
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 1

Thread Isolation to Improve Symbiotic
Scheduling on SMT Multicore Processors

Josué Feliu, Julio Sahuquillo, Member, IEEE,
Salvador Petit, Member, IEEE, and Lieven Eeckhout, Fellow, IEEE

Abstract—Resource sharing is a critical issue in simultaneous multithreading (SMT) processors as threads running simultaneously on
an SMT core compete for shared resources. Symbiotic job scheduling, which co-schedules applications with complementary resource
demands, is an effective solution to maximize hardware utilization and improve overall system performance. However, symbiotic job
scheduling typically distributes threads evenly among cores, i.e., all cores get assigned the same number of threads, which we find to
lead to sub-optimal performance. In this paper, we show that asymmetric schedules (i.e., schedules that assign a different number of
threads to each SMT core) can significantly improve performance compared to symmetric schedules. To leverage this finding, we
propose thread isolation, a technique that turns symmetric schedules into asymmetric ones yielding higher overall system performance.
Thread isolation identifies SMT-adverse applications and schedules them in isolation on a dedicated core to mitigate their sharp
performance degradation under SMT. Our experimental results on an IBM POWER8 processor show that thread isolation improves
system throughput by up to 5.5% compared to a state-of-the-art symmetric symbiotic job scheduler.

Index Terms—Simultaneous multithreading (SMT), symbiotic job scheduling, thread isolation.

F

1 INTRODUCTION

S IMULTANEOUS multithreading (SMT) processors im-
prove hardware resource utilization and system

throughput over single-threaded processors by co-executing
distinct threads on the same core, i.e., instructions from
different threads may execute in the same cycle [1]. In
an SMT processor, most of the core execution resources,
including the L1 caches, reorder buffer, issue queues, func-
tional units, physical register file, etc. are shared among co-
running threads. The number of core resources that need
to be replicated is limited. Because of the dramatically
improved system throughput at low additional hardware
cost, major processor manufacturers such as Intel, AMD
and IBM offer high-performance SMT processors as their
trademark products.

Resource sharing is a key aspect of an SMT processor
design since threads co-running on a core share resources
at fine granularity. Basically, two main design approaches
can be employed to share a resource among co-executing
threads: static partitioning versus dynamic sharing. Par-
titioning splits a resource in as many fixed-size parts as
there are supported threads. For instance, a 180-entry re-
order buffer (ROB) can be split into two 90-entry ROBs
to support two simultaneous threads, or in four 45-entry
ROBs to support four threads. To preserve high single-
thread performance, the entire ROB is still available when
only a single thread is running. In contrast, dynamic sharing
allows different threads to compete for and use a distinct
portion of a shared structure according to their requirements

• J. Feliu, J. Sahuquillo and S. Petit are with the Department of Com-
puter Engineering, Universitat Politécnica de Valéncia, Spain. E-mail:
jofepre@gap.upv.es, {jsahuqui, spetit}@disca.upv.es

• L. Eeckhout is with the Department of Electronics and Information
Systems, Ghent University, Belgium. E-mail: lieven.eeckhout@ugent.be

Manuscript received MM XX,20YY; revised MM XX,20YY.

and the management logic. For example, concurrent threads
dynamically compete for L1 cache space. Note that some
processor structures may be partitioned whereas others may
be dynamically shared.

When running in SMT mode, resource sharing harms
individual per-application performance in two ways. First,
for partitioned resources, a thread can only use its assigned
share. As a result, its performance will be inferior compared
to running in isolation. Second, for the shared resources,
threads interfere with each other when competing through
dynamic sharing. In particular, resource sharing makes the
performance of individual threads and, consequently, the
throughput of an SMT core, strongly dependent on the
characteristics of the co-executing threads. Co-scheduling
applications that do not stress the same shared resources
minimizes interference and maximizes SMT throughput.

For this reason, scheduling applications on SMT cores
is key to achieving high overall system performance,
i.e., determining which applications to co-run has a se-
vere impact on performance. Symbiotic job scheduling
or intelligently selecting which applications to co-run on
an SMT core, has been widely explored, see for exam-
ple [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. Almost all
previous work on job symbiosis propose symmetric sched-
ules where the same number of applications is mapped
to each core. Only the works by Gomaa et al. [5] and De
Vuyst et al. [7] explore asymmetric schedules but, unlike
our work, the focus of their works is on thermal and
energy efficiency aspects rather than performance. Gomaa
et al. [5] use asymmetric temperature-aware schedules to
favor cool cores and let hot cores cool down. De Vuyst et
al. [7] devise asymmetric schedules that, combined with
the ability to power down idle cores, provide significant
improvements in energy-delay product (EDP) compared to
symmetric schedules.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 2

Unlike prior work, in this paper we propose asymmetric
scheduling to improve SMT throughput. Our proposal is
based on the finding that the performance gap between
single-threaded (ST) mode, i.e., an application runs in iso-
lation, versus SMT mode, i.e., an application co-runs with
other applications, varies widely across applications. In
other words, some applications are SMT-friendly whereas
others are SMT-adverse, i.e., they see their performance
significantly degrade under SMT execution. Considering
all applications equally under symbiotic SMT scheduling
therefore leads to suboptimal performance.

To leverage the previous finding, we propose thread isola-
tion, a technique to improve the performance of symmetric
schedules by turning them into asymmetric ones. Thread
isolation works on top of a state-of-the-art symbiotic sched-
uler, which obtains the best symmetric schedule by mapping
application pairs per core. Thread isolation then identifies
the application that experiences a sharp performance degra-
dation when running in SMT mode. Pairs of applications
that include such an SMT-adverse application are broken
down and the SMT-adverse application is scheduled to run
in isolation on a dedicated core. The other application is
added to a different pair, forming a 3-application combina-
tion that will run on another SMT core. This leads to an
asymmetric schedule in which one application runs on a
dedicated core in ST mode and the other three applications
co-run in SMT mode on another core. These operations are
driven by SMT interference models to ensure that the asym-
metric schedule devised by thread isolation outperforms the
original symmetric schedule.

The experimental evaluation, carried out on an IBM
POWER8 processor, shows that thread isolation signifi-
cantly improves system throughput compared to a sym-
biotic scheduler when the workload composition is favor-
able to asymmetric schedules. The maximum speedups
for 6-application, 8-application, 10-application workloads
amount to 5.5%, 4.8%, and 4.2%, respectively, compared
to a state-of-the-art symbiotic scheduler that only devises
symmetric schedules. When the workload is not suitable to
asymmetric schedules, thread isolation is not applied and
the achieved performance matches that of the symbiotic
scheduler.

To sum up, we make the following contributions in this
work:

• We analyze the performance of the SPEC CPU2006
applications when scheduled in sets of two and three
applications on the same SMT core. The results shows
that performance degradation widely varies depending
on the application and SMT level. While SMT-adverse
applications suffer a severe performance degradation,
the performance of SMT-friendly applications reduces
moderately. This observation stresses the interest in
asymmetric scheduling.

• We study the performance of asymmetric schedules
and find out that they can achieve higher system
throughput than state-of-the-art symmetric symbiotic
schedules. Asymmetric schedules run SMT-adverse ap-
plications in ST mode on a single core and allocate SMT-
friendly applications together on other cores. The per-
formance benefit obtained by the SMT-adverse applica-

tions exceeds the performance degradation suffered by
the SMT-friendly ones.

• We propose thread isolation, an new scheduling ap-
proach that turns symmetric symbiotic schedules into
asymmetric ones yielding higher overall system perfor-
mance.

The rest of the paper is organized as follows. Section 2
analyzes the performance degradation when two and three
applications are co-scheduled on an SMT core. Section 3
studies the potential for asymmetric scheduling and iden-
tifies the application that benefit more when running in
isolation. Section 4 explains the proposed thread thread
isolation algorithm. Section 5 describes the experimental
setup. Section 6 presents the experimental evaluation of
the proposal. Finally, Section 7 discusses related work and
Section 8 presents concluding remarks.

2 PERFORMANCE CHARACTERIZATION IN SMT
EXECUTION

Before quantifying the impact of resource interference on
SMT performance, we first revisit how SMT core hardware
resources are shared among co-executing threads.

2.1 SMT Resource Sharing

Resource sharing is a critical design aspect of SMT pro-
cessors. As introduced before, each resource can be imple-
mented to be statically partitioned or dynamically shared
when multiple threads run simultaneously. Partitioned re-
sources are easier to implement and provide two interesting
features: performance isolation and predictability. However,
dynamically shared resources potentially provide higher
system performance since they can adapt to the varying
requirements that threads experience along their execution.
Modern SMT processors combine both flavors of resource
sharing for different processor structures to provide the best
of both worlds.

In the IBM POWER8 (our experimental platform), the
L1 caches (both the instruction and the data cache), the
(unified) L2 cache, the reorder buffer, the rename registers,
as well as some issue queues and execution pipelines are
dynamically shared among the co-running threads. How-
ever, it follows a hybrid approach for the main issue queue
and execution pipelines (e.g., fixed-point, floating-point and
load/store units). In SMT mode, threads are divided into
two subsets and each subset is assigned to an issue queue
half and its associated execution units. When co-running
only two threads, these resources behave as statically parti-
tioned resources. However, when the SMT degree increases,
several threads are assigned to each thread subset, and these
threads dynamically share the respective assigned issue
queue half and execution pipelines.

2.2 Resource Interference

This section analyzes the sensitivity of per-application
performance when running in SMT mode relative to ST
mode. Figure 1 shows normalized IPC for the SPEC
CPU2006 benchmarks when running on an SMT core of the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 3

bz
ip

2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu

m
h2

64
re

f

as
ta

r
xa

la
nc

bm
k

bw
av

es
ga

m
es

s

m
ilc

ze
us

M
P

ca
ct

us
AD

M
le

sli
e3

d
na

m
d

so
pl

ex
po

vr
ay

ge
m

sF
DT

D

lb
m

N
or

m
al

iz
ed

 IP
C

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

2-application combinations 3-application combinations

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

bz
ip

2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu

m
h2

64
re

f

as
ta

r
xa

la
nc

bm
k

bw
av

es
ga

m
es

s

m
ilc

ze
us

M
P

ca
ct

us
AD

M
le

sli
e3

d
na

m
d

so
pl

ex
po

vr
ay

ge
m

sF
DT

D

lb
m

N
or

m
al

iz
ed

 IP
C

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

2-application combinations 3-application combinations SMT-affinity threshold

Fig. 1. Box-and-whisker chart showing the distribution of the normalized IPC for the SPEC CPU2006 benchmarks in SMT mode for all possible
two-application and three-application combinations.

IBM POWER8 for any possible two-application and three-
application combination. Data is presented as a box-and-
whisker plot, which shows the distribution of the values
into quartiles. The box, divided by the median value, repre-
sents 50% of the data around the median (25% above and
below the median). The remaining data points fall within
the whiskers. Values that differ more than 1.5 times the
inter-quartile range from the whiskers (above it for the top
edge and below it for the bottom edge) are considered
outliers and are represented as dots. The median value is
highlighted with an X mark. We now discuss how resource
sharing affects SMT performance for the two- and three-
application combinations.

2.2.1 Two-Application Combinations
We start the analysis by studying how pairs of applications
perform under SMT. The analysis provides hints as to how
applications react differently to SMT execution due to re-
duced allocation of partitioned resources versus interference
with co-runners in shared resources. Intuitively, the height
of the box-and-whisker relates to whether the performance
degradation of an application is mainly caused by parti-
tioned versus shared resources.

Focusing on xalancbmk, we observe that its box-and-
whisker is tall, which indicates that performance is highly
sensitive to the interference caused by its co-runner. SMT ex-
ecution with some co-runners leads to a slight performance
degradation (normalized IPC of 0.95); in contrast, SMT ex-
ecution with other co-runners leads to a large performance
drop (normalized IPC below 0.53). On the other hand, we
observe a short box-and-whisker for other applications such
as zeusMP with a normalized IPC ranging between 0.58 and
0.65. A short box-and-whisker suggests that performance
degradation primarily comes from partitioned resources
since all co-runners affect an application’s performance sim-
ilarly.

The most interesting finding, however, is to observe that
the performance degradation due to resource sharing varies
widely across applications. On the one hand, applications
such as milc or bwaves do not suffer from a severe per-
formance degradation as its normalized IPC under SMT
execution is above 0.7. On the other hand, applications such
as leslie3d, cactusADM and zeusMP, see their performance
significantly degrade irrespective of the specific co-runner.
For leslie3d, normalized performance can be as low as 0.45.

2.2.2 Three-Application Combinations

With three applications in a workload mix, the allocated
partitioned resources are further reduced and interference in
the shared resources potentially grows. A first observation is
that, as we observed for the two-application combinations,
while some applications are more sensitive to partitioned
resources (short box-and-whisker), others are more sensitive
to dynamically shared resources (tall box-and-whisker).

Nevertheless, note that applications such as libquantum
or xalancbmk move from a relatively tall box-and-whisker
under two-application combinations to a shorter box-and-
whisker under three-application combinations. This behav-
ior is explained by the fact that, as more applications run
simultaneously on an SMT core, each application receives
a smaller fraction of the partitioned resources. When a
partitioned resource becomes the main performance bottle-
neck, the box-and-whisker gets shorter. From a symbiotic
scheduling perspective, the most interesting finding is that
applications such as mcf and milc do not suffer from a
significantly higher performance degradation when running
in three-application combinations versus two-application
combinations.

Taking into account the widely different performance
degradations observed for each application when running
two- and three-application combinations compared to iso-
lated execution, an intelligent scheduling policy should: (i)
isolate the applications that suffer the highest performance
degradations under SMT, and (ii) co-schedule applications
whose performance degradation is similar under two- and
three-application combinations, on a single core. Such an
asymmetric schedule can minimize the high performance
degradation that some applications suffer from under SMT.
Doing so will improve overall system throughput. This
is the case for example for a four-application workload
comprised of leslie3d, mcf, zeusMP and lbm, for which an
asymmetric schedule in which leslie3d runs in isolation on
a separate core, while the other three applications (mcf,
zeusMP and lbm) co-run on another SMT core, improves
system throughput by 9.1% compared to a symbiotic sym-
metric schedule in which the most frequent schedule co-
runs leslie3d with mcf on one core and zeusMP with lbm on
another core.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 4

0%

10%

20%

30%

40%

50%

mcf

ga
mess

zeu
sM

P

cac
tusA

DM
leslie

3d
so

ple
x

ge
msFD

TD

Pe
rc

en
ta

tg
e 

of
 w

or
kl

oa
ds

(a) Percentage of workloads

0%

1%

2%

3%

4%

5%

6%

mcf

ga
mess

zeu
sM

P

cac
tusA

DM
leslie

3d
so

ple
x

ge
msFD

TD

ST
P 

im
pr

ov
em

en
t

(b) STP improvement

Fig. 2. Percentage of workloads including the applications on the hori-
zontal axis that improve performance in an asymmetric schedule com-
pared to the symbiotic symmetric schedule and their average perfor-
mance improvement.

3 ASYMMETRIC SCHEDULING

3.1 Potential for Asymmetric SMT Schedules

To illustrate the potential benefits of asymmetric scheduling
on SMT cores, we devise the following experiment. Taking
the SPEC CPU2006 benchmarks, we build 1400 random
four-application workloads. Each workload includes at least
one of the following benchmarks: mcf, gamess, zeusMP,
cactusADM, leslie3d, soplex or gemsFDTD. (These are the
seven benchmarks with the highest performance degra-
dation when running in two-application combinations, as
shown in Figure 1.) We will refer to these benchmarks as
the target applications. We evaluate the performance of
each workload running on two cores using two scheduling
algorithms: (i) a state-of-the-art symbiotic scheduler that
dynamically selects the best predicted symmetric sched-
ule [11], [12], which we refer to as the symbiotic symmetric
schedule; and (ii) a scheduling policy that assigns the target
application to a core in isolation and the three remaining
applications together to the other core — we refer to this
schedule as the asymmetric schedule.

Figure 2 presents the results of this experiment. Figure 2a
shows the percentage of workloads for which the asymmet-
ric schedule outperforms the symbiotic symmetric schedule.
The figure shows that workloads including leslie3d, zeusMP
and cactusADM perform better with the asymmetric sched-
ules for 46%, 23% and 18% of the evaluated workloads,
respectively. These results confirm that thread isolation
can indeed improve the performance of workloads includ-
ing SMT-adverse applications. The percentage is somewhat
lower for the workloads that include mcf, gemsFDTD, and
soplex but still reach higher performance under asymmetric
schedules for 11%, 8%, and 7% of the evaluated work-
loads, respectively. Finally, workloads including gamess only
achieve higher performance when gamess is isolated on a
core in an asymmetric schedule in 3.7% of the workloads.

To complement the previous observation, Figure 2b
on the right reports the average system throughput im-
provements that the asymmetric schedule achieves over the
symbiotic symmetric schedule. These results only consider
the workloads where the asymmetric schedule outperforms
the symbiotic symmetric schedule. For instance, the figure
indicates that for the workloads that include leslie3d, the
average improvement achieved by the asymmetric sched-
ule amounts to 5.3%, if we only take into account the

46% workloads where the asymmetric schedule effectively
outperforms the symbiotic symmetric schedule. Similarly,
the average performance benefits that thread isolation pro-
vides for workloads including cactusADM and zeusMP
amount to 3.8% and 2.9%, respectively. Workloads includ-
ing GemsFDTD and mcf obtain lower speedups of 2.6%
and 2.2%, respectively. Note that these workloads do not
benefit as much from asymmetric schedules, as previously
discussed. Finally, as discussed above, workloads including
soplex and gamess seldomly witness a performance improve-
ment with asymmetric schedules. On average, across the
workloads for which performance is improved, this benefit
amounts to 1.3% for soplex and to 1.0% for gamess.

In summary, these experiments show that there is a po-
tential performance benefit through thread isolation. How-
ever, not all workloads benefit equally. In general, as nor-
malized performance of the application to be isolated in
the asymmetric schedule is higher, the frequency at which
asymmetric schedules outperform the symbiotic symmetric
ones reduces, and so does the average performance benefit
achieved. Consequently, only when a workload includes
one of the applications that suffer the highest performance
degradation when running in two-application combinations
is there high potential for thread isolation. Therefore, it is
important to identify those applications to provide overall
system throughput benefits.

3.2 Identifying SMT-Adverse Applications

To classify applications as SMT-adverse or SMT-friendly,
we devise a new threshold referred to as the SMT-affinity
threshold. This threshold is based on the normalized IPC that
applications experience when running in two-application
combinations. It only considers this IPC because the goal
of the threshold is to estimate when an application running
in a symmetric schedule can greatly benefit from running in
isolation on a core.

We set the SMT-affinity threshold for our experimental
platform as follows, but it can be easily tuned towards other
systems and applications. To determine the threshold, we
first take the upper quartile (the value that divides the upper
box and the whisker) for each application in the two- and
three-application combinations and we calculate the upper
quartile average (uqa) performance of the applications in the
two- and three-application combinations. The upper quar-
tile denotes the combinations that suffer the least from SMT
interference; in other words, these are the best combinations
and the ones selected by the symbiotic symmetric scheduler.
On our platform, uqa performance equals 0.72 and 0.60 for
the two- and three-application combinations, respectively.

We compute the SMT-affinity threshold using the two-
and three-application uqa’s, as follows. We compute what
the best average normalized performance would be if we
were to execute three applications simultaneously and the
fourth in isolation, i.e., this amounts to (3× 0.60) + 1. And
we compare this against the average best performance if we
were to execute the applications in pairs, i.e., this amounts
to (2× 0.72) + (0.72 + PerfSMT2/ST ), with PerfSMT2/ST

the application’s normalized performance in a symmetric



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 5

schedule. This comparison can be expressed as follows:

(3× 0.60) + 1 > (2× 0.72) + (0.72 + PerfSMT2/ST )

PerfSMT2/ST < 0.64.
(1)

In other words, this means that if an application’s nor-
malized performance in a symmetric schedule is less than
0.64, we classify the application as SMT-adverse. We conser-
vatively increase the SMT-affinity threshold to 0.65 because
it is only used to determine whether thread isolation should
be evaluated, but the performance predicted by the SMT
interference models in the end determines whether thread
isolation should be engaged or not.

The dotted line in Figure 1 plots the SMT-affinity thresh-
old of 0.65 for our platform. Looking at the normalized IPC
of applications when running in two-application combina-
tions, we can infer that mcf, zeusMP, cactusADM, leslie3d,
and GemsFDTD will be classified as SMT-adverse most of
their execution time because their normalized performance
seldomly exceeds 0.65 with any co-runner. Note that these
are the five benchmarks that benefit more from isolated
execution, as shown in Figure 2. Nevertheless, the proposed
scheduler does not classify benchmarks statically, but based
on the normalized performance that they achieve dynami-
cally at runtime and thus, phase behavior can make some
benchmarks move between SMT-adverse and SMT-friendly
categories along their execution.

There are other benchmarks that do not frequently ben-
efit from asymmetric scheduling such as gamess but could
still be classified as SMT-adverse based on their normalized
IPC when running with some co-runners. This situation,
however, is unlikely to occur when running with the sym-
biotic scheduler because applications usually run with good
co-runners to maximize performance. Furthermore, even if
they are classified as SMT-adverse, the interference models
(see Section 4.1) should detect that an asymmetric schedule
isolating such applications would not improve performance
over a symbiotic symmetric schedule and, consequently, it
should keep the symmetric schedule.

By identifying the SMT-adverse applications, we avoid
evaluating asymmetric schedules by isolating all applica-
tions in the workload, which reduces the scheduling over-
head. Note that a higher threshold requires evaluating
thread isolation with more applications. In addition, the
SMT-adverse threshold prevents that model deviations end
up scheduling asymmetric schedules that perform worse
than the symmetric combinations. This situation is not fre-
quent but can occur at the beginning of the execution, where
correction factors (see Section 4.4) are not warmed up yet.

4 THREAD ISOLATION

Thread isolation is applied on top of the symbiotic scheduler
previously proposed by Feliu et al. [11], [12]. To adapt
to time-varying execution behavior, the symbiotic sched-
uler estimates the optimal symmetric schedule, for each
quantum. Once the symmetric schedule has been chosen,
the newly proposed thread isolation technique evaluates
whether any of the applications would benefit from an
asymmetric schedule. If so, the identified application is
isolated to run on a dedicated core; the other applications

0

0.5

1

1.5

2

2.5

App 1 App 2

Base

Resource

Miss

0

0.2

0.4

0.6

0.8

1

B R M

0

0.2

0.4

0.6

0.8

1

1.2

1.4

App 1 App 2

B' R' M'

Measured single-thread 

CPI stacks

Predicted normalized 

SMT CPI stacks

model

CPI 

Predicted slowdown

ed
App 1 App 2 

 Normalized single-

threaded CPI stacks

Fig. 3. Overview of the symbiosis model: first, measured CPI stacks are
normalized to obtain probabilities; then, the model predicts the increase
of the components and the resulting slowdown under SMT.

are then co-scheduled to run on SMT cores. Otherwise, the
symmetric schedule is maintained.

To understand how thread isolation works, we first
provide a brief background about symbiotic scheduling. We
next discuss the thread isolation proposal.

4.1 Symbiotic Scheduling

Symbiosis models. The baseline symbiotic scheduler used
in this paper is the one developed by Feliu et al. [11] [12].
This scheduler uses SMT interference models, which lever-
age CPI stacks to estimate job symbiosis. The left part
of Figure 3 shows a simplified CPI stack with only three
components: the base component plus two stall components,
namely resource and miss, which account for cycles during
which no instructions are committed. SMT symbiosis mod-
els predict the slowdown of each application in a workload
mix if this mix would be scheduled to run on an SMT
core. To this end, the CPI stack of each application in
single-threaded (ST) mode (i.e., when executed alone on
the core) is normalized and interpreted as a probability
distribution. For instance, there is approximately a 30%
chance that application 2 executes instructions on a cycle
(base component), a 25% chance of suffering a resource
stall, and a 45% chance of suffering a miss stall. Then, the
normalized stacks are used to calculate the probabilities
of the events to generate interference if the applications
would run concurrently on an SMT core. This interference
introduces some performance degradation and increases the
components of the SMT CPI stacks. Finally, the sum of the
predicted SMT CPI components for the SMT execution is
a prediction for the application’s performance under SMT.
The ratio of the predicted SMT CPI and the isolated CPI is a
prediction for the per-application SMT slowdown.

We use regression models to predict the components of
SMT CPI stacks based on the ST CPI stack components. The
models follow the equation

C ′i = αC + βCCi + γC
∑
j 6=i

Cj + δCCi

∑
j 6=i

Cj , (2)

in which Ci refers to the C component for application
i in the ST stack and C ′i refers to the same component
when application i co-runs with the other applications in
SMT mode. The j variable iterates over all applications
that form the evaluated schedule except i, and Cj refers
to the C component in the ST stacks of application j.
Hence, when evaluating a two-application combination i



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 6

refers to the application of which the model is estimating
the slowdown and j refers to the co-runner. In the case of a
three-application combinations j would iterate over the two
co-runners of application i. The parameters αC , βC , γC and
δC capture a component’s specific behavior when multiple
applications run simultaneously on the same SMT core.

We obtain an SMT interference model for each number
of applications co-scheduled in the same core. The models
are trained offline using experimental training data of the
applications when running alone, and in two- and three-
application combinations. We use linear regression to obtain
the parameters for each component αC , βC , γC and δC from
the ST and SMT CPI stacks of the applications. Note that
the parameters are tied to CPI components and SMT level
but not to applications. Therefore, as long as the training set
is representative, the model can be trained once and used
to schedule any set of applications. We refer the interested
reader to [11] and [12] for further details on the symbiosis
models.
Scheduling algorithm. Estimating the performance for each
possible co-schedule is a computationally challenging prob-
lem because the number of possible schedules quickly
grows with the number of cores and applications. To effi-
ciently cope with the large number of possible schedules, the
symbiotic scheduler uses the technique proposed by Jiang et
al. [13]. The scheduling problem is modeled as a minimum-
weight perfect matching graph problem. Applications are
represented as graph nodes and the weight of each edge
connecting every two nodes represents the slowdown that
the two connected applications will suffer if they run si-
multaneously on a SMT core. Hence, the perfect matching
graph with minimum weight represents the schedule with
the lowest performance degradation. Modeled as a graph,
the scheduling problem can be solved in polynomial time
using the blossom algorithm [14]. Again, see [11] and [12]
for further details.

4.2 Thread Isolation Algorithm
The symbiotic scheduler, as just described, predicts the best
symmetric schedule for each quantum. However, as shown
in Section 3, this schedule is not always the optimal one.
Depending on the workload, an asymmetric schedule could
possibly lead to higher overall system performance. There-
fore, after obtaining the symmetric schedule, we propose to
evaluate the potential performance benefit from thread iso-
lation. The thread isolation algorithm checks, for each possi-
ble pair of applications, whether an asymmetric schedule in
which we isolate one application to a dedicated core while
consolidating the other three applications on another SMT
core, outperforms the predicted best symmetric schedule. If
it does, the asymmetric schedule is applied.

Algorithm 1 presents pseudocode for the thread isolation
algorithm. It takes pairs of applications as input; these pairs
were previously selected through symbiotic scheduling1.
The algorithm consists of a main loop (lines 1 to 17), which
is repeated either until no improvement can be obtained by
applying thread isolation, or there are less than two couples

1. We use a symbiotic scheduler to select the best pairs of applications
but thread isolation can also be applied when these pairs are selected
following any other criteria.

Algorithm 1 Thread isolation algorithm
INPUT:
Optimal symbiotic schedule: couples of applications
(C1 ={A1, A2} to CN ={A2N−1, A2N})

1: do {
2: Max Asym benefit = 0

3: Thread isolation applied = FALSE

4: for all Ci, Cj : i 6= j ∧
∃ A∈Ci∪Cj : PerfSMT2/ST (A) < 0.65 do

5: STPSymb = STP couple(Ci) + STP couple(Cj)
6: {STPAsym, Asym combination} =

Find best asym combination(Ci∪Cj)
7: Asym benefit = STPAsym − STPSymb

8: if Asym benefit > Max Asym benefit then
9: Max Asym benefit = Asym benefit

10: Max Asym combination = Asym combination
11: end if
12: end for
13: if Max Asym benefit > 0 then
14: Apply to schedule(Max Asym combination)
15: Thread isolation applied = TRUE

16: end if
17: } while (Thread isolation applied)

of applications remaining and thus thread isolation cannot
be further applied.

The algorithm iterates over each possible pair of applica-
tion couples Ci and Cj , and for any application A in any of
these couples that potentially benefits from thread isolation,
the algorithm looks for the asymmetric combination that
provides the highest performance benefit among all the
possible pairs of couples (see lines 5 to 11). Once the best
asymmetric combination is found, it is applied (lines 13
to 16) and the main loop starts again with the remaining
application couples. Finally, the algorithm returns the new
schedule. This schedule can be formed by applications
running in isolation, couples of applications mapped to the
same core, and triplets of applications consolidated to run
together.

As discussed in Section 3, the workload mixes for which
thread isolation can improve performance are limited. Only
when the mix includes an SMT-adverse application does
thread isolation have a good chance of improving perfor-
mance. To identify SMT-adverse applications (Algorithm 1,
line 4) the SMT-affinity threshold is used (see Section 3.2).
Every quantum, the scheduler updates for each application
PerfSMT2/ST , the performance of the application in two-
application combinations normalized to its isolated per-
formance. If PerfSMT2/ST is below 0.65 the application is
considered SMT-adverse for the next quantum.

PerfSMT2/ST is calculated using the IPC that each appli-
cation achieved during the last quantum it ran in any two-
application combination and in isolation, respectively. These
values are dynamically updated by the scheduler every
quantum each application runs in either mode. In addition,
a sampling phase is periodically triggered (see Section 5.4)
to ensure that both the performance in isolation and in
two-application combinations are recent enough to properly



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 7

Algorithm 2 Find best asym combination function
INPUT:
Set of 4 applications S = {A1, A2,A3, A4}

1: STPMax = 0
2: for all A∈S: Anorm IPC < 0.65 do
3: STP = STPalone(Ai) + STPtriplet(S − {Ai})
4: if STP > STPMax then
5: STPMax = STP
6: Best Asym = (Ai, S − {Ai})
7: end if
8: end for

OUTPUT:
STPMax and Best Asym

classify applications. At runtime, mcf, zeusMP, cactusADM,
leslie3d and gemsFDTD are frequently classified as SMT-
adverse. Other applications such as soplex are also classified
as SMT-adverse depending on their execution phase and
workload. Note that limiting thread isolation to sets of
applications where there is good probability of improving
performance reduces the overhead of the algorithm, since
evaluating all the possible sets of four applications can
become too costly for workloads with a high application
count.

If a four-application combination includes an SMT-
adverse application, the performance of the best asym-
metric schedule and the symbiotic symmetric schedule are
compared (line 7). The performance (STP) of the sym-
metric combination is computed with the STP estimated
for the Ci and Cj couples proposed by the symbiotic
scheduler (line 5), whereas the best asymmetric schedule
and its estimated performance are obtained through the
Find best asym combination function (line 6). Algorithm 2
presents the pseudocode for this function. The function
receives as input a four-application workload (i.e., 2 appli-
cations from each couple Ci and Cj) and just evaluates the
asymmetric schedules that isolate an SMT-adverse applica-
tion. The predicted STP for these asymmetric combinations
is calculated as the predicted STP of the application running
alone plus the STP of the triplet composed of the remaining
applications running on the same core. To estimate the
performance of triplets, we leverage the interference model
for three-application combinations. The model estimates the
slowdown of an application when it is co-scheduled on the
core with two co-runners using the ST CPI stack of each ap-
plication. We obtain the performance of each application in
the triplet individually and the STP of the three-application
combination is the sum of all of them.

4.3 More than Two Applications per Core
Up to now, we assumed workloads with two applications
per core. We now generalize thread isolation to schedule
larger workloads. The main difference with the algorithm
explained in Section 4.2 is that input schedules (C1 to
CN in the input statement of Algorithm 1) will not be
couples of applications, but combinations of applications to
be scheduled on the same core. For example, if we consider
workloads where the number of applications ranges from

more than two applications per core to less than three,
input schedules should be formed by couples and triplets of
applications. Consequently, the Find best asym combination
function (Algorithm 2) should also be extended to addition-
ally evaluate thread isolation on sets of five applications (a
couple and a triplet). The extension of this function itself
is straightforward, as it only needs to use the interfer-
ence models to evaluate the performance of the possible
schedules when mapping an SMT-adverse application to a
dedicated core and the remaining applications to the other
core.

Our initial experiments on these workloads, however,
revealed that the performance degradation when schedul-
ing four applications on the same core is high and hin-
ders most performance benefits of thread isolation. We
therefore extended Algorithm 1 to evaluate thread isolation
taking combinations of three applications — Algorithm 1
takes them in pairs (line 4). In addition, we extended the
Find best asym combination function to take seven applica-
tions as input (two couples and one triplet) and find the
best combinations mapping an SMT-adverse application to
a dedicated core and two groups of three applications each
to two different cores.

4.4 Correction Factors
The accuracy of the symbiosis models is key for the effec-
tiveness of thread isolation. If asymmetric schedules are
erroneously applied due to symbiosis model deviations,
performance can be significantly degraded. To solve this
issue and make the predictions more accurate, we use
correction factors as in [11].

After a schedule has been executed during a quantum,
the scheduler updates the correction factors. Correction
factors are defined as the actual performance divided by the
performance estimated by the model. The scheduler keeps
one correction factor per possible combination of applica-
tions in each SMT mode. When predicting the slowdown
of an application for the next quantum, we multiply the
predicted performance with the corresponding correction
factor. This way, we learn from previous observations and
dynamically make the predictions more accurate. At the end
of each quantum, correction factors are updated using an
exponential moving average function, which smooths out
sudden changes in execution behavior. To update the cor-
rection factors, we need to know the isolated performance
for each application. Isolated performance is obtained by
very sparsely executing each application in ST mode on a
core (see Section 5.4 for scheduler implementation details).

5 EXPERIMENTAL SETUP

Before presenting our experimental results, we first detail
our methodology. This includes the system that we use, the
workloads, the metrics and the scheduler’s implementation
details.

5.1 System Features
We perform all experiments on an IBM Power System S812L
server, which is a POWER8 machine consisting of 10 cores
in total [15]. This processor is a dual-chip module (DCM)



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 8

in which two chips with 5 cores each operate as a shared-
memory machine. Each core can execute up to 8 SMT
hardware threads simultaneously. The cores feature a 64 KB
L1 data cache, a 32KB L1 instruction cache, and a 512KB
L2 cache; the L1 and L2 caches are private to a core. The on-
chip 80 MB last-level cache (LLC) is shared by all 10 cores.
Our IBM POWER8 system has 32GB of DRAM installed
on a single memory module, and runs Ubuntu v16.04 with
Linux kernel v4.4.0.

The DCM design implies non-uniform memory access
(NUMA) effects, i.e., memory accesses from cores in one
chip module to the memory controllers located on the
other chip module incur higher latency and reach lower
bandwidth than the accesses to the memory controller on
the same chip module [12]. These NUMA effects arise when
more than 5 cores are used in our machine. To prevent these
NUMA effects from disturbing our experimental results, we
restrict our experiments to at most 5 cores, i.e., we limit our
experiments to a single chip module. To evaluate a higher
number of cores, the proposed algorithm would need to be
extended to consider NUMA effects. This is left for future
work.

5.2 Workloads
We evaluate thread isolation using randomly chosen multi-
program workloads composed out of SPEC CPU2006 bench-
marks with reference input sets. For each benchmark, we
measure the number of instructions required to run during
120 seconds in isolated execution and save this number as
the target number of instructions. This reduces the amount
of variation in the benchmark execution times across the
experiments. We run each multiprogram experiment until
the last application in the workload mix completes its target
number of instructions. When an application reaches its
target number of instructions before others do, its perfor-
mance number (useful instructions executed per cycle or
IPC) is saved and the application is relaunched but its
performance is no longer monitored. This method ensures
that we compare the same part of the execution for each
application, and that the effective workload is uniform
during the full duration of the experiment, i.e., a constant
number of applications co-run at any point in time.

5.3 Metrics
We use system throughput (STP) [16] as the target metric
to optimize for. STP is equivalent to weighted speedup [2].
STP is a higher-is-better metric and measures system-level
performance. To provide a more solid and insightful eval-
uation, we also measure average normalized turnaround
time (ANTT) [16]. ANTT is a lower-is-better metric, and is
a measure for average per-application performance. ANTT
provides some notion of fairness as it effectively computes
the average per-application slowdown.

Running experiments on real hardware leads to non-
determinism, i.e., different runs of the same experiment
lead to slightly different performance results. We find the
95% confidence intervals for our proposed scheduler to
be ±0.39%, ±0.36% and ±0.30% for the 6-, 8- and 10-
application workloads, respectively. These are fairly tight
confidence intervals, much smaller than the performance
improvements that we report in this paper.

5.4 Scheduler Implementation

We implement the thread isolation algorithm in a user-level
scheduler, on top of the symbiotic symmetric scheduler by
Feliu et al. [11], [12]. This scheduler uses libpfm-4.8.0 to set
and read performance counters, and uses Linux system calls
and the cpu affinity attribute of processes to control the exe-
cution and the binding of applications in the workload mix
to the selected hardware contexts, respectively. The main
loop of the user-level scheduler performs the following
actions.

First, at the end of each quantum, the scheduler stops
the running applications, reads the performance counters,
and checks if any application has completed its target
number of instructions. If so, the IPC of the completed
application is saved and the application is relaunched to
ensure that the set of available applications is constant
throughout the experiment. Second, it runs the symbiotic
scheduling algorithm to determine which schedule to run
in the next quantum. As mentioned before, the scheduler
first determines the optimum symbiotic symmetric sched-
ule. The thread isolation algorithm subsequently determines
whether there is a potential benefit from an asymmetric
schedule. If so, an asymmetric schedule is installed. The
assignment of applications to hardware threads determines
on which core an application is run as hardware threads
are pinned to cores. Finally, once the schedule is determined
and installed, the user-level scheduler goes to sleep until the
next quantum.

We set the quantum length of our scheduler to 100 ms,
which offers a good compromise between scheduling over-
head and adaptability to the phase behavior of applica-
tions [11]. To obtain the performance in ST and in a two-
application combination of all benchmarks (the former one
is used to update the correction factors and to classify
applications as SMT-adverse or SMT-friendly), the sched-
uler triggers periodically a sampling phase. In this phase,
the scheduler (i) runs the applications alone on a core to
record its single-threaded (ST) performance, which takes
two quanta assuming that the workload consists of two
applications per core, and (ii) runs a symbiotic symmetric
schedule (1 quantum) to update the performance of appli-
cations in two-application combinations. Quanta during the
sampling phase are set to 20 ms and sampling phases are
only triggered every 200 quanta (once every 20 seconds).
Thus, they only account for 0.3% of the total execution time.

6 EXPERIMENTAL EVALUATION

This section first analyzes the accuracy of the SMT in-
terference models that drive thread isolation and discuss
how accurate they are across the SPEC applications. Then,
we evaluate the performance benefits that thread isolation
achieves, study how thread isolation works on two sam-
ple workloads, and present a sensitivity study varying the
workload size.

6.1 Model Accuracy

Figure 4 presents the accuracy of the SMT interference mod-
els used by the proposed scheduler when estimating the
slowdowns of each application when it is scheduled in two-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 9

0%
2%
4%
6%
8%

10%
12%
14%

bz
ip

2
gc

c
m

cf
go

bm
k

hm
m

er
sj

en
g

lib
qu

an
tu

m
h2

64
re

f
as

ta
r

xa
la

nc
bm

k
bw

av
es

ga
m

es
s

m
ilc

ze
us

M
P

ca
ct

us
A

DM
le

sl
ie

3d
na

m
d

so
pl

ex
po

vr
ay

ge
m

sF
D

TD lb
m

av
er

ag
e

Av
er

ag
e 

ab
so

lu
te

 e
rr

or
Interference model Interference model + CFs

(a) 2-application combinations model

0%
2%
4%
6%
8%

10%
12%
14%
16%

bz
ip

2
gc

c
m

cf
go

bm
k

hm
m

er
sj

en
g

lib
qu

an
tu

m
h2

64
re

f
as

ta
r

xa
la

nc
bm

k
bw

av
es

ga
m

es
s

m
ilc

ze
us

M
P

ca
ct

us
A

DM
le

sl
ie

3d
na

m
d

so
pl

ex
po

vr
ay

ge
m

sF
D

TD lb
m

av
er

ag
e

Av
er

ag
e 

ab
so

lu
te

 e
rr

or

Interference model Interference model + CFs

(b) 3-application combinations model

Fig. 4. Per-application average absolute error for the two- and three-application models without and with correction factors.

(Figure 4a) and three-application (Figure 4b) combinations.
For each model, the figure shows the raw model error
and the error when the model is used by the scheduler in
combination with correction factors.

To evaluate the raw model error of the devised models,
we use leave p-out cross-validation. In particular, to evalu-
ate the accuracy of the two-application combinations model,
we leave out two applications, build the interference model
with the data of the remaining applications, and evaluate the
model error (at multiple execution points) when estimating
the slowdown of the pair of applications left out when con-
structing the model. These steps are repeated for all possible
two-application combinations and the obtained results are
aggregated to calculate the average error of the model. The
same methodology is applied to obtain the average error for
the three-application combinations.

The error reported for the model used in combination
with correction factors is obtained from the execution of the
different workloads evaluated in Section 6.3. In this case,
for each quantum, we record the estimated slowdown of
each application in the schedule that is going to be executed
and its instruction count. After the schedule runs, we record
the IPC achieved by each application. Once the workload
completes, we use a profile of the IPC of the applications
when running alone to obtain the actual slowdown that
each application suffered in each quantum. This data is
aggregated for all quanta and workloads to report the model
accuracy with correction factors. Unfortunately, this accu-
racy results are less statistically sound than the raw model
error. Note that they only consider the combinations of
applications that are run (we do not know the performance
of combinations that are not executed) and thus, they only
take accuracy data from a subset of the combinations.

The average error for the two-application combinations
model ranges from 5.0% (h264ref ) to 13.9% (zeusmP), reach-
ing an average absolute error that amounts to 7.6% across
all evaluated applications. The average error of the 3-
application combinations interference model grows for all
applications. The average error ranges from 5.4% (povray)
to 15.8% (zeumsMP) and reaches an average of 10.3% across
all evaluated applications.

Correction factors effectively reduce the modeling error
to average absolute errors of 5.6% and 8.9% for the two-
and three-application combinations models, respectively.
Correction factors efficacy varies across applications and
mostly depends on the phase behavior of the applications,
but they reduce the model error for all applications except

gemsFDTD, bwaves, and libquantum. The performance of the
former two is relatively sheer within very short intervals,
which makes correction factors less meaningful. Libquan-
tum has some relatively long steady phases and hence the
slightly lower accuracy obtained can be a side effect of not
considering all possible combinations.

6.2 Performance Evaluation

We now evaluate thread isolation in detail. We consider four
scheduling policies. They are all implemented in the user-
level scheduler and only differ in the scheduling policy to
ensure a fair comparison. The evaluated policies include:
• Random scheduler. The random scheduler obtains

a random schedule for each quantum. The random
scheduler serves as the baseline throughout the experi-
mental evaluation.

• Linux CFS scheduler. The default scheduler in Linux
is the Completely Fair Scheduler (CFS). To ‘emulate’
the behavior of the Linux scheduler, we allow all the
applications in the workload mix to run on any of
the available hardware threads. Hence, the user-level
scheduler does not pin the applications to a particular
hardware thread or core. By doing so, we let the OS
scheduler decide which hardware thread should run
which application. We also restrict the available hard-
ware threads to two threads per core as we observe
lower system throughput for Linux when the eight
hardware threads of each core in our experimental plat-
form are available for the OS to schedule applications.

• Symbiotic scheduler. This scheduler, proposed by Feliu
et al. [11], [12], uses symbiosis models to evaluate the
performance of each possible symmetric schedule and
the blossom algorithm to identify the optimal one.

• TI-symbiotic scheduler. Our proposed scheduler,
which improves upon the symbiotic scheduler by iden-
tifying applications that benefit from thread isolation
through asymmetric schedules.

6.3 System Throughput

Figure 5 reports the system throughput improvements for
the TI-symbiotic, symbiotic and Linux schedulers relative to
random scheduling. We consider three scenarios with 3, 4
and 5 cores. In each scenario, the number of applications
in the workload mix equals twice the number of cores (i.e.,
6 applications for 3 cores, 8 applications for 4 cores, and



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 10

-2%

0%

2%

4%

6%

8%
ST

P 
im

pr
ov

em
en

t

Sorted workloads

Linux Symbiotic TI-symbiotic

(a) 6-application workloads

-2%

0%

2%

4%

6%

8%

ST
P 

im
pr

ov
em

en
t

Sorted workloads

Linux Symbiotic TI-symbiotic

(b) 8-application workloads

-2%

0%

2%

4%

6%

8%

ST
P 

im
pr

ov
em

en
t

Sorted workloads

Linux Symbiotic TI-symbiotic

(c) 10-application workloads

Fig. 5. STP improvement for the TI-symbiotic, symbiotic and Linux
schedulers relative to random scheduling.

10 applications for 5 cores). Each point on the horizontal
axis represents a different workload, for a total of forty
workloads in each scenario. Workloads are sorted according
to their normalized STP.

At first glance, the figures show that the TI-symbiotic
scheduler improves STP compared to the symbiotic sched-
uler for a wide set of the evaluated workloads. This perfor-
mance benefit comes from the ability of the TI-symbiotic
scheduler to devise asymmetric schedules by isolating
threads, while the original symbiotic scheduler is con-
strained to symmetric schedules only. We further note that
both the TI-symbiotic and symbiotic schedulers outperform
the Linux scheduler across all workloads. A deeper analysis
of the results reveals interesting trends, which we discuss
next.

For the workloads on the left (i.e., the workloads with the
lowest STP improvement), the TI-symbiotic and symbiotic
schedulers achieve similar performance. This suggests that
these workloads do not include any of the SMT-adverse
applications. Consequently, none of the threads is isolated,
and as a result, the TI-symbiotic and symbiotic schedulers
achieve similar performance (within statistical bounds due
to non-determinism).

We note though that several workload mixes that do
include SMT-adverse applications (e.g., zeusMP, cactusADM

and leslie3d) — unexpectedly maybe — do not experience a
significant STP improvement from thread isolation. The rea-
son is that in order to improve overall system performance,
the other applications in the workload mix should not be
penalized too much from being consolidated on SMT cores.
This limits the opportunity from thread isolation.

It is interesting to note that the number of workloads
benefiting from thread isolation increases with workload
size: 55% of 6-application workloads benefit from thread
isolation versus 65% for the 8-application workloads versus
80% for the 10-application workloads. (These data points
are identified as the points where the TI-symbiotic curve
diverges from the symbiotic curve in Figure 5.) The intuitive
explanation is that the more applications in the workload
mix, the higher the likelihood is to find a four-application
combination for which thread isolation does improve per-
formance. Consequently, the performance benefits of the TI-
symbiotic scheduler are more significant as the number of
applications in the workload mix increases.

Related to the previous observation, we note that, al-
though the number of workloads that benefit from thread
isolation increases, the maximum achieved performance
benefit decreases somewhat with workload size. The maxi-
mum performance benefit from thread isolation over sym-
biotic scheduling (compare TI-symbiotic scheduling versus
symbiotic scheduling) decreases from 5.5% to 4.8% to 4.2%
for the 6, 8 and 10-application workloads, respectively. This
is attributed to the observation that, as the number of appli-
cations in the workload increases, the relative improvement
due to each application is reduced.

Overall, we report significant improvements in STP
through symbiotic scheduling complemented with thread
isolation. The TI-symbiotic scheduler yields improvements
in system throughput up to 7.5%, 6.6% and 5.8% for the 6-,
8- and 10-application workloads, respectively, compared to
random scheduling. This is a significant improvement com-
pared to the previously proposed symbiotic scheduler, with
STP improvements of 2.7%, 2.6% and 3.6%, respectively.
The Linux scheduler on the other hand, is performance-
neutral on average compared to random scheduling. On
average across the workloads that include at least one
SMT-adverse application, the SMT improvements of the
TI-symbiotic scheduler compared to the symbiotic sched-
uler amount to 2.6%, 3.0% and 1.8% for the 6-, 8- and
10-application workloads, respectively. We thus conclude
that thread isolation leads to substantial improvements in
system throughput. We want to re-emphasize that these
results were obtained on real hardware, hence these system
throughput improvements are readily available on existing
systems.

6.4 Per-Application Performance

Not only does thread isolation improve overall system
throughput, it also improves per-application performance.
Figure 6 reports ANTT improvement (reduction) for the TI-
symbiotic, symbiotic and Linux schedulers, again relative
to random scheduling. The performance trends are simi-
lar to the ones observed for STP, although the achieved
improvements are smaller. For the 6- and 8-application
workloads, the TI-symbiotic scheduler improves ANTT for



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 11

-2%

0%

2%

4%

6%
AN

TT
 im

pr
ov

em
en

t

Sorted workloads

Linux Symbiotic TI-symbiotic

(a) 6-application workloads

-2%

0%

2%

4%

6%

AN
TT

 im
pr

ov
em

en
t

Sorted workloads

Linux Symbiotic TI-symbiotic

(b) 8-application workloads

-2%

0%

2%

4%

6%

AN
TT

 im
pr

ov
em

en
t

Sorted workloads

Linux Symbiotic TI-symbiotic

(c) 10-application workloads

Fig. 6. ANTT improvement for the TI-symbiotic, symbiotic and Linux
schedulers relative to random scheduling.

about half of the workloads, with maximum improvements
in ANTT by 4.5% and 6.2%, respectively, compared to
random scheduling. For the 10-application workloads, the
TI-symbiotic scheduler improves ANTT compared to the
symbiotic scheduler for about 50% of the workloads, even
though the symbiotic scheduler also outperforms the TI-
symbiotic scheduler for around 25% of the workloads. Com-
pared to the random scheduler, the TI-symbiotic scheduler
improves ANTT by up to 4.1%.

The reason why the TI-symbiotic scheduler improves
STP more than ANTT is a result of the fact that thread
isolation is driven by STP, i.e., thread isolation is engaged
if it is predicted to improve STP. Improving STP may in
some cases lead to a (small) degradation in per-application
performance. We observe that the degradation in ANTT due
to thread isolation is limited — compare the TI-symbiotic
versus symbiotic curves in Figure 6. In fact, ANTT im-
provements are more frequent and with higher magnitude
than the ANTT losses. This is a nice observation since
thread isolation boosts the performance of the isolated ap-
plication while adversely affecting the other consolidated
applications. In other words, we conclude that the negative
performance impact of thread isolation on the consolidated
applications is limited.

0.0

0.2

0.4

0.6

0.8

1.0

leslie
3d

hmmer
lbm

lib
quantu

m

ze
usM

P
gobmk

milc

h264ref

lib
quantu

m
namd

N
or

m
al

iz
ed

 IP
C

Symbiotic TI-symbiotic

(a) Sample workload 1

0.0

0.2

0.4

0.6

0.8

1.0

mcf

hmmer
asta

r

bwave
s

xa
lan

cb
mk

leslie
3d

ca
tusA

DM milc

ca
ctu

sA
DM

povra
y

N
or

m
al

iz
ed

 IP
C

Symbiotic TI-symbiotic

(b) Sample workload 2

Fig. 7. Normalized IPC of individual applications when running the
sample workloads under symbiotic and TI-symbiotic scheduling.

6.5 Workload Case Study

We now present a case study for two particular workloads
to further gain insight into how thread isolation works and
affects performance. We consider two sample 10-application
workloads under the TI-symbiotic and symbiotic sched-
ulers. Figure 7a and Figure 7b present the IPC that each
application in the workloads achieves with either sched-
uler (IPC normalized to isolated single-threaded execution).
Figures 8a and 8b report the fraction of time during which
the applications run in isolation, in a couple, or as a triplet
under TI-symbiotic scheduling. Note that the applications
always run in couples under the original symbiotic sched-
uler since it only devises symmetric schedules.

Focusing on sample workload 1, we observe that the
normalized IPC of leslie3d greatly improves from 0.50 with
the symbiotic scheduler to 0.86 with the TI-symbiotic sched-
uler. As Figure 8a illustrates, this performance benefit is
obtained by running in isolation for around 70% of the time.
ZeusMP (20%) and lbm (7%) also run in isolation for some
fraction of time, which leads to somewhat improved per-
formance under TI-symbiotic scheduling. It is an interesting
observation that, even though zeusMP was also classified
as an SMT-adverse application, it runs more than 40% of
the time in a triplet. This situation occurs because zeusMP
does not suffer a much higher performance degradation
when running in triplets compared to couples, as Figure 1
shows. Consequently, when it does not run in isolation on
a core, it is a good candidate to be scheduled in a triplet.
The other applications run either in couples or in triplets
for the entire time and suffer from a small performance
degradation. The two instances of libquantum are the ones
that more frequently run in a triplet and consequently suffer
the highest, performance degradation (by 12% at most).

Similar observations can be made for sample workload 2.
In this case, leslie3d runs in isolation for 75% of the execution
time and the two instances of cactusADM also run each one



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 12

0%

20%

40%

60%

80%

100%

les
lie
3d

hm
me
r

lbm

lib
qu
an
tu
m

ze
us
MP

go
bm
k

mi
lc

h2
64
ref

lib
qu
an
tu
m

na
md

Fr
eq
ue
nc
y

Alone Couple Triplet

(a) Sample workload 1

0%

20%

40%

60%

80%

100%

mc
f

hm
me
r

ast
ar

bw
av
es

xa
lan
cb
mk

les
lie
3d

ca
tus
AD
M mi

lc

ca
ctu
sA
DM

po
vra
y

Fr
eq
ue
nc
y

Alone Couple Triplet

(b) Sample workload 2

Fig. 8. Frequency of operation under TI-symbiotic scheduling for the
applications of the sample workloads.

nearly 30% of the time alone. Note that two applications can
run in isolation on different cores at the same time. There-
fore, they improve their individual performance compared
to the symbiotic scheduler. On the contrary, mcf and bwaves
are the ones that more frequently run in a triplet and thus,
suffer the highest performance degradation, although the
overall degradation is lower than the total benefits obtained
by leslie3d and cactusADM.

The analyzed results are not surprising. We could have
expected beforehand that the applications that run in iso-
lation would experience a performance improvement at
the cost of the other applications that run in couples or
triplets. However, the key point here is to observe how
the performance benefit from running in isolation exceeds
the performance losses from running in triplets, resulting in
overall system throughput improvement. In particular for
the sample workloads 1 and 2, thread isolation improves
STP by 3.2% and 3.4% while, at the same time, also improv-
ing ANTT by 2.8% and 1.8%, respectively.

6.6 Workload Size Sensitivity Analysis

So far, we considered scenarios in which the number of
applications is always twice the number of cores. Obviously,
this may not always be the case in practice. We therefore
perform a sensitivity analysis to evaluate the effectiveness
of thread isolation across different workload mixes in which
the number of applications exceeds the number of cores by
a factor of two. Note that thread isolation could also be
applied to smaller workloads with less than two applica-
tions per core. In fact, this is straightforward and leads to
the same schedule as the previously proposed symbiotic job
scheduler. Hence, we do not consider this case here further.

Figures 9 and 10 report system throughput improve-
ments for the TI-symbiotic, symbiotic and Linux sched-
ulers relative to random scheduling when running large
workloads. We evaluate workload mixes with 9 and 10

-4%

-2%

0%

2%
4%

6%

8%

ST
P 

im
pr

ov
em

en
t

Sorted workloads

Linux Symbiotic TI-symbiotic

(a) 9-application workloads

-4%

-2%

0%

2%

4%

6%

ST
P 

im
pr

ov
em

en
t

Sorted workloads

Linux Symbiotic TI-symbiotic

(b) 10-application workloads

Fig. 9. STP improvement for the TI-symbiotic, symbiotic and Linux
schedulers relative to random scheduling running large workloads on
4 cores.

applications considering 4 cores, and workload mixes with
11 and 12 applications considering 5 cores, respectively.
The figures show that thread isolation also improves STP
over symbiotic scheduling for a large workload scenario. As
expected, performance benefits are higher when there are
fewer applications per core as the opportunity for thread
isolation is higher, see 9 versus 10 applications on 4 cores as
well as 11 versus 12 applications on 5 cores. As the number
of applications grows, SMT-friendly applications are more
likely to be already scheduled in triplets and mapped to
the same core as the symbiotic schedule, which limits the
ability of thread isolation to find a schedule with higher
performance.

7 RELATED WORK

Simultaneous multithreading (SMT) was proposed by
Tullsen et al. [1] as a way to improve the utilization and
throughput of a superscalar out-of-order core by executing
instructions from different threads in the same cycle. In-
terestingly, most of the large core resources can be shared
or partitioned among the concurrent threads; this includes
the reorder buffer, issue queues, functional units, physi-
cal register file, L1 caches, etc. Only a limited number of
resources need replication including the program counter,
global branch history, register map, return address stack,
etc. Different studies report that the chip area overhead of
SMT is limited to 5% to 20% [17], [18]. The SMT throughput
benefits outweigh the chip area overheads by a signifi-
cant margin. In addition to improving core utilization and
system throughput, recent research has shown that SMT
multicore processors are very flexible and can perform as
well as or even better than heterogeneous multicores that
have a fixed proportion of big out-of-order cores and small
in-order cores [19]. When the active thread count is low,



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 13

-2%

0%

2%

4%

6%

8%
ST

P 
im

pr
ov

em
en

t

Sorted workloads

Linux Symbiotic TI-symbiotic

(a) 11-application workloads

-2%

0%

2%

4%

6%

ST
P 

im
pr

ov
em

en
t

Sorted workloads

Linux Symbiotic TI-symbiotic

(b) 12-application workloads

Fig. 10. STP improvement for the TI-symbiotic, symbiotic and Linux
schedulers relative to random scheduling running large workloads on
5 cores.

per-thread performance is high (a single thread can use
all of the core resources); on the other hand, when the
active thread count is high, high throughput is achieved by
running the threads concurrently on the SMT core (at the
cost of per-thread performance). Not surprisingly, the high-
performance processors on the market today from IBM, Intel
and AMD [20] all implement the SMT paradigm to improve
system throughput.

Due to fine-grained resource sharing among co-running
threads, the SMT throughput and effectiveness widely
varies across workloads. If the applications in the workload
balance their requirements among the shared resources,
hardware utilization is high which leads to high overall
system throughput. However, workloads composed of ap-
plications that severely compete for the same resources can
have a substantial impact of system throughput; one such
example may be cache thrashing [21], i.e., one application
kicking out data of another co-running application from
cache. The need to intelligently select which applications
to co-run was recognized soon after SMT processors were
introduced. Snavely and Tullsen [2] proposed symbiotic job
scheduling, a mechanism to decide which applications to
co-run on a core to maximize throughput. The proposed
solution leverages sampling periods, during which all (or a
subset of) the possible combinations are executed for a short
duration of time to quickly identify well-performing symbi-
otic schedules, which are then selected to run for a longer
duration. Unfortunately, this mechanism does not scale well
as the number of possible combinations grows. To overcome
the sampling overhead, Eyerman and Eeckhout [8] pro-
pose model-based SMT scheduling. An interference model
predicts the slowdown each application would encounter
when co-scheduled with any of the other applications in
the workload mix, and the best performing combination
is selected. However, the inputs for the model require

hardware support not available in current processors. This
problem was recently avoided by Feliu et al. [11], [12],
who develop new interference models leveraging the CPI
accounting mechanism of the IBM POWER8 processor to
estimate the performance of combinations of application on
current real hardware.

Many other studies have followed different approaches
to maximize the throughput of SMT processors by schedul-
ing the best combinations of applications. Parekh et. al. [22]
propose thread-sensitive scheduling, a scheduling algo-
rithm that determines the best combinations based on the
applications’ IPCs and memory-related metrics. Following
a similar approach, Feliu et al. [9] propose to balance L1
cache bandwidth requirements across the cores to reduce
interference and improve throughput. Cazorla et al. [23]
guide the allocation of applications to cores based on their
memory behavior and instruction-level parallelism. Other
studies have explored the use of models and profiling to
estimate the SMT benefit. Moseley et al. [24] use regres-
sion on performance counter measurements to estimate the
speedup of SMT when co-executing two applications. Porter
et al. [25] estimate the speedup of a multithreaded appli-
cation when enabling SMT, based on performance counter
events and machine learning. Settle et al. [26] predict job
symbiosis using offline profiled cache activity maps. Mars et
al. [27] use microbenchmarks called bubbles to measure how
much an application suffers from pressure in the memory
subsystem; they do so by increasing the pressure imposed
by the bubble. Using this information, obtained during a
characterization phase, the complexity for finding good co-
schedules of applications is reduced. In follow-up work,
Zhang et al. [28] propose a similar methodology to pre-
dict the interference among threads on an SMT core. They
develop microbenchmarks called rulers that stress different
core resources, and by co-running each application with
each ruler in an offline profiling phase, the sensitivity of
each application to contention in each of the core resources
is measured. By combining resource usage and sensitivity
to contention, interference can be predicted and used to
guide scheduling. Finally, Radojković et al. [29] propose a
method based on Extreme Value Theory that allows for the
prediction of the performance of the optimal job assignment.
They state that by running a sample of the possible job
assignments is enough to capture a close to optimal assign-
ment with high probability.

As mentioned in the introduction, none of this prior
work considers thread isolation to improve SMT through-
put. In this work, we find that isolating SMT-adverse
threads to a dedicated core while consolidating the other
threads on other SMT cores can lead to significant im-
provements in system throughput over previously proposed
symbiotic SMT schedulers.

8 CONCLUSIONS

SMT processors share most of the hardware resources
among threads co-executing on the core. This design char-
acteristic makes SMT performance strongly dependent on
which applications are scheduled for concurrent execution.
Co-scheduling applications with minimum interference in



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 14

the shared resources reduces contention and improves per-
formance. Many symbiotic schedulers in the literature pur-
sue this goal. However, as they target system throughput,
previously proposed symbiotic schedulers are restricted to
symmetric schedules, in which the same number of applica-
tions is mapped to each core.

In this paper, we show that asymmetric schedules, in
which the number of applications per core varies, can sig-
nificantly outperform symmetric schedules. Such scenarios
arise due to the widely different performance degradations
that applications experience under SMT. Consequently, an
asymmetric schedule that intelligently isolates SMT-adverse
applications to a dedicated core can provide significant
performance benefits.

To leverage the previous finding, we propose thread iso-
lation as a useful complement to state-of-the-art symbiotic
(symmetric) scheduling. Thread isolation predicts whether
converting a symmetric schedule into an asymmetric sched-
ule by isolating an SMT-adverse applications to a dedicated
core is going to result in higher overall system performance.
If so, the asymmetric schedule is enforced. Our experimental
evaluation on an IBM POWER8 server demonstrates that
thread isolation improves system performance by up to
5.5% over previously proposed state-of-the-art symbiotic
schedulers that devise only symmetric schedules.

ACKNOWLEDGMENTS

Josué Feliu has been partially supported through a
postdoctoral fellowship by the Generalitat Valenciana
(APOSTD/2017/052). Additional support has been pro-
vided by the Ministerio de Ciencia, Innovación y Univer-
sidades and the European ERDF under Grant RTI2018-
098156-B-C51, as well as, by the “Ayudas a Primeros Proyec-
tos de Investigación” (PAID-06-18), Vicerrectorado de In-
vestigación, Innovación y Transferencia de la Universitat
Politènica de València under grant SP20180140. Lieven Eeck-
hout’s research program is supported through FWO grants
no. G.0434.16N and G.0144.17N, and the European Research
Council (ERC) Advanced Grant agreement no. 741097.

REFERENCES

[1] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
multithreading: Maximizing on-chip parallelism,” in International
Symposium on Computer Architecture (ISCA), 1995, pp. 392–403.

[2] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for si-
multaneous multithreading processor,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2000, pp. 234–244.

[3] A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic jobschedul-
ing with priorities for a simultaneous multithreading processor,”
in SIGMETRICS International Conference on Measurement and Mod-
eling of Computer Systems, 2002, pp. 66–76.

[4] G. K. Dorai and D. Yeung, “Transparent threads: resource sharing
in SMT processors for high single-thread performance,” in Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2002, pp. 30–41.

[5] M. Gomaa, M. D. Powell, and T. N. Vijaykumar, “Heat-and-run:
Leveraging SMT and CMP to manage power density through the
operating system,” in International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
2004, pp. 260–270.

[6] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum, “Perfor-
mance of multithreaded chip multiprocessors and implications for
operating system design,” in Annual Conference on USENIX Annual
Technical Conference, 2005, pp. 26:1–26:14.

[7] M. De Vuyst, R. Kumar, and D. M. Tullsen, “Exploiting unbal-
anced thread scheduling for energy and performance on a cmp
of smt processors,” in International Parallel Distributed Processing
Symposium (IPDPS), 2006.

[8] S. Eyerman and L. Eeckhout, “Probabilistic job symbiosis mod-
eling for SMT processor scheduling,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2010, pp. 91–102.

[9] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-bandwidth
aware thread allocation in multicore SMT processors,” in Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2013, pp. 123–132.

[10] A. Morari, C. Boneti, F. J. Cazorla, R. Gioiosa, C. Y. Cher, A. Buyuk-
tosunoglu, P. Bose, and M. Valero, “SMT malleability in IBM
POWER5 and POWER6 processors,” IEEE Transactions on Comput-
ers (TC), vol. 62, no. 4, pp. 813–826, 2013.

[11] J. Feliu, S. Eyerman, J. Sahuquillo, and S. Petit, “Symbiotic job
scheduling on the IBM POWER8,” in International Symposium on
High Performance Computer Architecture (HPCA), 2016, pp. 669–680.

[12] J. Feliu, S. Eyerman, J. Sahuquillo, S. Petit, and S. Eeckhout,
“Improving IBM POWER8 performance through symbiotic job
scheduling,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 28, no. 10, pp. 2838–2851, 2017.

[13] Y. Jiang, X. Shen, J. Chen, and R. Tripathi, “Analysis and ap-
proximation of optimal co-scheduling on chip multiprocessors,”
in International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2008, pp. 220–229.

[14] J. Edmonds, “Maximum matching and a polyhedron with 0, l-
vertices,” J. Res. Nat. Bur. Standards B, vol. 69, pp. 125–130, 1965.

[15] B. Sinharoy, J. Van Norstrand, R. Eickemeyer, H. Le, J. Leenstra,
D. Nguyen, B. Konigsburg, K. Ward, M. Brown, J. Moreira, D. Lev-
itan, S. Tung, D. Hrusecky, J. Bishop, M. Gschwind, M. Boersma,
M. Kroener, M. Kaltenbach, T. Karkhanis, and K. Fernsler, “Ibm
power8 processor core microarchitecture,” IBM Journal of Research
and Development, vol. 59, no. 1, pp. 2:1–2:21, 2015.

[16] S. Eyerman and L. Eeckhout, “System-level performance metrics
for multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53,
2008.

[17] J. Burns and J.-L. Gaudiot, “SMT layout overhead and scalability,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 13,
no. 2, pp. 142–155, 2002.

[18] Y. Li, K. Skadron, D. Brooks, and Z. Hu, “Performance, energy,
and thermal considerations for SMT and CMP architectures,” in
International Symposium on High-Performance Computer Architecture
(HPCA), 2005, pp. 71–82.

[19] S. Eyerman and L. Eeckhout, “The benefit of SMT in the multi-
core era: Flexibility towards degrees of thread-level parallelism,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014, pp. 591–606.

[20] T. Singh, A. Schaefer, S. Rangarajan, D. John, C. Henrion,
R. Schreiber, M. Rodriguez, S. Kosonocky, S. Naffziger, and A. No-
vak, “Zen: An energy-efficient high-performance × 86 core,” IEEE
Journal of Solid-State Circuits, vol. 53, no. 1, pp. 102–114, 2018.

[21] S. Hily and A. Seznec, “Contention on 2nd level cache may limit
the effectiveness of simultaneous multithreading,” 1997.

[22] S. Parekh, S. J. Eggers, and H. M. Levy, “Thread-sensitive schedul-
ing for SMT processors,” in University of Washington TR 2000-04-02,
2014.

[23] C. Acosta, F. J. Cazorla, A. Ramirez, and M. Valero, “Thread to
core assignment in SMT on-chip multiprocessors,” in International
Symposium on Computer Architecture and High Performance Comput-
ing (SBAC-PAD), 2009, pp. 67–74.

[24] T. Moseley, J. Kihm, D. Connors, and D. Grunwald, “Methods
for modeling resource contention on simultaneous multithreading
processors,” in International Conference on Computer Design: VLSI in
Computers and Processors, 2005, pp. 373–380.

[25] L. Porter, M. A. Laurenzano, A. Tiwari, A. Jundt, W. A. Ward, Jr.,
R. Campbell, and L. Carrington, “Making the most of SMT in HPC:
System- and application-level perspectives,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 11, no. 4, pp. 59:1–
59:26, Jan. 2015.

[26] A. Settle, J. Kihm, A. Janiszewski, and D. Connors, “Architectural
support for enhanced SMT job scheduling,” in International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2004, pp. 63–73.

[27] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
Up: Increasing Utilization in Modern Warehouse Scale Computers



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 15

via Sensible Co-locations,” in International Symposium on Microar-
chitecture (MICRO), 2011, pp. 248–259.

[28] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “SMiTe: Precise
QoS prediction on real-system SMT processors to improve utiliza-
tion in warehouse scale computers,” in International Symposium on
Microarchitecture (MICRO), 2014, pp. 406–418.

[29] P. Radojković, V. Čakarević, M. Moretó, J. Verdú, A. Pajuelo, F. J.
Cazorla, M. Nemirovsky, and M. Valero, “Optimal task assignment
in multithreaded processors: A statistical approach,” in Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2012, pp. 235–248.

Josué Feliu received his MSc and PhD de-
grees in computer engineering from the UPV,
Spain, in 2012 and 2017, respectively. He is
currently working as a postdoctoral researcher at
the Department of Computer Engineering of the
same university. His research interests include
scheduling strategies and performance model-
ing for multicore and multi-threaded processors.
He was awarded the ”IEEE TCSC Outstanding
Ph.D Dissertation Award” in 2017.

Julio Sahuquillo received the BS, MS, and
PhD degrees from the UPV, Spain, all in com-
puter engineering. He is a Full Professor with
the Department of Computer Engineering at the
UPV. He has taught several courses on com-
puter organization and architecture. He has au-
thored over 150 refereed conference and jour-
nal papers. His current research interests in-
clude multi- and manycore processors, memory
hierarchy design, cache coherence, GPU archi-
tecture, and architecture-aware scheduling. Dr.

Sahuquillo is a member of the IEEE Computer Society.

Salvador Petit received the PhD degree in com-
puter engineering for the UPV, Spain. Since
2009, he has been an Associate Professor with
the Computer Engineering Department, UPV,
where he has been teaching several courses
on computer organization. He has authored over
100 refereed conference and journal papers. His
current research interests include multithreaded
and multicore processors, memory hierarchy de-
sign, GPU architecture, and resource manage-
ment. Dr. Petit is a member of the IEEE Com-

puter Society. In 2013, he received the Intel Early Career Faculty Honor
Program Award.

Lieven Eeckhout received the PhD degree in
computer science and engineering from Ghent
University, in 2002. He currently is a Full Profes-
sor at Ghent University, Belgium. His research
interests are in the area of computer architec-
ture, with a specific interest in performance anal-
ysis, evaluation and modeling, as well as dy-
namic resource management. He is the recipi-
ent of the 2017 ACM SIGARCH Maurice Wilkes
Award, the 2017 ACM SIGPLAN OOPSLA Most
Influential Paper Award, and was elevated to

IEEE Fellow in 2018. He served as the Editor-in-Chief of IEEE Micro
(2015–2018).


	Introduction
	Performance Characterization in SMT Execution
	SMT Resource Sharing
	Resource Interference
	Two-Application Combinations
	Three-Application Combinations


	Asymmetric Scheduling
	Potential for Asymmetric SMT Schedules
	Identifying SMT-Adverse Applications

	Thread Isolation
	Symbiotic Scheduling
	Thread Isolation Algorithm
	More than Two Applications per Core
	Correction Factors

	Experimental Setup
	System Features
	Workloads
	Metrics
	Scheduler Implementation

	Experimental evaluation
	Model Accuracy
	Performance Evaluation
	System Throughput
	Per-Application Performance
	Workload Case Study
	Workload Size Sensitivity Analysis

	Related Work
	Conclusions
	References
	Biographies
	Josué Feliu
	Julio Sahuquillo
	Salvador Petit
	Lieven Eeckhout


