Diffie-Hellman Cryptographic Reasoning in the
Maude-NRL Protocol Analyzer

Santiago Escobar!, Joe Hendrix?, Catherine Meadows®, and José Meseguer*

! Universidad Politécnica de Valencia, Spain. sescobar@dsic.upv.es
2 University of Illinois at Urbana-Champaign, USA. jhendrix@cs.uiuc.edu
3 Naval Research Laboratory, Washington, DC, USA. meadows@itd.nrl.navy.mil
4 University of Illinois at Urbana-Champaign, USA. meseguer@cs.uiuc.edu

Abstract. The Maude-NRL Protocol Analyzer (Maude-NPA) is a tool and
inference system for reasoning about the security of cryptographic protocols
in which the cryptosystems satisfy different equational properties. It both ex-
tends and provides a formal framework for the original NRL Protocol Analyzer,
which limited itself to an equational theory A of convergent rewrite rules. In
this paper we extend our framework to include theories of the form AW B,
where B is the theory of associativity and commutativity and A is convergent
modulo B. Order-sorted B-unification plays a crucial role; to obtain this func-
tionality we describe a sort propagation algorithm that filters out unsorted
B-unifiers provided by the CiME unification tool. We show how extensions
of some of the state reduction techniques of the original NRL Protocol Ana-
lyzer can be applied in this context. We illustrate the ideas and capabilities of
the Maude-NPA with an example involving the Diffie-Hellman key agreement
protocol.

1 Introduction

The Maude-NPA is a tool and inference system for reasoning about the security
of cryptographic protocols in which the cryptosystems satisfy different equational
properties. It is the next generation of the NRL Protocol Analyzer [21], a tool that
supported limited equational reasoning and was successfully applied to the analysis
of many different protocols. In Maude-NPA we improved on the original NPA in two
ways. First of all, in [I5] we formalized the inference system of NPA, providing the
first formal description of the tool, in terms of rewriting logic and narrowing. We also
provided proofs of soundness and completeness. More recently, we have been extending
the equational reasoning capabilities of the tool. In [15], we considered equational
theories for cryptographic primitives and other functions given by a confluent and
terminating set of equations A, as did the original NPA. In this work, we extend the
framework to theories of the form AW B, where B is the theory of associativity and
commutativity (AC) and A is confluent and terminating modulo B. We illustrate the
ideas and capabilities of this extension of the Maude-NPA with an example using
the Diffie-Hellman protocol, involving exponentiation and associative-commutative
multiplication.

Maude-NPA uses backwards search from an insecure state to find attacks or to
prove unreachability. This is implemented using backwards narrowing with the proto-
col rules modulo AW B. There are two ways to do this. One is to use built-in unification

algorithms for each theory and combination of theories. The other is to use a hybrid
approach, for example to use built-in algorithms for B, and a generic algorithm, such
as narrowing modulo B, for A. We choose the second approach, as being more readily
extensible to different theories. That is, we use narrowing at two levels: for backwards
search from an insecure state (i.e., AW B-narrowing with the rewrite rules describing
the protocol) and for the A W B-unification used in each backwards narrowing step
(i-e., B-narrowing with the rewrite rules obtained by orienting A).

We have found important technical advantages in using order-sorted theories. In
order-sorted theories, narrowing will terminate, providing a finitary unification al-
gorithm, in many cases in which unsorted narrowing will not. Furthermore, even
in the case in which both terminate, order-sorted narrowing will often produce a
smaller search space. Two interesting examples of this use of order-sorted theories
to obtain finitary unification algorithms are our approximate theory for associativity
in [14], and the theory A W B for Diffie-Hellman exponentiation in this paper. In
both cases, narrowing with the corresponding unsorted theories is non-terminating,
whereas narrowing with the order-sorted theories does terminate. The current support
of order-sorted unification in the Maude-NPA leverages CiME’s [I1] rich library of
composable unsorted unification algorithms, including any combination of associativ-
ity, commutativity and identity axioms (except associativity without commutativity).
The Maude-NPA then filters out with order-sorted information the unsorted unifiers
provided by CiME, using the sound and complete sort propagation algorithm pre-
sented in Section [4] to obtain the corresponding order-sorted unifiers.

1.1 Related work

Recently, the modeling and formal analysis of cryptographic protocols in which the
cryptographic and other functions used obey different equational theories has been
an active research topic. Much of the work in this area has concentrated on prob-
lems of secrecy and static equivalence in bounded session protocols, which have been
proved to be decidable for an important class of equational theories [23[7ITI9I6I12].
For unbounded sessions, however, the problem is less well understood and has been
recently studied in [5l4]. In [I7] and [7] tree-automata based approximations are ap-
plied to associative-commutative theories to develop abstract approximations. These
techniques have been implemented in tools (for Diffie-Hellman theories in [17], and
for exclusive-or in [7]) that guarantee protocol security if they find no attacks, but
may find spurious attacks even if the protocol is sound. This is in contrast to the aim
of our work, which is to provide both genuine proofs of security and genuine attacks,
while using heuristic techniques, such as grammars, to make termination more likely
even if it is not guaranteed.

Our work, which relies on backwards narrowing, requires a sound and complete
unification algorithm for associative-commutative theories such as exponentiation and
exclusive-or. Probably the most closely related work to ours in this area is the uni-
fication algorithms for exponentiation in Narendan and Meadows [20] and Kapur,
Narendran, and Wang [19]. The theory we use in this paper is an order-sorted version
of a fragment of the theories for which unification algorithms are developed there.
In this work, however, we use a hybrid approach that we believe is more readily ex-
tensible. Instead of developing special-purpose algorithms for individual theories, we

make use of an order-sorted unification algorithm for associative-commutative theo-
ries, obtained in this case by combining the AC algorithm from the CiME tool with
our sort propagation algorithm. This is then combined with rewrite theories that are
terminating and confluent with respect to the AC theory. Some other work that is
closely related to ours is the work of Comon-Lundh and Delaune [10] on the finite
variant property, in which techniques are developed for achieving termination even
when narrowing by itself does not terminate. Although this paper does not make use
of their results, we expect to find them helpful to our future work.

1.2 A Diffie-Hellman Example

In order to demonstrate the use of associativity and commutivity (AC) in the Maude-
NPA, we provide an example involving the well-known Diffie-Hellman key agreement
protocol. This protocol uses exponentiation in order to generate a shared secret be-
tween two parties, and is the basis for most existing key agreement protocols today.
However, if it is used without authentication, it is subject to man-in-the-middle at-
tacks in which an attacker can convince two principals who are trying to share a key
with each other that they actually do, while in fact they share a key with the attacker.
Analyzing Diffie-Hellman without authentication allows us not only to demonstrate
how Maude-NPA handles cryptographic functions involving AC axioms, but also how
it can be used to find attacks on protocols that use AC operators combined with other
algebraic properties of the underlying cryptographic functions.

FEzxample 1. This protocol uses exponentiation to share a secret between two parties,
Alice and Bob. The protocol involves an initiator, Alice, and a responder, Bob. We use
the common notation A — B : M to stand for “A sends message M to B”. Raising
message M to the power of exponent X is denoted by (M)X. There is a public term
denoted by g, which will be the base of our exponentiations. We represent the product
of exponents by using the symbol %. Nonces are represented by Nx, denoting a nonce
created by principal X. The protocol description is as follows.

1. A-B: A
Alice sends her name to Bob.
2. A—>B:B
Alice sends Bob’s name to Bob.
3. A— B:gNa
Alice creates a new nonce N4 and sends g™V4 to Bob.
4. B—A:B
Bob sends his name to Alice.
5 B—A:A
Bob sends Alice’s name to herself.
6. B— A:gNB
Bob creates a new nonce Np and sends g'V2 to Alice.

Np

Intuitively, when Bob receives ¢™¥4, he raises it to the Ng, to obtain gN4" % = gNa*Ne,
Likewise, when Alice receives ¢/V2, she raises it to the N4, to obtain gV~ * = gNB*Na
NB *NA —

And due to the commutativity of the symbol %, they know the equivalence g
gV4*Ns - An observer of the exchange who does not know N4 nor Ng cannot find

gN4*NB and so Alice and Bob have computed a shared secret, i.e., gV4*V5 . Of course,
the attacker can always learn a term ¢(™4*N1) where N; is a nonce created by the
intruder, even by using a passive intruder model. The point is that he can also make
believe to Alice that ¢g(N4*N1) is the shared key she is sharing with Bob. This is
usually modelled by adding to the protocol a new message where Alice sends to Bob
some secret, encrypted by ¢(V4*N1) Existence of an attack is expressed by saying
that the attacker can obtain this secret. For the sake of simplicity and because we are
focused in AC-theories, we omit this last part of the protocol and concentrate just in
whether the intruder can learn X4 for some exponentiation X, where X4 is the
key calculated by Alice.

In a rule-based representation of this protocol, parts of a received message whose
make-up cannot be verified by a principal are represented by variables. That is, since
nonces are known only to the principal who generated it, and retrieving the nonce
would require the computation of a discrete logarithm, we say that Bob receives a
variable X of a generic message sort instead of g4 and similarly for Alice. The symbol
* is associative and commutative and satisfies the following additional property with

respect to exponentiation:
(XY)Z — X(Y*Z)

The intruder abilities to create, manipulate, and delete messages according to the
Dolev-Yao attackers capabilities [I3] are described as follows, where we use the spe-
cial symbol _€7 to represent that the intruder knows something, and I denotes the
intruder’s name:

M€Z, Myel Xel, Yel
(M x My)eT XYeT Nrel

The intruder also knows the names of all the principals and the base g.

If we ask ourselves whether the intruder can learn a message X ¥4 for some variable
X received by Alice (representing the nonce that Alice receives from Bob), the answer
is yes for an infinite set of instances for X, e.g., g7, (¢VN)N1, ((gN)N)NT' | ete. If we
take instantiation X — ¢™7, the intruder can learn the message g(N4*N1) by means
of the following sequence of actions (only the three first steps are necessary but we
need Alice to complete the protocol in order to believe she is sharing a shared key
with Bob):

1. A= B: A
Alice sends her name to Bob, but it is intercepted by the intruder.
2. A—-B:B
Alice sends Bob’s name to Bob, but it is intercepted by the intruder.
3. A— B: g4
Alice creates a new nonce N and sends ¢’V to Bob, but it is intercepted by the
intruder.
4. I—-A:B
The intruder sends Bob’s name to Alice.
5 I— A: A
The intruder sends Alice’s name to Alice.
6. I — A:ght
The intruder creates a new nonce N; and sends ¢™¥* to Alice.

The intruder is able to learn the message ¢(N4*N1) just by raising the intercepted
message gN4 to N;. Note that the intruder does not need to know N4, since he gets
the desired effect thanks to the equational properties for exponentiation and product
of exponents described above.

In this example, the commutativity of symbol % and the equational property of expo-
nentiation are the relevant cryptographic properties of the protocol that have to be
considered in order to model both the correct execution of the protocol and to find
the attack.

In Section [2| we briefly introduce the Maude-NPA tool. In Section [3| we define the
protocol specification and show how the attack is found. We also motivate why we are
able to find such an attack. In Section [, we explain the sort propagation algorithm
used to filter out unsorted AC-unifiers returned by the CiME tool. We conclude in
Section

2 The Maude-NPA

We briefly introduce the Maude-NPA tool. In [I5], the reader can find further details
for the case of a confluent and terminating equational theory AW B where the set
B of axioms is empty. We are currently extending the framework in [I5] to the case
where the set B of axioms is non-empty and satisfies appropriate requirements such
as the existence of a finitary B-unification algorithm. This paper illustrates the use
of the framework in an example where B is AC.

In the Maude-NPA, protocols are specified with a notation derived from strand
spaces [16]. In a strand, a local execution of a protocol by a principal is indicated
by a sequence of messages [msg;, msgy, Mmsgs ..., MSGs_ 1, msg,‘:] where nodes
representing input messages are assigned a negative sign, and nodes representing
output messages are assigned a positive sign. In Maude-NPA, strands evolve in time
and thus we use the symbol | to divide past and future in a strand, i.e.,

+ + + + +
[msgy,...,msg;_y | msg;,msg;,q,. .., msg;]

where msgi, ... ,msgj{1 are the past messages, and msgj[, msgjiﬂ, o ,msg,f are the
future messages (msgjj-[is the immediate future message).

A state is a set of Maude-NPA strands unioned together with an associative and
commutativity union operator & along with an additional term describing the intruder
knowledge at that point. The intruder knowledge is represented using two kinds of
facts: positive knowledge facts (the intruder knows m, i.e., meZ), and negative knowl-
edge facts (the intruder does not know m, i.e., m¢Z), where m is a message expression.
Negative facts are essential in our framework to denote terms the intruder will even-
tually learn in the future, and hence cannot know at the protocol state that we are
processing. Negative facts are used by our grammars to describe states unreachable
for the intruder; see Section |3.3] The following example illustrates the notion of a
state, where we have two strands at different stages of execution, and the intruder
does already know the messages ¢4, A, and B, but does not yet know the nonce N
and the message (g"N1*V4)

[AT, BT, (gNa)t | B~ A=, X~ | & [nil | A=,B=,Y~, Bt , AT (¢Vo)" | &
{ N1¢Z, (gN1*Na)¢T, gNae, AeZ, BeI, K }

Strands communicate between them via the intruder, i.e., by sending a message m
to the intruder who will send it back to another strand. When the intruder receives
a message, then it learns it, i.e., a message m is learned in a transition from a state
with the fact méZ in its intruder knowledge part to a state with the fact meZ in its
intruder knowledge part (in a forward execution of the protocol). The intruder has
the usual ability to read and redirect traffic, and can also perform operations, e.g., en-
cryption, decryption, concatenation, etc., on messages that it has received. Intruder
operations are described in terms of the intruder sending messages to itself, which
are represented as different strands, one for each action. All intruder and protocol
strands are described symbolically, using a mixture of variables and constants, so a
single specification can stand for many concrete instances. There is no restriction in
the number of principals, number of sessions, nonces, or time, i.e., no data abstraction
or approximation is performed. It is also possible to include algebraic properties of
the operators (cryptographic and otherwise) as an equational theory and also, as pre-
sented in this paper, we can include axioms such as associativity and commutativity
with or without identity, or only commutativity; however, associativity without com-
mutativity is problematic because in general it can produce and infinite set of unifiers
(see [2]), although in some cases it can be approximated by weaker associative axioms
with a finitary unification algorithm (see [14]).

The Maude-NPA'’s reachability analysis is based on two parameters: a protocol P
represented by strands, and a grammar sequence G = (Gy,...,Gp,) used to cut down
the search space. Analysis is done in Maude-NPA via backwards narrowing search
from an (insecure) goal state SSpaq to try to prove or disprove that the insecure state
is unreachable from an initial state. States are (A W B-)unified with (reversed) rewrite
rules describing state transitions via narrowing modulo an equational theory AW B.
Grammars (G, ..., Gp,) represent negative information (or co-invariants), i.e., infinite
sets of states unreachable from the initial state. Seed terms (sdy, ..., sd,) represent
knowledge that the user believed? is not known by the intruder and from which the
tool generates the formal languages (G1,...,Gy) (with m < n) representing several
infinite sets of states unreachable for the intruder. These grammars are very important
in our framework, since in the best case they can reduce the infinite search space to
a finite one, or, at least, can drastically reduce the search space.

The tool tries to deduce whether the protocol is safe for SSp.q or not. If the
protocol is unsafe, Maude-NPA always terminates with an intruder learning sequence
and the exchange message sequence, provided enough time and memory resources
are available. If the protocol is unsafe, grammars can actually improve the time and
memory consumption by reducing the number of states to be analyzed. If the protocol
is safe, the algorithm can often prove it, provided the search space is finite. When the

5 This initial belief from the user may not always be correct, since some exceptions of the
form X At, describing that the actual value of variable X in the seed term cannot match
the term ¢ with variables, may be added to the seed term. The grammar generation process
guarantees that the grammars finally generated always describe unreachable states.

protocol is safe, grammars are the key technique for producing a finite search space,
since they provide a drastic reduction on the search space so that often an infinite
search space is reduced to a finite one. If the protocol is safe but the search space is
infinite, Maude-NPA runs forever. This provides a semi-decision algorithm. See [15]
for further explanations.

The protocol to be analyzed is provided to the tool as an algebraic signature
X including symbols, sorts, and subsort information (see [22I]]), together with the
set P of strands defining the protocol. Moreover, the tool expects some seed terms
(sdy,...,sdy,) for the generation of the grammars (Gy,...,G,,) where m < n. In
the specification of the protocol-specific signature X' there is a special sort Msg for
messages. The user will add extra symbols involving the sort Msg. Special algebraic
properties of a protocol may be specified with symbols in X' by means of a set B of
equational axioms and a set A of equations such that the terms in the axioms B or
equations A must have sort Msg or a sort smaller than Msg. Note that we can control
the level of type checking of the order-sorted protocol specification to fit the attacker
model or protocol description (i.e., a completely unsorted protocol specification will
be using only the sort Msg for the symbols describing the protocol without any other
sort).

In security analyses it is often necessary to use fresh unguessable values, e.g., for
nonces. The user can make use of a special sort Fresh in the protocol-specific signature
X7 for representing them. The meaning of a variable of sort Fresh is that it will never
be instantiated by an E-unifier generated during the backwards reachability analysis.
This ensures that if nonces are represented using variables of sort Fresh, they will never
be merged and no approximation for nonces is necessary. However, the framework is
very flexible, and the user can specify some constant symbols of sort Fresh to play
with nonces that can indeed be merged, i.e., approximated. Since variables of sort
Fresh are treated in a special way, we make them explicit in the strand definition of
the example by writing

(r1,...,7m% : Fresh) [msgi, ... msgl],

where r1,...,r; are all the variables of sort Fresh appearing in msgf:, ..., msgr.

We impose a requirement on the protocols that can be specified in our tool w.r.t.
the algebraic properties specified with a set E = B W A of axioms and equations.
Intuitively, a principal can send whatever he/she likes but the pieces of information
being processed by the intruder or by a principal are always simplified w.r.t. the
oriented version of A modulo B. We say a term ¢ is —= /B-irreducible if it is a normal

form modulo B w.r.t. the oriented version Z of A, i.e., no rule in Z can be applied to t
modulo B. We say that a term ¢ is strongly ~%/B -irreducible if for any substitution o

and variable z such that o(x) is —= /B—irreducible for each x in the domain of o, then
o(t) is —= /B—irreducible. Then, the requirement that we impose on the protocols is

that all messages appearing in the reachability and grammar generation stages have
to be strongly -2 /B—irreducible7 except for output messages in a strand (i.e., m™)

and positive knowledge facts (i.e., meZ); see [15] for details.
Another important aspect of our framework is that everything the intruder can
learn must be learned through strands, i.e., the intruder knows nothing in an initial

state. However, this is not a limitation, since we can always include strands of the
form [M | for any message M the intruder is able to know at an initial state.

3 Finding Attacks by Equational Reasoning

3.1 Specification of the Diffie-Hellman Example

Continuing with Example we can denote nonce Nx by n(X,), where r is a variable
of sort Fresh. The generator used as a base is denoted by the symbol g. Raising
a message M to the power of an exponent X is denoted by exp(M, X). And the
product of exponents X7, X5 is denoted by X; * X5. The names of all the principals
are fixed using constants a and b, since they are just roles. The name of the intruder
is denoted by constant i. The order-sorted signature X' defining the Diffie-Hellman
based protocol is the following:

a: — Name b: — Name i : — Name
n : Name x Fresh — Nonce g: — Gen
exp : GenVExp x NeNonceSet — Exp exp : Gen x NeNonceSet — Exp

#: NeNonceSet x NeNonceSet — NeNonceSet
together with the following subsort relations

Name NeNonceSet GenVExp < Msg
Nonce < NeNonceSet Gen Exp < GenVExp

Algebraic properties are described using the following AC' axioms B and equations A
in E:
B={(X*xY)«Z=X*x(YxZ), (X+Y)=YxX}
A={explexp(W,Y),Z) = exp(W,Y x Z) }

where XY, Z are variables of sort NeNonceSet and W is a variable of sort Gen. Note
that the sort of variable W has to be Gen to have a finitary unification algorithm, as
discussed in Section [3.2] below. We omit the identity property for symbol * because it
is not relevant for this example, although we can handle it as explained in Section [4]
In the following, we omit sorts of variables whenever there is no possible confusion.
Variables are written in uppercase, except for variables r, 7/, 7" of sort Fresh.

The strands P associated to the three protocol steps shown in Example [l are as
follows, one for each principal (or role) in the protocol:

(s1) (r:Fresh) [a™, bT, exp(g,n(a,r))T, b=, a=, X~ |
This strand denotes principal Alice sending her name, Bob’s name, and
the generator g raised to the power of a new nonce generated by Alice
using the Fresh variable r. Then, Alice waits for Bob’s name, her name,
and an unknown message X.

(s2) (r':Fresh) [a=, b, Y=, b*, a*, exp(g,n(b,r"))"]
This strand denotes principal Bob waiting for Alice’s name, his name, and
an unknown message Y. Then, Bob sends his name, Alice’s name, and the
generator g raised to the power of a new nonce generated by Bob using
the Fresh variable /.

The following strands describe the intruder abilities according to the Dolev-Yao at-
tacker’s capabilities [I3]. Note that the intruder cannot extract information from
either an exponentiation or a product of exponents, only compose them.

(s4) [My, M5, (M * Ms)*] Multiplication
(sb) [My, M5 ,exp(My, Ms)*] Exponentiation
(s6) [g7] Generator

(s7) [A*] All names are public

(

s8) (r” : Fresh) [n(i,7”’)"] Generation of its own nonces

The strongly -3 /B—irreducibility requirement implies that if a message of the form

exp(X,Y) where X is of sort Exp appears in an input message of a protocol strand or
as a negative knowledge fact _¢Z of the intruder’s knowledge, it must be split into two
cases (corresponding to two different protocol states) the message exp(X,Y’), which
is restricted to strongly —= /B—irreducibility, and the message exp(g, X' *Y'), where

substitution {X — exp(g, X’)} is propagated.

3.2 A Finite Unification Algorithm for B W A

We explain why narrowing modulo B provides a finitary unification algorithm for
the theory BW A, allowing us to automate the backwards reachability analysis. Note
that the theory BW A is closely related to a fragment of the theory of exponentiation
given in [20] and to larger exponentiation theories in [I9], for which finitary unification
algorithms are known [20/19]. However, instead of using those algorithms, we adopt
the modular hybrid approach described in Section [I] and perform narrowing with A
modulo B as a B W A-unification procedure. We say that Bw A is “closely related”
to a fragment of the theories in [20/T9], because these exponentiation theories are
unsorted, whereas B W A is an order-sorted theory, which turns out to be crucial for
narrowing with A modulo B to terminate.

The key point is that the term exp(W,Y * Z) is a constructor term in the order-
sorted sense, but obviously not a constructor term in the unsorted sense. A constructor
term in the unsorted sense is a term built up with only constructor symbols and
variables. Given a set of rewrite rules ly—ry,...,l,—7, over an unsorted signature
X, a function symbol f in X is called a constructor if it does not appear as the root
symbol of any left-hand side [y, ...,[,. In an order-sorted context this notion is more
subtle, since the symbol f can be overloaded and can be a constructor (in the sense
that no rules apply to it) for some typings and a defined symbol for other typings.
That is, the symbol f can indeed appear in a lefthand side [;, but it should never
be possible to type that lefthand side, or any of its well-sorted substitution instances
0(l;), with any of the constructor versions of f. In our case, exp is an overloaded
function symbol, for which the typing exp : Gen x NeNonceSet — Exp is indeed
a constructor operator in the order-sorted sense, since any well-typed substitution
instance of A’s lefthand side exp(exp(W,Y),Z) must necessarily have for its top
symbol the typing exp : GenVExp x NeNonceSet — Exp, and can never have the
typing exp : Gen x NeNonceSet — Exp. In particular, exp(W,Y x Z) is a constructor
term as claimed.

The next key observation is that A is confluent, terminating, and coherent modulo
B (see [I§] for these notions). Coherence modulo B is particularly easy to check,
since the associative-commutative multiplication symbol in B does not appear in A’s
lefthand side exp(exp(W,Y), Z). We can then use Theorem 5 in [I§] to ensure that
narrowing with A modulo B provides a complete B W A-unification algorithm; and
Theorem 9 in [I8], plus the fact that exp(W,Y * Z) is a constructor term, to further
conclude that narrowing with A modulo B terminates and therefore such a B W A-
unification algorithm is finitary.

For all this to work we need the Maude-NPA to support order-sorted unification
modulo B. How this is achieved, not only for the above theory B, but for any combi-
nation of associativity, commutativity, and identity axioms (except for associativity
without commutativity) is explained in Section

3.3 Reducing the Size of the Search Space

Grammars representing several infinite sets of states unreachable for the intruder
are very important in our framework, since they represent negative information (co-
invariants) that will be used to cut down the search space.

As explained in [I5], the Maude-NPA starts out with the seed terms, which repre-
sent knowledge that the user believes is not known by the intruder. There are only two
types of seed terms: (i) § — t€L, denoting that the term ¢ of sort Msg is unknown for
the intruder without any restriction, and (ii) t|,¢Z — t€L, denoting that the term
t of sort Msg is unknown for the intruder provided that the subterm t|, is certainly
unknown by the intruder, i.e., provided that the fact ¢|,¢Z appears in the intruder’s
knowledge of the state of the protocol that we will be processing at each moment. The
initial grammar for Example [I] containing four language productions is as follows:

0 — X xn(a,r)eL 0 — n(a,r)EL 0 +— X xn(b,r)elL O nbr)el

For instance, language production) — X x n(a,r)€L denotes a formal language in-
cluding any message t; * t2 such that subterm t¢; is of sort NeNonceSet and subterm
to is of the form n(a,r) where a is the constant denoting Alice and r is a variable.
The final grammar turns out to be the same as the initial grammar, and thus we omit
the details about the grammar generation, which can be found in [I5]. Therefore,
any message m belonging to the formal language denoted by) — X *n(a,r)eL is
unknown for the intruder and any state containing m as an input message (i.e., m™)
or as part of the intruder knowledge (i.e., m€Z) is unreachable for the intruder and
discarded.

In this work we also make use of an additional state-reduction feature, namely a
notion similar to the “lazy intruder” of Basin et al. [3], but for backwards instead of
forward search. This feature was already implemented in the original NRL Protocol
Analyzer [2I] and is independent of the use of any equational theory. Note that this
feature is an additional state-reduction feature complementing the state reduction
provided by grammars, but both features are useful.

We give the main intuitions but do not explain this feature in detail; a detailed
explanation will appear elsewhere. The key idea behind our lazy intruder is to refrain
from searching for terms that we know can easily be found by the intruder. At the
same time, if the term becomes later instantiated to something that is not so readily

10

obtainable, then we rollback to the state in which the term first appeared in the
intruder knowledge. Terms that the intruder can easily find include variable terms,
publicly known terms, and terms which an intruder could compute from variables and
publicly known terms. The expression exp(g, X) in our Diffie-Hellman protocol is an
example of such a lazy term, since g is publicly known, X is a variable, and exp is
computable by the intruder.

3.4 Backwards Reachability Analysis

The final state we are looking for is one in which Alice receives Y as the final mes-
sage and computes exp(Y,n(a,r)), while the intruder also learns exp(Y,n(a,r)). As
explained in Section [3.1] we actually specify two final attack states, one in which the
intruder learns exp(Y, n(a,r)), and one in which the intruder learns exp(g, X *n(a,r)),
where both terms are strongly -3 B—irreducible. Since Y is of type Gen or Exp, the

first case is irreducible only when Y = g. This corresponds to the case in which the
intruder sends g to a, which can be detected and discarded by a. We treat the second
case in more detail below.

The final attack state pattern to be given as input to the system is:

(r: Fresh) [a™, b, exp(g,n(a,r))t, b=, a=, exp(g,X)” | nil | &
{ exp(g, X xn(a,r))eZ, K }

The intruder knowledge is essential in the backwards reachability process and thus
variable K will be appropriately instantiated by narrowing. Using the above attack
state pattern, the grammar with four language productions, and the lazy intruder
feature described above, our tool is able to find the following initial state of the
protocol:

(r: Fresh) [nil | a™, bT, exp(g,n(a,r))T, b~, a~, exp(g,X)” | &
[nil | exp(g,n(a, 7)), X~ exp(g, X *n(a,7))" | &
{ exp(g,n(a,r))¢Z, exp(g, X xn(a,r))¢T }

Note that the second strand is, indeed, an intruder strand introduced by the back-
wards reachability process denoting that whenever the intruder knows the message
exp(g,n(a,r)) (variable r is bound in this context) and knows any message X of sort
NeNonceSet, he can combine them and generate message exp(g, X *n(a,r)). Intruder
strands generating messages b, a~, and exp(g, X)~ are not included in the initial
state, since the lazy intruder avoids searching for them. The previous state is an initial
state of the protocol because all the strands are in their initial position (i.e., every
message is in the future), and the intruder does not know but eventually will learn
messages exchanged in the protocol run. The concrete message exchange sequence
leading to this attack is:

+

a®.b". exp(g,n(a,m))". exp(g,n(a,r))". X .exp(g, X *n(a,r))".b".a . exp(g, X)~

which corresponds to the intuitive description of the attack explained in Section [[.2]
Actually, the tool returns an infinite number of attacks, since X can also be the

11

product of any number £ of intruder nonces; one attack is returned for each positive
k.

4 Order-sorted Unification Modulo Equations

As the protocol is specified using an order-sorted theory with AC axioms, narrowing
requires an order-sorted AC unification procedure. In fact, the use of order-sorted
features is essential for AC-narrowing to terminate with the given protocol’s equations
A. One major challenge in developing such a procedure is that producing an efficient
AC unification procedure takes considerable effort, yet existing tools supporting AC
unification such as CiME [I1] only support unsorted theories rather than order-sorted
theories.

Our solution has been to partition order-sorted AC unification into two steps: (1)
we drop the sort information and use CiME [I1] to compute a complete set of unsorted
unifiers; and (2) we apply a sort propagation algorithm, described below, which con-
structs zero or more order-sorted unifiers from each unsorted unifier. Our approach is
not restricted only to AC unification, since we allow any combination of associativity,
commutativity, and identity, except associativity without commutativity.

Although theoretically there may be many more order-sorted unifiers than un-
sorted unifiers, in practice we have found that the opposite is usually the case. Many
unsorted unifiers can be eliminated when considering sort constraints, because a vari-
able is bound to a term with an incompatible type. For example, we can eliminate an
unsorted unifier § which binds a variable X:Nonce to a term (Y:Nonce ; Z:Nonce)
representing a nonce set.

Due to the fact that the unsorted unification procedure ignores sort information
and the sort propagation algorithm ignores the equations, the order-sorted theory
& = (X,B) where X = (S, F,<) is an order-sorted signature with poset of sorts
(S, <) and function symbols F' = {Fy s} (w,s)es+xs, 15 required to satisfy several
requirements:

— Each connected component [s] € S/ =<, where =< is the equivalence generated
by the subsort ordering <, must have a top-most sort Tg;

— Each axiom | = r € B must be sort-preserving and each variable in Var(l)UVar(r)
must have a top-most sort; and

— Each term ¢ € Tx(X) must have a unique least sort s with ¢ € T (X)s.

These requirements are not too restrictive for our purposes. We can guarantee that
each commutativity and identity equation is sort-preserving by introducing extra sorts
and operators declarations to complete the theory. The other requirements are already
required by Maude for efficiency purposes, and are checked automatically by Maude.

4.1 TUnsorted Unification

As a first step, the sorts from the order-sorted signature X = (5, F, <) are dropped
to obtain an unsorted signature F', where each operator f € Fy, s, s is mapped to
an unsorted and disambiguated operator fTsl,...,Tsn,Ts where its original connected
components are made explicit. Given the unification problem ¢ =p u, we rename the

12

operators in ¢ and v and make the variables unsorted in a set X to obtain unsorted
terms ,u € T(X). We then pass the unsorted unification problem ¢ =g u to CiME.
The unsorted most-general unifiers modulo B, denoted 64, ...,0,, are obtained from
CiME, and we reverse the renaming process to obtain mappings 64,...,60, : X —
Tx(X). At this point, each mapping 6; is not necessarily an order-sorted unifier,
because variables may be bound to terms that have a sort incompatible with the sort
of the variable. To remedy this situation and obtain a complete set of order-sorted
unifiers, we pass each mapping 60; to the sort propagation algorithm described below,
and take the union of all the order-sorted unifiers returned for each unsorted unifier.

4.2 Sort Propagation

The sort propagation algorithm generates a complete set of order-sorted unifiers
{01,...0,} from a given mapping 6 : X — Tx(X) such that any possible order-
sorted unifier ¥ to the problem ¢ =g u that is an instance of the mapping 6 is an
instance of one of the unifiers 6; generated by the algorithm. The algorithm maintains
a disjunctive set D = { Cy,...Cy, } of sort constraint problems where each C; is a
conjunction (¢t1:81) A+« A(tn,; 1 8n,;). A solution to C; is a substitution ¢ : X — T (X)
such that t;¢ € Tx(X),,; for j < n;. A solution to D is a substitution ¢ that is a so-
lution to at least one problem in the set. The correctness of the algorithm is obtained
by observing that although the problems change while the algorithm executes, the set
of solutions to the problems does not.

From 6, we construct the initial set Dy = {(6(z1) : s1) A -+ A (0(xy,) : s,)}, where
Z1,... ¢, € X are all the variables such that 0(x;) # x; and s; is the sort of the variable
x; for i < n. We then exhaustively apply the transformation rules in Fig. [1jon Dy to
obtain disjunctive sets D1, Do, ..., D,. This process terminates, because each applica-
tion either reduces the number of operator symbols appearing in a problem or reduces
the total number of predicates in a problem. In the final set D, = {C1,...,Cy, }, each
problem C; has the form (z1:51) A+« < A(Zy, : $p,) Where a variable € X appears in a
most one predicate (x; : s;). From each C;, we generate a sort specialization mapping
¢; : X — X that maps each variable x; with j < n; to a fresh variable with sort s;.
The final set of order-sorted unifiers generated by 6 is then the set {61,...,6,,} where

The final set of order-sorted unifiers is complete, because each order-sorted unifier
¢ can be seen as an instance of a mapping derived from an unsorted unifier f returned
by CiME, and a sort specialization mapping ¢;. The latter can be seen by observing
that each application of an inference rule in Fig. [1| preserves the set of solutions
under the assumptions that the equations B are sort-preserving and that each term
t € Tx(X) has a least sort.

5 Conclusions

In this paper we have illustrated the extension of the Maude-NPA to reason about
protocols whose equational theories are given by confluent and terminating equa-
tions A modulo some axioms B, using a Diffie-Hellman example where B = AC.
Furthermore, the use of order-sorted theories has been shown to be important in ob-
taining unification algorithms for AW B. Although at present, the Maude-NPA can

13

{(t:s)ACIUD

Valid [C1uD ifteTs(X)s
COIleiIl {(t:sl)/\(t:SQ)/\C}UD
U {{t:s)ANC}UD
s € glb(sy,s2)
Prop. {(f(tr,...,tn):8)AC }UD
U {ts)AAltn:s))ACIUD
$1...spEsup(ar(f,s))
where glb(s1,s2) =sup({s€ S|s<siAs<s2}),

ar(f,s) ={we S*|f € Fus}, and
supWV) ={w eWCS |V eW)w<w =w=uw"}.

Fig. 1. Sort Propagation Transformation Rules

handle order-sorted theories A W B where B can contain any combination of asso-
ciativity, commutativity, and identity (except associativity without commutativity),
much work remains ahead, such as: (i) building in order-sorted unification algorithms
for efficiency purposes; (ii) improving grammar formalisms to reduce the search space
in the modulo B case; (iii) developing additional optimization techniques; and (iv)
developing other case studies involving other equational theories.

References

1.

Martin Abadi and Véronique Cortier. Deciding knowledge in security protocols under
(many more) equational theories. In CSFW, pages 62-76. IEEE Computer Society, 2005.
F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov, edi-
tors, Handbook of Automated Reasoning, volume 1 of Volume, chapter 8, pages 445-532.
Elsevier Science, 2001.

David Basin, Sebastian Mddersheim, and Luca Vigando. OFMC: A symbolic model
checker for security protocols. International Journal of Information Security, 4(3):181—
208, 2005.

. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences

for security protocols. Journal of Logic and Algebraic Programming, 2007. To appear.
Yohan Boichut, Pierre-Cyrille Héam, and Olga Kouchnarenko. Handling algebraic prop-
erties in automatic analysis of security protocols. In Kamel Barkaoui, Ana Cavalcanti,
and Antonio Cerone, editors, Theoretical Aspects of Computing - ICTAC 2006, Third
International Colloquium, Tunis, Tunisia, November 20-24, 2006, Proceedings, volume
4281 of Lecture Notes in Computer Science, pages 153-167. Springer, 2006.

Sergiu Bursuc, Hubert Comon-Lundh, and Stéphanie Delaune. Associative-commutative
deducibility constraints. In Wolfgang Thomas and Pascal Weil, editors, Proceedings of
the 24th Annual Symposium on Theoretical Aspects of Computer Science (STACS’07),
volume 4393 of Lecture Notes in Computer Science, pages 634-645, Aachen, Germany,
February 2007. Springer.

Yannick Chevalier, Ralf Kiisters, Michael Rusinowitch, and Mathieu Turuani. Deciding
the security of protocols with Diffie-Hellman exponentiation and products in exponents.
In 23" Conference on Foundations Software Technology and Theoretical Computer Sci-
ence, volume 2914 of Lecture Notes in Computer Science, pages 124-135, 2003.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, José
Meseguer, and José Quesada. Maude: specification and programming in rewriting logic.
Theoretical Computer Science, 285:187-243, 2002.

H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and inse-
curity decision in presence of exclusive-or. In 18" Annual IEEE Symposium on Logic
in Computer Science (LICS ’03), pages 271-280, 2003.

Hubert Comon-Lundh and Véronique Cortier. New decidability results for fragments
of first-order logic and application to cryptographic protocols. In R. Nieuwenhuis, edi-
tor, Proc. of 14th International Conference on Rewriting Techniques and Applications,
RTA’03, volume 2706, pages 148-164, 2003.

E. Contejean, C. Marché, B. Monate, and X. Urbain. Proving termination of rewriting
with CiME. In A. Rubio, editor, 6th International Workshop on Termination, Techreport
DSIC 11/15/03, pages 71-73. Universidad Politécnica de Valencia, 2003.

Stéphanie Delaune, Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Symbolic
protocol analysis in presence of a homomorphism operator and exclusive or. In
Michele Buglesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Proceed-
ings of the 33rd International Colloguium on Automata, Languages and Programming
(ICALP’06) — Part II, volume 4052 of Lecture Notes in Computer Science, pages 132—
143, Venice, Italy, July 2006. Springer.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transaction on
Information Theory, 29(2):198-208, 1983.

Santiago Escobar, Catherine Meadows, and José Meseguer. Equational cryptographic
reasoning in the Maude-NRL Protocol Analyzer. In Proc. of the First International
Workshop on Security and Rewriting Techniques (SecReT 2006), Electronic Notes in
Theoretical Computer Science. Elsevier Sciences Publisher, 2006. To appear.

Santiago Escobar, Catherine Meadows, and José Meseguer. A rewriting-based infer-
ence system for the NRL Protocol Analyzer and its meta-logical properties. Theoretical
Computer Science, 367(1-2):162-202, 2006.

F. Javier Thayer Fabrega, Jonathan C. Herzog, and Joshua Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7:191-230, 1999.
Jean Goubault-Larrecq, Muriel Roger, and Kumar Neeraj Verma. Abstraction and res-
olution modulo AC: How to verify Diffie-Hellman-like protocols automatically. Journal
of Logic and Algebraic Programming, 64(2):219-251, 2005.

J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental construction of unification
algorithms in equational theories. In Proc. ICALP’83, pages 361-373. Springer LNCS
154, 1983.

Deepak Kapur, Paliath Narendran, and Lida Wang. An E-unification algorithm for
analyzing protocols that use modular exponentiation. In R. Nieuwenhuis, editor, Proc.
of 14th International Conference on Rewriting Techniques and Applications, RTA’03,
volume 2706, pages 165-179, 2003.

C. Meadows and P. Narendran. A unification algorithm for the group Diffie-Hellman
protocol. In Proc. Workshop on Issues in the Theory of Security WITS 2002, 2002.
Catherine Meadows. The NRL protocol analyzer: An overview. Journal of logic pro-
gramming, 26(2):113-131, 1996.

José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73-155, 1992.

J. Millen and V. Shmatikov. Symbolic protocol analysis with products and Diffie-
Hellman exponentiation. In Proceedings of the IEEE Computer Security Foundations
Workshop (CSFW-16), pages 47-61, 2003.

15

	 Diffie-Hellman Cryptographic Reasoning in the Maude-NRL Protocol Analyzer
	Santiago Escobar, Joe Hendrix, Catherine Meadows, and José Meseguer

