduler: the default Completely Fair Scheduler
(CFS) in Linux. As discussed in Section 5.1, the CFS sched-
uler incorporates different patches to perform NUMA-aware
scheduling. Thus, Linux is aware of the NUMA effects on
the IBM POWER8 system and schedules the applications
accordingly.

3) L1-bandwidth aware scheduler [11]: this scheduler is the
most recent and closest prior work to our scheduler. It
balances the L1 bandwidth requirements of the applications
across the cores. It also executes on unmodified hardware
and we implement it as a user-level scheduler in Linux. It

was originally designed to run in SMT2 mode, but we extend
it to support the SMT4 mode.

4) Symbiotic job scheduler: our baseline proposal. This ap-
proach considers the processor as a UMA (uniform memory
architecture) system and after selecting the schedules they are
allocated on the cores in increasing core order.

5) NUMA-aware symbiotic job scheduler. It works as the sym-
biotic job scheduler, but the selected schedules are allocated
on the cores considering the main memory bandwidth utiliza-
tion. This is done by measuring the main memory requests
of the applications at runtime using performance counters,
and allocating the schedules with higher memory bandwidth
utilization on the cores of the NUMA node 0, the one
connected to the memory controller that has installed DRAM
modules in our machine (see Section 5.1).

6) Oracle scheduler: this scheduler uses an off-line measured
profile with the slowdowns of the applications for the isolated
run of each possible couple. However, it is not the most
optimal scheduler: it is not NUMA-aware and, in addition,
some applications can progress slower during the workload
execution than during the profile runs, shifting their execution
from the profile. Building a profile covering all possible
situations is too costly. For the same reason, this scheduler
is only evaluated in SMT2 mode.

The aim of the NUMA-aware optimization is not to perform
sophisticated NUMA-aware scheduling, but to provide a fair
comparison with the (NUMA-aware) Linux CFS scheduler. For
this purpose, the basis of both NUMA-aware schedulers is the
same: measure the memory accesses of the applications and
allocate the most memory-intensive applications on the NUMA
node where the physical memory is installed. Without the NUMA
optimization, the benefits of selecting better schedules (the pur-
pose of the symbiotic scheduler) can be hidden in case memory-
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Fig. 7. Average system throughput increase of the symbiotic scheduler, NUMA-aware symbiotic scheduler, Linux CFS scheduler, L1-bandwidth
aware scheduler, and oracle scheduler (only in SMT2 mode), relative to the random scheduler.

intensive applications were allocated on cores of the NUMA node
more distant to the DRAM module. This issue can become an
important limitation of the symbiotic scheduler over the Linux
CFS scheduler, as experimental results will show.

6.3 System throughput
Figure 7 presents the system throughput increase achieved by the
proposed symbiotic and NUMA-aware symbiotic schedulers, the
Linux CFS scheduler, the L1-bandwidth aware scheduler, and the
oracle scheduler (only in SMT2 mode) over the random scheduler,
when running in SMT2 (Figure 7(a)) and SMT4 (Figure 7(b))
modes. The speedups are averaged per core count, ranging from 4
to 10 cores. For each core count and scheduler, the bars represent
the average speedup for a set of ten different workloads that are
run 15 times, plotting 95% confidence intervals. As mentioned in
Section 5, the number of applications of the SMT2 and SMT4
workloads doubles and quadruples, respectively, the number of
cores considered in the experiment.

The results include the negligible overhead incurred by the
symbiotic schedulers, mainly the time needed to gather the event
counts from the performance counters and update the scheduling
variables. As explained in Section 4.3, the applications are kept
running while the schedules for the next quantum are being
obtained, which allows the scheduler to avoid the process selection
overhead. In addition, the new models are more accurate and the
scheduler does no longer require correction factors [10], further
preventing the overhead of estimating single-thread performance
used to calculate them.

SMT2 mode. The symbiotic job scheduler and its NUMA-
aware version distinctly outperform all other schedulers, with
system throughout increases that are particularly high when the
workloads run on six or more cores. On average across all core
counts and workloads, the symbiotic scheduler performs 8.9% bet-
ter than the random scheduler, 4.0% better than the default Linux
CFS scheduler, and 3.4% better than the L1-bandwidth aware
scheduler. These average performance improvements, however,
are limited by the slight performance differences for the small
workloads. For instance, on the 7-core workloads, the system
throughput increase of the symbiotic scheduler over the random
and Linux CFS schedulers are as high as 13.1% and 7.4%,
respectively.

By taking into account the main memory accesses performed
by each application to deal with the NUMA effects on our
experimental platform, the NUMA-aware symbiotic scheduler
improves the performance achieved by the symbiotic scheduler.

On average, across workloads devised for 6 to 10 cores (the ones
where the NUMA-effects appear), it performs 13.5% better than
the random scheduler, 6.7% better than the Linux CFS scheduler,
5.9% better than the L1-bandwidth aware scheduler, and 1.3%
better than the symbiotic scheduler. With respect to the Linux CFS
scheduler, it achieves a maximum average performance benefit
of 11.0% on 6-core workloads. The comparison of the NUMA-
aware symbiotic scheduler against the Linux CFS scheduler is
the best one to highlight the performance benefits provided by
the symbiotic scheduling since both schedulers implement similar
NUMA-aware optimizations.

Regarding the Linux CFS scheduler, its performance benefit
presents an ascendant trend with the number of cores, but get
somehow stabilized above 8 cores. The L1-bandwidth aware
scheduler follows the opposite trend, and its performance benefits
tend to decrease with the number of cores. These behaviors are
clearly related with how they perform the scheduling. On one side,
the Linux CFS scheduler monitors memory behavior and tries to
reduce memory contention, which is more beneficial when there
are more applications and therefore more possible contention. In
addition, it also performs NUMA-aware scheduling and tries to
allocate the applications with higher memory requirements on
the cores of the NUMA node 0. In some cases, the Linux CFS
scheduler even decides to pause threads, especially on the cores
belonging to the NUMA node 1 (the farthest from the main
memory modules) and when there are a lot of memory-intensive
applications. On the other side, the L1-bandwidth aware scheduler
deals with L1-bandwidth contention which plays a more important
role when the number of applications is lower and main memory
contention is not the main performance bottleneck. Anyway, both
schedulers clearly perform worse than our proposed symbiotic
schedulers.

Finally, we also compare the symbiotic scheduler with an
oracle scheduler. This comparison helps estimating the perfor-
mance losses of the symbiotic scheduler due to errors of the SMT
interference model. Experimental results show small performance
differences between both schedulers. On average across all the
evaluated workloads, the oracle scheduler only performs 1.2% bet-
ter than the symbiotic scheduler. The highest differences, around
2.5% on average, are observed for 9-core workloads.

SMT4 mode. The NUMA-aware symbiotic scheduler clearly
outperforms all other schedulers across all thread counts. Con-
sidering the workloads devised to run on at least six cores, the
first scenario where the NUMA effects emerge, the NUMA-aware
symbiotic scheduler performs, on average, 16.2% better than the
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Fig. 8. Average ANTT achieved by the symbiotic scheduler, NUMA-aware symbiotic scheduler, oracle scheduler (only in SMT2 mode), L1-bandwidth
aware scheduler, Linux CFS scheduler, and random scheduler. ANTT is a lower is better metric.

random scheduler, 5.9% better than the Linux CFS scheduler, and
5.3% better than the symbiotic scheduler. In general the achieved
speedup grows with the number of cores, as so does the speedup
of the symbiotic scheduler, since there is higher interference and
more difference between the best and worst schedules. However,
being NUMA-aware extraordinarily enhances the throughput for
6- and 7-core workloads, which somehow breaks the trend. The
reasons that explains the big improvements for these workloads,
is that with only one or two cores belonging to the NUMA node
1, the node with lower memory performance, a NUMA-aware
scheduler is able to allocate all memory intensive applications on
the cores of the NUMA node 0, the node with higher memory per-
formance. However, with workloads for higher number of cores,
more cores from the NUMA node 1 are considered, and not all
the memory intensive applications can be allocated on the NUMA
node 0. Notice that same behavior is observed for the Linux CFS
scheduler. An interesting observation is that being NUMA aware
has a stronger impact on the performance of the SMT4 mode. This
effect can be related with several issues. For instance, sharing
the ROB with four threads can increase the penalty of a long-
latency memory access. In addition, SMT4 workloads include
more applications and thus, demand more memory bandwidth than
SMT2 workloads.

Regarding the symbiotic scheduler it is really interesting to
observe that its system throughput increase uniformly grows for
all core counts from 4 to 10 cores. It performs better than the Linux
CFS scheduler in all core counts, except for 6- and 7-core work-
loads, where as we have explained before its NUMA unaware-
ness affects its performance. Meanwhile, the system throughput
increase for the Linux CFS scheduler follows a decreasing trend
where the number of cores considered grows from 6 to 10. This is
another indicative of the fact that being NUMA-aware is critical
for 6- and 7-core workloads, but reduces its importance as more
cores are considered in the experiments. Finally, the L1-bandwidth
aware scheduler achieves the lowest performance benefits, and
only improves the Linux CFS scheduler on the smallest workloads,
although its performance for higher core counts may well be
constrained by not being NUMA-aware. Its low speedup also
shows that L1 bandwidth is not one of the main contention points
in SMT4 since other critical microarchitectural resources that
strongly affect per-thread performance like the L1 cache space,
the physical registers, and the number of ROB entries are reduced
(per thread) as the number of supported threads increases.

6.4 Per-application performance
Although the main goal of the proposed symbiotic scheduling is
to maximize the system throughput, we also evaluate its impact on
the average normalized turnaround time (ANTT) metric. ANTT is
essentially a measure of the average per-application performance,
but since the harmonic mean tends to be lower when there is much
variance, it also incorporates a notion of fairness [6].

Figure 8 depicts the ANTT achieved by the random scheduler,
the Linux CFS scheduler, the L1-bandwidth aware scheduler, the
oracle scheduler (only in SMT2 mode), the symbiotic scheduler,
and the NUMA-aware symbiotic scheduler, when running the
evaluated workloads for the SMT2 (Figure 8(a)) and SMT4
(Figure 8(b)) modes. The bars represent the average ANTT of the
different schedulers across the ten workloads evaluated for each
number of cores, plotting 95% confidence intervals.

SMT2 results. Figure 8(a) shows that the symbiotic scheduler
and its NUMA-aware version clearly reach the lowest ANTT val-
ues across all evaluated workloads, followed by the L1-bandwidth
aware and Linux CFS schedulers. The symbiotic schedulers reach
the highest differences over the random and Linux CFS sched-
ulers when the number of considered cores ranges from 6 to 8.
For instance, the NUMA-aware symbiotic scheduler achieves an
ANTT 8.6% lower than the Linux CFS scheduler across these
workloads. Between both symbiotic schedulers, the NUMA-aware
version achieves the lowest ANTT across all core counts. The
results show that, as a side effect, by reducing interference as
much as possible to maximize system throughput, the symbiotic
schedulers also reduce the average normalized turnaround time of
the applications.

Regarding the Linux CFS, L1-bandwidth aware, and oracle
schedulers, the same trends observed on the system throughput
appear with the ANTT metric. The L1-bandwidth aware scheduler
reaches lower ANTT than the Linux CFS scheduler on workloads
up to 7 cores, and it improves the ANTT over the L1-bandwidth
aware scheduler for larger workloads. As explained before, this is
due to the fact that the Linux CFS scheduler addresses memory
bandwidth contention, which grows with the number of cores,
and the L1-bandwidth aware scheduler deals with L1-bandwidth
contention, which is more important for lower core counts. Finally,
the oracle scheduler mainly reduces the ANTT over the symbiotic
scheduler in the workloads with higher core counts.

SMT4 results. Figure 8(b) shows that the NUMA-aware
symbiotic scheduler is the scheduler that achieves the best per-
application performance, according to the ANTT metric. The
performance benefit is high over the random scheduler, specially



as the workloads run on a higher number of cores. For instance,
on the 10-core workloads, the NUMA-aware symbiotic scheduler
achieves an ANTT 14.7% lower than the random scheduler. The
difference with the Linux CFS scheduler is negligible except on
the 9-core and 10-core workloads, where the NUMA-aware sym-
biotic scheduler is 3.7% and 6.6% better, respectively. Regarding
the symbiotic scheduler, it reaches high ANTT on workloads from
6 to 8 cores (only surpassed by the random scheduler), which as
discussed before is due to not being aware of the NUMA effects on
the POWER8, which particularly affects the workloads for these
numbers of cores.

6.5 Symbiosis patterns

The symbiotic scheduler constantly re-evaluates the optimal
schedule, which means that it adapts to phase behavior, updating
the combinations of applications that are run together. If there is no
phase change behavior, a static schedule would suffice, avoiding
the overhead of recalculating the schedules. Figure 9 and Figure 10
present the frequency matrices of the schedules selected by the
symbiotic job scheduler for two 5-core workloads in SMT2 mode
and a 5-core workload in SMT4 mode, respectively. The frequency
matrices are symmetric matrices that represent the percentage of
quanta where each combination of applications is scheduled on
one core. The darker the color of the cell, the more frequently the
associated pair of applications runs together on the same core.

SMT2 mode. The two matrices of Figure 9 represent two dis-
tinct behaviors that we have observed in the symbiotic scheduling
runs. The frequency matrix of workload 5 1 shows a workload
where two couples are scheduled very frequently (h264ref is
coscheduled with libquantum and milc with bwaves, in 66%
and 70% of the time slices, respectively). This high frequency
suggests that the applications present high symbiosis (e.g., a
memory-bound application with a cpu-bound application) and a
constant phase behavior. A different behavior is observed in the
matrix of workload 5 2, where there is not a predominant pair of
applications that is usually coscheduled, but all the applications are
coscheduled with multiple corunners. This pattern occurs when the
applications present phase behavior that changes the symbiosis of
the applications, which makes it important to adapt the coschedule
to the current phase.

SMT4 mode. The frequency matrix of Figure 10 also shows
the application behaviors described for the two SMT2 frequency
matrices. For instance, from the group of applications cactusADM
(two times), h264ref, sjeng, and gobmk, four of them are usually
scheduled together on the same SMT core. Other group of jobs
formed by applications leslie3d, libquantum (two times), and gcc
also tends to be scheduled on the same SMT core. This behavior
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is expected for applications that exhibit low phase behavior and
high symbiosis among them. The other applications, either do not
present high symbiosis with any application of the workload or
they show a high phase behavior that makes them run on schedules
with several applications through their execution.

7 CONCLUSIONS AND FUTURE WORK

Scheduling has a considerable impact on highly threaded pro-
cessors because of the interference between threads in shared
resources. We propose a novel symbiotic job scheduler for a
multicore processor consisting of multi-threaded (SMT) cores.
The scheduler uses a model based on cycle component stacks, that
is used to estimate the symbiosis between applications at runtime
without sampling. Experiments on an IBM POWER8 server show
that a NUMA-aware version of the symbiotic scheduler improves
throughput, on average across 6- to 10-core workloads, by 6.7%
and 5.9% over Linux in SMT2 and SMT4 modes, respectively.
Due to the use of an analytical model, the overhead of our
scheduler is negligible.

Although our current implementation is designed for the IBM
POWER8, our scheduler could be adapted to other CMP archi-
tectures with SMT cores that provide a similar cycle accounting
mechanism, e.g., an Intel Xeon server [19]. This only requires a
one-time training step. The scheduler can also support heteroge-
neous architectures, by creating different models for the various
core types.

Finally, the symbiotic scheduler proposed in this work is
focused on single-threaded applications. Scheduling for parallel
applications requires from distinct strategies tailored to their
specific characteristics. The design of such a scheduler is left as
future work.
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