
RULE 2004 Preliminary Version

On-demand evaluation for Maude
1

Francisco Durán a Santiago Escobar b Salvador Lucas b

a LCC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain.
duran@lcc.uma.es

b DSIC, UPV, Camino de Vera s/n, 46022 Valencia, Spain.
{sescobar,slucas}@dsic.upv.es

Abstract

Strategy annotations provide a simple mechanism for introducing some laziness in
the evaluation of expressions. As an eager programming language, Maude can take
advantage of them and, in fact, they are part of the language. Maude strategy
annotations are lists of non-negative integers associated to function symbols which
specify the ordering in which the arguments are (eventually) evaluated in function
calls. A positive index enables the evaluation of an argument whereas ‘zero’ means
that the function call has to be attempted. The use of negative indices has been
proposed to express evaluation on-demand, where the demand is an attempt to
match an argument term with the left-hand side of a rewrite rule. In this paper
we show how to furnish Maude with the ability of dealing with on-demand strategy
annotations.

Key words: Declarative programming, Maude, reflection,
demandedness, on-demand strategy annotations.

1 Introduction

Handling infinite objects is a typical feature of lazy (functional) languages.
Although reductions in Maude [5,6] are basically innermost (or eager), Maude

is able to exhibit a similar behavior by using strategy annotations [18]. Maude

strategy annotations are lists of non-negative integers associated to function
symbols which specify the ordering in which the arguments are (eventually)
evaluated in function calls: when considering a function call f(t1, . . . , tk),
only the arguments whose indices are present as positive integers in the local
strategy (i1 · · · in) for f are evaluated (following the specified ordering). If 0 is

1 Work partially supported by CICYT TIC2001-2705-C03-01 and TIC2001-2705-C03-02,
MCyT Acción Integrada HU 2003-0003, Agencia Valenciana de Ciencia y Tecnoloǵıa
GR03/025, and EU-India Cross-Cultural Dissemination project ALA/95/23/2003/077-054.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Durán, Escobar and Lucas

found, a reduction step on the whole term f(t1, . . . , tk) is attempted. In fact,
Maude gives a strategy annotation (1 2 · · · k 0) to each symbol f without an
explicit strategy annotation.

Example 1.1 Consider the following modules LAZY-NAT and LIST-NAT defin-
ing sorts Nat and LNat, and symbols 0 and s for defining natural numbers,
and symbols nil (the empty list) and _._ for the construction of lists.

fmod LAZY-NAT is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat [strat (0)] .

op _+_ : Nat Nat -> Nat .

vars M N : Nat .

eq 0 + N = N .

eq s(M) + N = s(M + N) .

endfm

fmod LIST-NAT is

pr LAZY-NAT .

sorts LNat .

subsort Nat < LNat .

op _._ : Nat LNat -> LNat [strat (1 0)] .

op nil : -> LNat .

op nats : -> LNat .

op incr : LNat -> LNat .

op length : LNat -> Nat .

vars X Y : Nat . vars XS YS : LNat .

eq incr(X . XS) = s(X) . incr(XS) .

eq nats = 0 . incr(nats) .

eq length(nil) = 0 .

eq length(X . XS) = s(length(XS)) .

endfm

Strategy annotations can often improve the termination behavior of pro-
grams (by pruning all infinite rewrite sequences starting from any expression).
In the example above, the strategies (0) and (1 0) for symbols s and _._,
respectively, guarantee that the resulting program is terminating 2 (note that
both strategies are necessary for such a proof of termination). Strategy anno-
tations can also improve the efficiency of computations (e.g., by reducing the
number of attempted matchings or avoiding useless or duplicated reductions)
[11].

Nevertheless, the absence of some indices in the local strategies can also
jeopardize the ability of such strategies to compute normal forms. For in-

2 The termination of the specification can be formally proved by using the tool mu-term,
see http://www.dsic.upv.es/~slucas/csr/termination/muterm.

2

http://www.dsic.upv.es/~slucas/csr/termination/muterm

Durán, Escobar and Lucas

stance, the evaluation of the expression s(0) + s(0) w.r.t. Example 1.1
using Maude 3 yields the following:

Maude> (red s(0) + s(0) .)

result Nat: s(0 + s(0))

Due to the annotation (0) for the symbol s, the contraction of the redex
0 + s(0) is not possible and the evaluation stops here.

The handicaps, regarding correctness and completeness of computations,
of using (only) positive annotations are discussed in, e.g., [1,2,16,20,21], and
a number of solutions have been proposed:

(i) Performing a layered normalization: when the evaluation stops due to
the replacement restrictions introduced by the strategy annotations, it
is resumed over concrete inner parts of the resulting expression until the
normal form is reached (if any) [17];

(ii) transform the program to obtain a different one which is able to obtain
sufficiently interesting outputs (e.g., constructor terms) [2]; and

(iii) use strategy annotations with negative indices which allows for some extra
evaluation on-demand, where the demand is an attempt to match an
argument term with the left-hand side of a rewrite rule [20,21,1].

In [8], we have introduced two new commands (norm and eval) to make
techniques i and ii available for the execution of Maude programs. In this
paper we show how we have brought on-demand strategies into Maude. Be-
fore entering into details, we show how negative indices can improve Maude

strategy annotations.

Example 1.2 (Continuing Example 1.1) The following NATS-TO-BIN module
implements the binary encoding of natural numbers as lists of 0 and 1 (starting
from the least significative bit).

fmod NATS-TO-BIN is

ex LAZY-NAT .

pr LIST-NAT .

op 1 : -> Nat .

op natToBin : Nat -> LNat .

op natToBin2 : Nat Nat -> LNat .

vars M N X : Nat . vars XS YS : LNat .

eq natToBin2(0, 0) = 0 .

eq natToBin2(0, M) = 0 . natToBin(M) .

eq natToBin2(s(0), 0) = 1 .

eq natToBin2(s(0), M) = 1 . natToBin(M) .

eq natToBin2(s(s(N)), M) = natToBin2(N, s(M)) .

eq natToBin(N) = natToBin2(N, 0) .

endfm

3 The Maude 2.1 interpreter [6] is available at http://maude.cs.uiuc.edu.

3

http://maude.cs.uiuc.edu

Durán, Escobar and Lucas

The evaluation of the expression natToBin(s(0) + s(0)) should yield the
binary representation of 2. However, we get:

Maude> (red natToBin(s(0) + s(0)) .)

result LNat: natToBin2(s(0 + s(0)), 0)

The problem is that the current strategy annotations disallow the evaluation
of subexpression 0 + s(0) in natToBin2(s(0 + s(0)), 0), thus disabling
the application of the last equation for natToBin2. The use of the command
norm introduced in [8] does not solve this problem, since it just normalizes
non-reduced subexpressions:

Maude> (norm natToBin(s(0) + s(0)) .)

result LNat: natToBin2(s(s(0)), 0)

As we show below, on-demand strategy annotations can solve this problem. In
fact, the use of the strategy (-1 0) for symbol s, declaring its first argument
as evaluable only on-demand, permits to recover the desired behavior while
keeping termination of the program (see Examples 4.1 and 4.2 below).

In this paper, we furnishMaude with the ability of dealing with on-demand
strategy annotations. The reflective capabilities ofMaude are the key for build-
ing such language extensions, which turn out to be very simple to use thanks
to the infrastructure provided by Full Maude. Full Maude is an extension of
Maude written in Maude itself, that endows Maude with notation for object-
oriented modules and with a powerful and extensible module algebra [5]. Its
design, and the level of abstraction at which it is given, make of it an ex-
cellent metalevel tool to test and experiment with features and capabilities
not present in (Core) Maude [9,10,5]. We make use of the extensibility and
flexibility of Full Maude to permit the use of both red (the usual evaluation
command of Maude) and norm (introduced in [8]) with Maude programs using
on-demand strategy annotations.

2 On-demand evaluation strategy

As explained in the introduction, the absence of some indices in the local
strategies of Maude programs can jeopardize the ability of such strategies to
compute normal forms. In [20,21,1], negative indices are proposed to indicate
those arguments that should be evaluated only ‘on-demand’, where the ‘de-
mand’ is an attempt to match an argument term with the left-hand side of a
rewrite rule [21]. For instance, the evaluation of the subterm 0 + s(0) of the
term natToBin2(s(0 + s(0)), 0) in Example 1.2 is demanded by the last
equation for symbol natToBin2, i.e., by its left-hand side
natToBin2(s(s(N)), M): the argument of the outermost occurrence of the
symbol s in natToBin2(s(0 + s(0)), 0) is rooted by a defined function sym-
bol, _+_, whereas the corresponding operator in the left-hand side is s. Thus,
before being able to apply the rule, we have to further evaluate 0 + s(0).

4

Durán, Escobar and Lucas

As for our running example, we may conclude that the evaluation with
(only) positive annotations either enters in an infinite derivation —e.g., for
the term length(nats), with the strategy (1 0) for symbol s— or does not
provide the intended normal form —e.g., with the strategy (0) for symbol s,
see Example 1.2—. The strategy (-1 0), however, gives an appropriate local
strategy for symbol s, since it makes its argument to be evaluated only “on
demand”. Then, the evaluation of the expression natToBin(s(0) + s(0))

under the strategy (-1 0) for s is able to reduce the symbol natToBin2, and
to remove it from the top position, thus obtaining a head-normal form (see
Example 4.1 below). This also permits to use the resulting expression as the
starting point of a layered evaluation (with norm) leading to the normal form
(see Example 4.2 below). Note that this is achieved without entering in a non-
terminating evaluation. We refer the reader to [12] for a recent and detailed
discussion about the use of on-demand strategy annotations in programming.

In this paper, we follow the computational model defined in [1] for dealing
with negative annotations. A local strategy for a k-ary symbol f ∈ F is a
sequence ϕ(f) of integers in {−k, . . . , −1, 0, 1, . . . , k}, which are given inside
parentheses. A mapping ϕ that associates a local strategy ϕ(f) to every f ∈ F
is called an E-strategy map [20]. In order to evaluate an expression e, each
symbol in e is conveniently annotated according to the E-strategy map. The
evaluation of the annotated expression takes a term and the strategy associ-
ated to its top symbol, and then proceeds by considering the annotations of
such a strategy sequentially [1]: if a positive argument index is provided, then
the evaluation jumps to the subterm at such argument position; if a negative
argument index is provided, then the index is consumed but nothing is done;
if a zero is found, then we try to find a rule to be applied on such a term. If no
rule can be applied, then we proceed to perform their (demanded) evaluation,
that is, we try to reduce one of the subterms in positions with (consumed
or present) negative indices. All consumed indices (positive and negative) are
kept associated to each symbol in the term using an extra strategy list, so that
demanded positions can be searched. See [1] for a formal description of the
procedure and for details about why the memory list is necessary compared to
other frameworks for negative annotations as OBJ3 [15] and CafeOBJ [20,21].

In this paper, we do not consider AC symbols or rules with non-linear
left-hand side. Furthermore, strategy annotations are explicitly prohibited
for AC symbols (see [13,14]) and the completeness of evaluation with strategy
annotations is only guaranteed for linear left-hand sides and constructor-based
programs (see [17,1]).

3 Reflection and the META-LEVEL module

Maude’s design and implementation systematically exploits the reflective ca-
pabilities of rewriting logic [5], providing key features of the universal theory
in its built-in META-LEVEL module. In particular, META-LEVEL has sorts Term

5

Durán, Escobar and Lucas

and Module, so that the representations of a term t and of a module R are,
respectively, a term t of sort Term and a term R of sort Module.

The basic cases in the representation of terms are obtained by subsorts
Constant and Variable of the sort Qid of quoted identifiers. Constants are
quoted identifiers that contain the name of the constant and its type sepa-
rated by a dot, e.g., ’0.Nat. Similarly, variables contain their name and type
separated by a colon, e.g., ’N:Nat. Then, a term is constructed in the usual
way, by applying an operator symbol to a list of terms.

subsorts Constant Variable < Qid Term .

subsort Term < TermList .

op _,_ : TermList TermList -> TermList [ctor assoc] .

op _[_] : Qid TermList -> Term [ctor] .

For example, the term natToBin2(s(s(0)), 0) of sort LNat in the module
NATS-TO-BIN is metarepresented as ’natToBin2[’s[’s[’0.Nat]], ’0.Nat].

The META-LEVEL module also includes declarations for metarepresenting
modules. For example, a functional module can be represented as a term of
sort Module using the following operator.

op fmod_is_sorts_.____endfm : Qid ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet

-> FModule [ctor] .

Similar declarations allow us to represent the different types of declarations
we can find in a module.

The module META-LEVEL also provides key metalevel functions for rewrit-
ing and evaluating terms at the metalevel, namely, metaApply, metaRewrite,
metaReduce, etc., and also generic parsing and pretty printing functions
metaParse and metaPrettyPrint [7,5]. For example, the function metaReduce
takes as arguments the representation of a module R and the representation
of a term t in that module:

op metaReduce : Module Term -> [ResultPair] .

op {_,_} : Term Type -> ResultPair [ctor] .

metaReduce returns the representation of the fully reduced form of the term
t using the equations in R, together with its corresponding sort or kind.

All these functionalities are very useful for metaprogramming, and in par-
ticular when building formal tools. Moreover, Full Maude provides a powerful
setting in which additional facilities are available, making the addition of new
commands or the redefinition of previous ones, as in this paper, simpler. The
specification of Full Maude and its execution environment can then be used
as the infrastructure on which building new features.

6

Durán, Escobar and Lucas

4 Extending Full Maude to handle on-demand strategy

annotations

We provide the reduction of terms taking into account on-demand annota-
tions as a redefinition of the usual evaluation command red of Maude (which
considers only positive annotations).

Example 4.1 Consider the specification resulting from replacing in Example
1.2 the declaration of the operator s by this other one:

op s : Nat -> Nat [strat (-1 0)] .

The on-demand evaluation of natToBin(s(0) + s(0)) obtains a head-
normal form:

Maude> (red natToBin(s(0) + s(0)) .)

result LNat : 0 . natToBin(s(0))

As for other commands in Full Maude, we may define the actions to take
when the new commands are used by defining its corresponding meta-function.
For instance, a red command is executed by appropriately calling the met-
alevel metaReduce function. In order to furnish Maude with on-demand eval-
uation we provide a new metalevel operation metaReduceOnDemand which ex-
tends the reflective and metalevel capabilities of Maude, as explained in Sec-
tion 3. The operation metaReduceOnDemand takes arguments of sorts Module,
OpDeclSet and Term, and returns a term of sort ResultPair. Its arguments
represent, respectively, the module on which the reduction takes place, the
operation declarations in such a module, and the term to be reduced. The
result returned is as the one given by metaReduce (see Section 3). Note that
(Core) Maude cannot handle negative annotations, and therefore, the function
takes a valid module, i.e. a module without negative annotations, and the set
of operation declarations with any kind of annotation. The redefined com-
mand red must then select between metaReduce and metaReduceOnDemand

depending on whether negative annotations are present or not.

Basically, metaReduceOnDemand calls the auxiliary function procStrat

which is the function that really processes the strategy list associated to the
top symbol of the term.

var M : Module . var OPDS : OpDeclSet . var T T’ : Term .

op metaReduceOnDemand : Module OpDeclSet Term

-> [ResultPair] .

op procStrat : Module OpDeclSet AnnTerm -> AnnTerm .

ceq metaReduceOnDemand(M, OPDS, T)

= {T’, leastSort(M, T’)}

if T’ := erase(procStrat(M, OPDS, annotate(M, OPDS, T))) .

7

Durán, Escobar and Lucas

In order to include annotations into Maude’s representation of terms, we
transform the Maude’s metalevel sort Term into a sort AnnTerm (of annotated
terms), where symbols are equipped with a memory list and a strategy list (as
explained in Section 2). Furthermore, we provide two functions: annotate

and erase to move between the sorts Term and AnnTerm.

sorts AnnVariable AnnTerm AnnTermList .

subsorts AnnVariable < AnnTerm < AnnTermList .

op _{} : Variable -> AnnVariable .

op _{_} : Constant IntListNil -> AnnTerm .

op _{_|_}[_] : Qid IntListNil IntListNil AnnTermList

-> AnnTerm .

op _,_ : AnnTermList AnnTermList -> AnnTermList [assoc] .

op annotate : Module OpDeclSet TermList -> AnnTermList .

op erase : AnnTermList -> TermList .

The function procStrat follows the description given in Section 2 when
processing the strategy list associated to the top symbol of the term to evalu-
ate. When a positive index is found, the evaluation of such argument is forced,
and the positive index is moved from the strategy list (right component) to
the memory list (left component) of the top symbol. For example, the equa-
tion for an annotated term rooted by a symbol with arity greater than 0 is as
follows.

var N N’ : Int . var NL NL’ : IntListNil .

var F : Qid . var ATL : AnnTermList .

ceq procStrat(M, OPDS, F{NL | N NL’}[ATL])

= procStrat(M, OPDS,

F{NL @@ N | NL’}[procStratSel(M, OPDS, ATL, 1, N)])

if N > 0 .

When a negative index is found, no evaluation in that argument is started,
and the negative index is moved from the strategy list (right component) to
the memory list (left component).

ceq procStrat(M, OPDS, F{NL | N NL’}[ATL])

= procStrat(M, OPDS, F{NL @@ N | NL’}[ATL])

if N < 0 .

When an index 0 is found, the function procStrat attempts to match the
term against the left-hand sides of the rules using the metalevel function
metaApply. 4 If there is a match, then the rule is applied. If no match is ob-
tained, then we determine if any demanded position exists using the function
procStratOD, which performs a matching algorithm to detect which positions

4 The function metaApply applies only rules, and therefore equations must be turned into
rules before metaApply is applied.

8

Durán, Escobar and Lucas

under negative annotations are actually demanded by some rule (see [1] for
details). If a demanded position exists, then the evaluation of such a position
is started, and then we will retry the matching against the left-hand sides of
the rules after the evaluation is completed. If no demanded position exists, the
current index 0 is removed from the strategy list and the rest of the strategy
list is considered.

var MA : ResultTriple? .

ceq procStrat(M, OPDS, F{NL | 0 NL’}[ATL])

= if MA == failure

then procStratOD(M, OPDS, F{NL | 0 NL’}[ATL])

else procStrat(M, OPDS, annotate(M, OPDS, getTerm(MA)))

fi

if MA := metaApply(moveEqsToRls(M), F[erase(ATL)],

’on-demand, none, 0).

When the function procStratOD is executed, i.e. when a demanded posi-
tion is being searched, the computational model of [1] specifies that the search
order defined by the position order in the strategy must be followed, i.e. if
(-1 -2 0) is the strategy for symbol . , then any demanded subterm un-
der the first argument would be selected first, despite any demanded subterm
under the second argument (see [1] for details).

Once implemented the function metaReduceOnDemand, we need to rede-
fine parts of Full Maude so that the command red can be able to execute
metaReduce or metaReduceOnDemand. There is no need to define a new com-
mand and extend Full Maude to accept that command, as it was done for
norm and eval commands in [8]. We just need to modify the way the red
command is processed.

In the current version of Maude, input/output is accomplished by the pre-
defined LOOP-MODE module, which provides a generic read-eval-print loop. In
the case of Full Maude, the persistent state of the loop is given by a single
object of class Database which maintains the database of the system. This
object has an attribute db, to keep the actual database in which all the mod-
ules being entered are stored (a set of records), an attribute default, to keep
the identifier of the current module by default, and attributes input and
output to simplify the communication of the read-eval-print loop given by
the LOOP-MODE module with the database. Using the notation for classes in
object-oriented modules we can declare such a class as follows:

class DatabaseClass | db : Database, default : ModName,

input : TermList, output : QidList .

The state of the read-eval-print loop is then given by an object of class
DatabaseClass. In the case of Full Maude, the handling of the read-eval-print
loop is defined in the modules DATABASE-HANDLING and FULL-MAUDE.

The module FULL-MAUDE includes the rules to initialize the loop (rule

9

Durán, Escobar and Lucas

init), and to specify the communication between the loop—the input/output
of the system—and the database (rules in and out). Depending on the kind
of input that the database receives, its state will be changed, or some output
will be generated. To parse some input using the built-in function metaParse,
Full Maude needs the metarepresentation of the signature in which the input
is going to be parsed. In Full Maude, such a grammar is provided by the
FULL-MAUDE-SIGN module, in which we can find the appropriate declarations
so that any valid input, namely modules, theories, views, and commands, can
be parsed. Since we do not want to change the grammar FULL-MAUDE-SIGN,
which is used for parsing the inputs, we do not need to change the FULL-MAUDE
module.

The module DATABASE-HANDLING defines the behavior of the database upon
new entries. The behavior associated to commands is managed by rules de-
scribing transitions which call the function procCommand. For example, the
rule defining what to do when the red command is received is as follows.

rl [red] :

< O : X@Database | db : DB, input : (’red_.[T]),

output : nil, default : MN, Atts >

=> < O : X@Database | db : DB, input : nilTermList,

output : procCommand(’red_.[T], MN, DB),

default : MN, Atts > .

When a red command is entered, the parsing of the input returns a term of
the form red_.[T], where T is a variable of sort T representing a bubble. The
result of the parsing is placed in the input attribute of the database object.
The function procCommand specifies what to do when the term red_.[T] is
received, with MN and DB variables with values the name of the current default
module and the state of the database, respectively. In the original case of
the command red, procCommand calls the function procRed with the appro-
priate arguments, namely the name of the default module, the flatten module
itself, the bubble representing the argument of the command, the variables
in the default module, and the database. Note that depending on whether
the default module is a built-in or not, and whether it is compiled or not,
procCommand will do different things, so that the arguments for procRed are
obtained. In the redefinition for command red, procCommand calls a new
function procReduceOnDemand which redefines procRed.

eq procCommand(’red_.[’bubble[T]], MN, DB)

= if MN inModNameSet builtIns

then procReduceOnDemand(MN, DUMMY(MN), ’bubble[T],

none, DB)

else if compiledUnit(MN, DB)

then procReduceOnDemand(MN, getFlatUnit(MN, DB),

’bubble[T], getVbles(MN, DB), DB)

else procReduceOnDemand(MN,

10

Durán, Escobar and Lucas

getFlatUnit(MN, evalModExp(MN, DB)),

’bubble[T], getVbles(MN, evalModExp(MN, DB)),

evalModExp(MN, DB))

fi

fi .

The function procReduceOnDemand is in charge of evaluating the bubble
given as argument of the red command, calling the function metaReduce or
metaReduceOnDemand, and then preparing the results (a list of quoted identi-
fiers that will be passed to the output channel of the read-eval-print loop to
be shown to the user). The function procReduceOnDemand detects whether
negative annotations are present in the module or not 5 (using the function
noNegAnns), then calling metaReduceOnDemand or metaReduce. As said above,
since Core Maude does not accept strategies with negative annotations, the
function procReduceOnDemand must call the function metaReduceOnDemand

with the module without such negative annotations (remNegAnns is in charge
of removing them) and the operator declarations with them. Finally, the
equations defining procReduceOnDemand are as follows.

op procReduceOnDemand : ModExp Module Term OpDeclSet Database

-> QidList .

ceq procReduceOnDemand(MN, M, T, VDS, DB)

*** No negative annotation -> Use metalevel metaReduce

= if RP? :: ResultPair

then (’\b ’reduce ’in

...

else (’\r ’Error: ’\o ’Incorrect ’command. ’\n)

fi

if noNegAnns(getOps(M))

...

/\ TM := solveBubblesRed(T, remNegAnns(M), B, VDS, DB)

/\ RP? := metaReduce(getModule(TM), getTerm(TM)) .

ceq procReduceOnDemand(MN, M, T, VDS, DB)

*** Negative annotations -> Use metalevel metaReduceOnDemand

= if RP? :: ResultPair

then (’\b ’reduce ’on-demand ’in

...

else (’\r ’Error: ’\o ’Incorrect ’command. ’\n)

fi

if not noNegAnns(getOps(M))

...

/\ TM := solveBubblesRed(T, remNegAnns(M), B, VDS, DB)

5 The ”classical” Maude evaluation is not affected when only positive annotations are
provided.

11

Durán, Escobar and Lucas

/\ RP? := metaReduceOnDemand(getModule(TM), getOps(M),

getTerm(TM)) .

4.1 Extending Full Maude with on-demand strategy annotations to layered

normalization

As explained along the paper, our goal is to provide appropriate normal forms
to programs with strategy annotations. However, the redefinition of command
red is not able to provide the normal form 0 . 1 for the program in Example
1.2, since the annotation 2 is missing in the strategy list for symbol . (see the
output of the red command in Example 4.1). However, as it was explained in
Section 1, this concrete problem is solved using either a layered normalization,
or a transformation. In this section, we redefine the command norm of [8]
to perform a layered normalization of the output given by the on-demand
evaluation previously presented.

Example 4.2 Consider the modules of Example 4.1. The redefinition of com-
mand norm now is able to provide the intended value associated to the expres-
sion natToBin(s(0) + s(0)).

Maude> (norm natToBin(s(0) + s(0)) .)

result LNat : 0 . 1

The redefinition of command norm is almost identical to the implementa-
tion of the command norm given in [8]. We do not give the details here, but
basically, the idea is that we keep the metalevel function metaNorm and define a
new metalevel function metaNormOnDemand which calls metaReduceOnDemand
instead of metaReduce to reduce the initial term.

eq metaNormODRed(M, OPDS, T)

= procStratOD(M, getTerm(metaReduceOnDemand(M, OPDS, T)),

OPDS) .

We refer the reader to [8] for details about the implementation of the norm
command. Note that it is also necessary to perform similar changes to those
explained in Section 4:

• we redefine procCommand to call a new function procNormOnDemand, which
redefines procNorm, when the term norm_.[T] is received;

• the function procNormOnDemand calls metaNorm or metaNormOnDemand de-
pending on whether negative annotations are present or not (using again
the function noNegAnns).

5 Conclusions

We have used Full Maude to furnish Maude with the ability to perform on-
demand evaluations, a more sophisticated form of lazy behavior for languages
such as Maude. We make use of the extensibility and flexibility of Full Maude

12

Durán, Escobar and Lucas

to permit the use of both red (the usual evaluation command of Maude)
and norm (introduced in [8]) with Maude programs using on-demand strategy
annotations. The full specification is available at

http://www.dsic.upv.es/users/elp/toolsMaude

These features have been integrated into Full Maude, making them avail-
able inside its programming environment. The high level at which the spec-
ification (implementation) of Full Maude is given makes this approach par-
ticularly attractive when compared to conventional implementations (see e.g.
[3]). The flexibility and extensibility that Full Maude affords has made the
extension quite simple and in a very short time.

It is worth noting however that our prototype of on-demand evaluation
is not comparable in efficiency to other implementations of evaluation with
negative annotations such as in CafeOBJ 6 or OnDemandOBJ 7 . The goal of
this piece of work is not to provide a competitive implementation, but to
provide on-demand evaluation for a language such as Maude. Note that On-

DemandOBJ does not include all the capabilities of Maude, and that the com-
putational model of CafeOBJ for dealing with negative annotations has some
drawbacks (see [1]). In fact, it is not fair looking at it as an implementation
of the on-demand strategies, not even as a prototype. It should be seen as an
executable specification of it, closer to its mathematical definition (given in
[1]) than to its implementation. Although a more efficient executable speci-
fication/implementation of the on-demand evaluation following a similar ap-
proach could be given, we are convinced that a direct implementation of the
on-demand evaluation into Maude is desirable.

Finally, as future work we plan to consider whether it is possible to express
the on-demand evaluation strategy in terms of strategy languages such as
[19,4].

References

[1] M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas. Improving On-Demand
Strategy Annotations. In M. Baaz and A. Voronkov, editors, Proc. 9th Int. Conf.
on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’02,
LNAI 2514:1-18, Springer, 2002.

[2] M. Alpuente, S. Escobar, and S. Lucas. Correct and complete (positive) strategy
annotations for OBJ. In F. Gadducci and U. Montanari, editors, Proc. of the
4th International Workshop on Rewriting Logic and its Applications, WRLA’02,
ENTCS 71. Elsevier, 2004.

[3] M. Alpuente, S. Escobar, and S. Lucas. OnDemandOBJ: A Laboratory for
Strategy Annotations. In J.-L. Giavitto and P.-E. Moreau, editors, Proc. of

6 Available at http://www.ldl.jaist.ac.jp/cafeobj
7 Available at http://www.dsic.upv.es/users/elp/ondemandOBJ

13

http://www.dsic.upv.es/users/elp/toolsMaude
http://www.ldl.jaist.ac.jp/cafeobj
http://www.dsic.upv.es/users/elp/ondemandOBJ

Durán, Escobar and Lucas

the 4th International Workshop on Rule-Based Programming, RULE’03, ENTCS
86(2). Elsevier, 2003.

[4] P. Borovanský, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewriting
with strategies in ELAN: A functional semantics. International Journal of
Foundations of Computer Science, 12:69 95, 2001.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. Quesada. Maude: specification and programming in rewriting logic.
Theoretical Computer Science 285(2):187-243, 2002.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C.
Talcott. The Maude 2.0 System. In R. Nieuwenhuis, editor, Proc. of 14th
International Conference on Rewriting Techniques and Applications, RTA’03,
LNCS 2706:76-87, Springer, 2003.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. Maude 2.0 manual. Available in http://maude.cs.uiuc.edu, 2003.

[8] F. Durán, S. Escobar, and S. Lucas. New evaluation commands for Maude within
Full Maude. In N. Mart́ı-Oliet, editor, Proc. of the 5th International Workshop
on Rewriting Logic and its Applications, WRLA’04, ENTCS to appear 2004.

[9] F. Durán and J. Meseguer. An extensible module algebra for Maude. In C.
Kirchner and H. Kirchner, editors, Proceedings of 2nd International Workshop
on Rewriting Logic and its Applications, WRLA’98, ENTCS 15. Elsevier, 1998.

[10] F. Durán. A Reflective Module Algebra with Applications to the Maude
Language. PhD thesis, Universidad de Málaga, June 1999.

[11] S. Eker. Term Rewriting with Operator Evaluation Strategies. Electronic Notes
in Theoretical Computer Science, volume 15, 20 pages, 1998. In C. Kirchner and
H. Kirchner, editors, Proceedings of 2nd International Workshop on Rewriting
Logic and its Applications, WRLA’98, ENTCS 15. Elsevier, 1998.

[12] S. Escobar. Strategies and Analysis Techniques for Functional Program
Optimization. PhD Thesis, Universidad Politécnica de Valencia, October 2003.

[13] M.C.F. Ferreira and A.L. Ribeiro. Context-Sensitive AC-Rewriting. In Proc.
of the 10th International Conference on Rewriting Techniques and Applications,
RTA’99, LNCS 1631:173-181. Springer, 1999.

[14] J. Giesl and A. Middeldorp. Transformation Techniques for Context-Sensitive
Rewrite Systems. Journal of Functional Programming, to appear, 2004.

[15] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering
with OBJ: algebraic specification in action. Kluwer, 2000.

[16] S. Lucas. Termination of on-demand rewriting and termination of OBJ
programs. In Proc. of 3rd International Conference on Principles and Practice
of Declarative Programming, PPDP’01, pages 82-93, ACM Press, 2001.

14

http://maude.cs.uiuc.edu

Durán, Escobar and Lucas

[17] S. Lucas. Context-sensitive rewriting strategies. Information and Computation,
178(1):293-343, 2002.

[18] S. Lucas. Semantics of programs with strategy annotations. Technical Report
DSIC-II/08/03, DSIC, Universidad Politécnica de Valencia, 2003.

[19] N. Mart́ı-Oliet, J. Meseguer, A. Verdejo. Towards a strategy language for
Maude. In N. Mart́ı-Oliet, editor, Proc. of the 5th International Workshop on
Rewriting Logic and its Applications, WRLA’04, ENTCS to appear 2004.

[20] M. Nakamura and K. Ogata. The evaluation strategy for head normal form with
and without on-demand flags. In K. Futatsugi, editor, Proc. of 3rd International
Workshop on Rewriting Logic and its Applications, WRLA’00, ENTCS 36.
Elsevier, 2001.

[21] K. Ogata and K. Futatsugi. Operational semantics of rewriting with the on-
demand evaluation strategy. In Proc. of 2000 International Symposium on
Applied Computing, SAC’00, pages 756–763. ACM Press, 2000.

15

	Introduction
	On-demand evaluation strategy
	Reflection and the META-LEVEL module
	Extending Full Maude to handle on-demand strategy annotations
	Extending Full Maude with on-demand strategy annotations to layered normalization

	Conclusions
	References

