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Abstract. Maude is able to deal with infinite data structures and avoid
infinite computations by using strategy annotations, that is, positive in-
dices that indicate which positions can be evaluated. However, they can
eventually make the computation of the normal form(s) of some input
expressions impossible. In [6]7], we used Full Maude to implement two
new commands norm and eval which furnish Maude with the ability
to compute (constructor) normal forms of initial expressions even when
the use of strategy annotations together with the built-in computation
strategy of Maude is not able to obtain them. These commands were
integrated into Full Maude, making them available inside the program-
ming environment like any other of its commands. Moreover, the type of
annotations allowed was extended, giving to Maude the ability of deal-
ing with on-demand strategy annotations, that is, negative indices that
express evaluation on-demand, where the demand is a failed attempt to
match an argument term with the left-hand side of a rewrite rule. In this
paper, we recall these new commands and extensions.

1 Introduction

Handling infinite objects is a typical feature of lazy (functional) languages. Al-
though reductions in Maude [45] are basically innermost (or eager), Maude is
able to exhibit a similar behavior by using strategy annotations [17]. Maude strat-
egy annotations are lists of non-negative integers associated to function symbols
which specify the order in which the arguments are (eventually) evaluated in
function calls. Specifically, when considering a function call f(t1,...,tx), only
the arguments whose indices are present as positive integers in the local strat-
egy (i1--- i,) for f are evaluated (following the specified order). Besides, if 0
is found, a reduction step on the whole term f(¢y,...,tx) is attempted. Every
symbol without an explicit strategy annotation receives a standard local strategy
(12 --- k 0) by Maude, where k is the number of its arguments. Let us illustrate
by an example how local strategies are used in Maude.
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Ezample 1. Consider the following Maude modules® LAZY-NAT, which provides
symbols 0 and s for specifying natural numbers in Peano syntax (sort NatP),
LAZY-LIST, with a ‘polymorphic’ sort List(X) and symbols nil (the empty
list) and _. _ for the construction of polymorphic lists, and an instance of module
LAZY-LIST for natural numbers, called LIST-NAT:

(fmod LAZY-NAT is
sort NatP .
op O : -> NatP .
op s : NatP -> NatP [strat (0)]
op _+_ : NatP NatP -> NatP .
vars M N : NatP .
eq O+ N=N.
eq s(M) + N=sM+ N)
endfm)

(fth TRIV is
sort Elt .
endfth)

(fmod LAZY-LIST(X :: TRIV) is
protecting LAZY-NAT .
sort List(X)
subsort X@Elt < List(X)
op nil : -> List(X)

op _._ : XQElt List(X) -> List(X) [strat (1 0)]
op length : List(X) -> NatP .
var X : X@Elt . var XS : List(X)

eq length(nil) = 0 .
eq length(X . XS) = s(length(XS))
endfm)

(view NatP from TRIV to NAT is
sort Elt to NatP .
endv)

(fmod LIST-NAT is
protecting LAZY-NAT .
protecting LAZY-LIST(NatP)
op incr : List(NatP) -> List(NatP)
op nats : -> List(NatP)
var X : NatP . var XS : List(NatP)
eq incr(X . XS) = s(X) . incr(XS)
eq nats = 0 . incr(nats)
endfm) B

3 Actually, we will use the Full Maude extension instead of Maude in the examples.
This is denoted by enclosing each module or command with parenthesis.



Strategy annotations can often improve the termination behavior of programs,
i.e., they prune all infinite rewrite sequences starting from an expression at an
argument position that is not present in the local strategy of the corresponding
symbol. In the example above, the strategies (0) and (1 0) for symbols s and
_._, respectively, guarantee that the resulting program is terminating®. For in-
stance, the absence of 1 in the local strategy of s stops any infinite reduction in
the term s(length(nats)), as shown by the standard reduction command red
in Maude®

I~ Konsole

Maude> (red in LIST-NAT : s(length(mats)) .)
rewrites: 701 in 80ms cpu (110ms real) (8762 rewrites/second) |
reduce in LIST-NAT :

s(length(nats))
result NatP :

s(length(nats))

and the absence of 2 in the local strategy of _._ stops any infinite reduction in
the term O . nats

Maude> (red in LIST-NAT : © . nats .)
rewrites: 607 in 80ms cpu (110ms real) (7587 rewrites/second)

reduce in LIST-NAT :
0 . nats

result List (NatP') :
0 . nats

Moreover, apart from improving termination, strategy annotations can also im-
prove the efficiency of computations [10], e.g., by reducing the number of at-
tempted matchings or avoiding useless or duplicated reductions.

Nevertheless, the absence of some indices in the local strategies can also jeop-
ardize the ability of such strategies to compute normal forms. For instance, the
evaluation of the expression s(0) + s(0) w.r.t. Example [l yields the following:

{1 Terminal - Konsole

Maude> (red in LIST-NAT : s(0) + s(0) .)
rewrites: 294 in Oms cpu (Oms real) (~ rewrites/second)
reduce in LIST-NAT :

s(0)+ s(0)

result NatP :
s(0 + s(0))

Due to the local strategy (0) for the symbol s, the contraction of the redex
0 + s(0) is not possible and the evaluation stops here with an expression that
is not the intended value expected by the user.

The handicaps, regarding correctness and completeness of computations, of
using (only) positive annotations have been pointed out in the literature, e.g. in
[1)2J14l21/22], and a number of solutions have been proposed:

4 The termination of this specification can be formally proved by using the tool
MU-TERM, see http://www.dsic.upv.es/~slucas/csr/termination/muterm.
® The Maude 2.1 interpreter [5] is available at http://maude.cs.uiuc.edul
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1. Performing a layered normalization: when the evaluation stops due to the re-
placement restrictions introduced by the strategy annotations, it is resumed
over concrete inner parts of the resulting expression until the normal form
is reached (if any) [15];

2. transforming the program to obtain a different one which is able to obtain
sufficiently interesting outputs (e.g., constructor terms) [2]; and

3. using strategy annotations with negative indices which allows for some extra
evaluation on-demand, where the demand is a failed attempt to match an
argument term with the left-hand side of a rewrite rule [21J22/1], like the
(functional) lazy evaluation strategy.

In [6], we introduced two new Maude commands (norm and eval) to make
techniques (1l and [2] available for the execution of Maude programs, and in [7],
we extended the original Maude command red and the new command norm to
make technique 13| also available into Maude. In this paper, we recall these new
commands and extensions and refer the reader to [6]7] for details.

First, let us illustrate with the following example how negative indices can
also improve the behavior of Maude programs.

Ezample 2. Continuing Example 1. The following NATS-T0-BIN module imple-
ments the binary encoding of natural numbers as lists of symbols 0 and 1 of sort
Binary (starting from the least significative bit).

(fmod BINARY is

sort Binary .

ops 0 1 : -> Binary .
endfm)

(view Binary from TRIV to BINARY is
sort Elt to Binary .
endv)

(fmod NATS-TO-BIN is
protecting LAZY-NAT .
protecting LAZY-LIST(Binary)
op natToBin : NatP -> List(Binary)
op natToBin2 : NatP NatP -> List(Binary)
vars M N : NatP .
eq natToBin2(0, 0) = 0 .
eq natToBin2(0, M) = 0 . natToBin(M)
eq natToBin2(s(0), 0) = 1 .
eq natToBin2(s(0), M) = 1 . natToBin(M)
eq natToBin2(s(s(N)), M) = natToBin2(N, s(M))
eq natToBin(N) = natToBin2(N, 0)
endfm)

The evaluation of the expression natToBin(s(0) + s(0)) should yield the
binary representation of 2. However, we get:



Maude> (red natToBin(s(0) + s(0)) .)
rewrites: 320 in Oms cpu (Oms real) (~ rewrites/second)

reduce in NATS-TO-BIN :
natToBin(s(0)+ s(0))

result List ' (Binary’) :
natToBin2(s(0 + s(0)),0)

The problem is that the current local strategy (0) for symbol s disallows
the evaluation of subexpression 0 + s(0) in natToBin2(s(0 + s(0)), 0), and
thus disables the application of the last equation for natToBin2. The use of the
techniques 1] or 2/ (through commands norm and eval introduced in [6]) do not
solve this problem, since they just normalize non-reduced subexpressions but
never replace the symbol at the root position:

Maude> (norm natToBin(s(0) + s(0)) .)
rewrites: 630 in Oms cpu (Oms real) (~ Tewrites/second)

normalize in NATS-TO-BIN :
natToBin(s(0)+ s(0))

result List (Binary') :
natToBin2(s(s(0)),0)

In [21022/1], negative indices are proposed to indicate those arguments that
should be evaluated only “on-demand”, where the “demand” is a failed attempt
to match an argument term with the left-hand side of a rewrite rule [22]. For in-
stance, the evaluation of the subterm 0 + s(0) of the term
natToBin2(s(0 + s(0)), 0) in the previous example is demanded by the last
equation for symbol natToBin2, i.e., by its left-hand side
natToBin2(s(s(N)), M). Specifically, the argument of the outermost occurrence
of the symbol s in natToBin2(s(0 + s(0)), 0) is rooted by a defined function
symbol, _+_, whereas the corresponding operator in the left-hand side is s. Thus,
before being able to apply the rule, we have to further evaluate 0 + s(0) in order
to eventually remove _+_ by s at the root position.

Ezample 3. Continuing Example 2. Consider the specification resulting from
replacing the declaration of the operator s by the following one with a new local
strategy including a negative annotation that declares the first argument of s as
evaluable only on-demand:

op s : NatP -> NatP [strat (-1 0)]

The on-demand evaluation of natToBin(s(0) + s(0)) (through the extended
command red introduced in [7]) obtains the appropriate head-normal form:

Maude> (red natToBin(s(0) + s(0)) .)
rewrites: 5702 in 10ms cpu (10ms real) (570200 rewrites/second)
reduce on-demand in NATS-TO-BIN :

natTeBin(s(0)+ s(0))
result List’ (Binary') :
0 . natToBin(s(0))




Specifically, from the expression natToBin2(s(0 + s(0)), 0) considered
above, we have that the following evaluation step is demanded by the left-hand
side natToBin2(s(s(N)), M):

natToBin2(s(0 + s(0)), 0) — natToBin2(s(s(0 + 0)), 0)
Then, the rule with left-hand side natToBin2(s(s(N)), M) can be applied,
which implies that no evaluation is demanded:

natToBin2(s(s(0 + 0)), 0) — natToBin2(0 + 0, s(0))
Finally, the remaining reductions leading to the expression 0 . natToBin(s(0))
are not demanded and follow from the positive local indices given above. |

JFrom the previous examples, we can infer that, in some situations, the evalua-
tion with (only) positive annotations either enters in an infinite derivation —e.g.,
for the term length(nats), with the strategy (1 0) for symbol s— or does not
provide the intended normal form —e.g., with the strategy (0) for symbol s—,
whereas the strategy (-1 0) gives an appropriate local strategy for symbol s,
since it makes its argument to be evaluated only “on demand”, and thus obtains
the appropriate head-normal forms while still avoiding infinite derivations.

Nevertheless, our main motivation is to provide appropriate normal forms to
programs with strategy annotations, and thus the redefinition of command red
for on-demand evaluation is not enough, since it is not able to provide the normal
form 0 . 1 for the program in Example 2/ because the annotation 2 is missing in
the strategy list for symbol _. _ (see the output of the red command in Example
3). As it was explained above, this concrete problem is solved using either the
layered normalization —technique [1— or a program transformation —technique
2—. And therefore, in [7], the output given by an on-demand evaluation with
command red is used as the starting point of a layered evaluation coded into an
appropriate redefinition of the command norm of [6] for dealing with negative
indices.

Ezxample 4. Consider the modules of Example 3. The layered normalization tech-
nique extended for on-demand annotations (through the extended command
norm introduced in [7]) is able to provide the intended normal form associated
to the expression natToBin(s(0) + s(0)).

X
Maude> (norm natToBin(s(0) + s(0)) .) +
rewrites: 6998 in 10ms cpu (10ms real) (699800 rewrites/second)
normalize on-demand in NATS-TO-BIN :
natToBin(s(0)+ s(0))
result List (Binary') : E‘
0.1

It is worth to note that all these features and appropriate evaluations are
achieved without entering in non-terminating evaluations. We refer the reader
to [11] for a recent and detailed discussion about the use of on-demand strategy
annotations in programming.



2 New commands for Maude within Full Maude

In the following, we provide some useful insights about how these features are
implemented in Full Maude. The complete specifications can be found in

http://www.dsic.upv.es/users/elp/toolsMaude

2.1 Full Maude, reflection, and the META-LEVEL module

The reflective capabilities of Maude are the key for building these language ex-
tensions, which turn out to be very simple to use thanks to the infrastructure
provided by Full Maude. Full Maude is an extension of Maude, written in Maude
itself, that endows Maude with notation for object-oriented modules and with
a powerful and extensible module algebra [4]. Its design, and the level of ab-
straction at which it is given, make of it an excellent metalevel tool to test and
experiment with features and capabilities not present in (Core) Maude [8/9/4].
In fact, reflection, together with the good properties of the underlying rewriting
logic [18] as a logical framework [20/19], makes quite easy the development of
formal tools and execution environments in Maude for any logic £ of interest,
including rewriting logic itself (see e.g. [9/3]).

Maude’s design and implementation systematically exploit the reflective ca-
pabilities of rewriting logic, providing key features of the universal theory in
its built-in META-LEVEL module. In particular, META-LEVEL has sorts Term and
Module, so that the representations of a term ¢ and of a module R are, respec-
tively, a term 7 of sort Term and a term R of sort Module.

The basic cases in the representation of terms are obtained by subsorts
Constant and Variable of the sort Qid of quoted identifiers. Constants are
quoted identifiers that contain the name of the constant and its type separated
by a dot, e.g., >0.NatP. Similarly, variables contain their name and type sepa-
rated by a colon, e.g., ’N:NatP. Then, a term is constructed in the usual way,
by applying an operator symbol to a list of terms.

subsorts Constant Variable < Qid Term .
subsort Term < TermList .

op _,_ : TermList TermList -> TermList [assoc]
op _[_] : Qid TermList -> Term .

For example, the term natToBin2(s(s(0)), 0) of sort List(Binary) in the
module NATS-TO-BIN is metarepresented as

’natToBin2[’s[’s[’0.NatP]], ’0.NatP]

The META-LEVEL module also includes declarations for metarepresenting mod-
ules. For example, a functional module can be represented as a term of sort
FModule using the following operator.

op fmod_is_sorts_. endfm : Qid ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet -> FModule .
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Similar declarations allow us to represent the different types of declarations we
can find in a module.

The module META-LEVEL also provides key metalevel functions for rewrit-
ing and evaluating terms at the metalevel, namely, metaApply, metaRewrite,
metaReduce, etc., and also generic parsing and pretty printing functions
metaParse and metaPrettyPrint [5/4]. For example, the function metaReduce
takes as arguments the representation of a module R and the representation of
a term ¢ in that module:

op metaReduce : Module Term -> [ResultPair]
op {_,_} : Term Type -> ResultPair .

metaReduce returns the representation of the fully reduced form of the term ¢
using the equations in R, together with its corresponding sort or kind.

All these functionalities are very useful for metaprogramming. In particular,
we have used the extensibility and flexibility of Full Maude to permit the def-
inition of new commands such as norm and eval but also to adapt the usual
Maude evaluation command red and the new command norm to the on-demand
evaluation.

2.2 Extending Full Maude to handle the command norm

The normalization via p-normalization procedure was introduced in [15/16] as a
simple mechanism to furnish the context-sensitive rewriting (CSR) [13] with the
ability to compute normal forms of initial expressions even though CSR itself is
not able to compute them. The idea is very simple: if we are able to ensure that
the normal forms computed by CSR are always head-normal forms, then it is safe
to get into the maximal “non-replacing” subterms of the normal form s of a term
t computed by CSR to (recursively) continue the computation. The technique
works for left-linear, confluent TRSs R that use a canonical replacement map;
see [15]. The procedure is sound in the context of Maude due to an appropriate
formal connection between CSR and the evaluation mechanism of Maude [6].

This normalization via p-normalization procedure has been implemented in
[6] as a new command norm that uses the outcome of red to perform this layered
evaluation of the initial expressions. The new command norm permits to obtain
the intended value of many expressions, e.g. for the term s(0) + s(0) given
above:

X
Maude> (norm s(0) + s(0) .) +
rewrites: 2805 in Oms cpu (Oms Teal) (~ rewrites/second)
normalize in NATS-TO-BIN :

s(0)+ s(0)
result NatP : E

s(s(0))

As for other commands in Maude, we may define the actions to take when
the command is used by defining its corresponding meta-function. For instance,



a red command is executed by appropriately calling the metaReduce function. In
the case of norm, we define an operation metaNorm. Basically, metaNorm calls the
auxiliary function metaNormRed, which first reduces the term using metaReduce,
and then proceeds recursively on each of the arguments of the resulting term.
That is, for each argument of the symbol at the root of the resulting term, if
the argument has evaluation restrictions, then it calls metaNormRed, otherwise
it calls metaNormNoRed. metaNormNoRed proceeds as metaNormRed, but without
reducing the term before going on the arguments, since it is not necessary.

2.3 Extending Full Maude to handle the command eval

When considering how the evaluation command norm works for a concrete input
term ¢, we understand that it is interesting to isolate the replacement restrictions
needed to achieve the head-normal form of ¢ (produced by the command red)
from the restrictions needed to get its normal form (produced by the command
norm). In the case of constructor normal forms, we can rather consider a construc-
tor (prefix) context C[] of the normal form of ¢ such that C[] € T(BU{O}, X)
for some B C C. The intuitive idea is that the set of constructor symbols B char-
acterizes those constructor symbols which are (or could eventually be) present
in the normal form of ¢. Then, reductions below the outermost defined symbols
should be performed only up to (constructor) head-evaluation (i.e., a term rooted
by a symbol in B computed by command red), thus providing an incremental
computation of the normal form of ¢. In [2], a program transformation aimed
at achieving this goal was given. The key idea for the transformation is to du-
plicate every symbol in B, for each sort 7 in the specification that is involved
in B, to a fresh constructor symbol in the new set 5., which does not have any
restriction on its arguments. More specifically, given a sort 7, the set C C C is
the set of constructor symbols that can be found in constructor terms of sort 7.
For instance, Cy,.p = {0,5_} and C{';_; (yaepy = {0il,-._,0,s_}. Hence, the set C*
will tell us which constructor symbols must be renamed.

The renaming of the constructor symbols ¢ € C* into new constructor symbols
¢ is performed by the following new rules, which are added to the original
program during the transformation:

quOtesort(c) (C(‘Tlv S 7xk)) - C,(quOtesort(acl)(Il)? SR quOtesort(a:k)(Ik))

In practice, we use the overloading facilities of Maude and introduce a single
(overloaded) symbol quote.

The evaluation of a term ¢ would proceed by reducing quote(t) into a term
with a constructor prefix context in C’, which do not have any evaluation restric-
tion. Then, we perform a postprocessing that recovers the original names of the
constructor symbols after each argument of a symbol ¢’ € C’ has been evaluated:

unquote(c'(z1,...,7x)) — c(unquote(xy),...,unquote(wy))

Again, the symbol unquote is conveniently overloaded.



In [6], we implement a new command eval that uses this transformation to
obtain the constructor normal form (if any) associated to a given input expres-
sion t. In contrast to the command norm, we first transform the module and,
then, we simply reduce the expression unquote(quote(t)) within the new mod-
ule (using the metaReduce function). The new command eval permits to obtain
the intended value of the term s(0) + s(0) given above:

X
Maude> (eval in LAZY-NAT : s(0) + s(0) .) +
rewrites: 5114 in 40ms cpu (40ms real) (127850 rewrites/second)
transforming module LAZY-NAT for symbel _+_
transformed module QLAZY-NAT is complete for symbol +
reduce in QLAZY-NAT :

unquote{guote(s(0)+ s(0)))

result NatP : E

5(s(0))

2.4 Extending Full Maude to handle on-demand strategy
annotations

We have followed the computational model defined in [I] for dealing with nega-
tive annotations, where a local strategy for a k-ary symbol f € F is a sequence of
integers in {—k,...,—1,0,1,...,k}. In this computational model, each symbol
in the term ¢ to be evaluated is conveniently annotated with its local strategy,
yielding a new class of annotated terms. The evaluation takes the annotated term
and the strategy glued to its top symbol, and then proceeds as follows [1]: if a
positive argument index is provided, then the evaluation jumps to the subterm
at such argument position; if a negative argument index is provided, then the
index is consumed but nothing is done; if a zero is found, then we try to find a
rule to be applied on such a term. If no rule can be applied at the root position
when a zero is found, then we proceed to look for its (demanded) evaluations,
that is, we try to reduce one of the subterms at positions under a (consumed or
present) negative index. All consumed indices (positive and negative) are glued
also to each symbol in the term using an extra strategy list, so that demanded
positions can appropriately be searched. See [1] for a formal description.

In [7], we provide the reduction of terms taking into account on-demand
annotations as a redefinition of the usual evaluation command red of Maude
(which considers only positive annotations). As for other commands in Full
Maude, we provide a new metalevel operation metaReduceOnDemand which ex-
tends the reflective and metalevel capabilities of Maude. The redefined command
red must then select between metaReduce and metaReduceOnDemand depend-
ing on whether negative annotations are present or not in the module associ-
ated to the expression to execute. This on-demand extension of the usual com-
mand red permits to produce the appropriate head-normal form of the term
natToBin(s(0) + s(0)), as it was shown in Example [3.

It is worthy to note that although eager (or innermost) evaluation strate-
gies correspond to local strategies of the shape (1 2 --- k 0) (see [17] for the

10



exact relationship) lazy (or outermost) evaluation strategies do not directly cor-
respond to local strategies of the shape (=1 —2 --- —k 0) [12]. Indeed, we plan
to investigate this as future work.

2.5 Extending Full Maude with on-demand strategy annotations to
layered normalization

The redefinition of command norm to deal with on-demand strategy annota-
tions is almost identical to the implementation of the command norm given in
[6] and reviewed in Section [2.2. The idea is that we keep the metalevel func-
tion metaNorm and define a new metalevel function metaNormOnDemand which
calls metaReduceOnDemand instead of metaReduce when negative annotations
are present in the module associated to the expression to execute. The redefi-
nition of the command norm permits to obtain the intended value of the term
natToBin(s(0) + s(0)), as it was shown in Example /4.

3 Conclusions

In this paper, we have presented two new commands norm and eval which furnish
Maude with the ability to compute (constructor) normal forms of expressions
even when the built-in computation strategy is not able to obtain them. We
have also presented the extension of the type of annotations allowed in Maude,
that gives to Maude the ability of dealing with on-demand strategy annotations,
that is, negative indices that express evaluation on-demand like functional lazy
evaluation.

Furthermore, the reader may note that strategy annotations have been used
for many years in programming languages such as Maude but the formal analysis
of computations under such annotated strategies has been recently addressed.

Acknowledgements. Thanks to the anonymous referees for their helpful remarks.
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