Removing Redundant Arguments of Functions*

Maria Alpuente, Santiago Escobar, and Salvador Lucas

DSIC, UPV, Camino de Vera s/n, 46022 Valencia, Spain.

{alpuente,sescobar,slucas}@dsic.upv.es

Abstract. The application of automatic transformation processes dur-
ing the formal development and optimization of programs can introduce
encumbrances in the generated code that programmers usually (or pre-
sumably) do not write. An example is the introduction of redundant
arguments in the functions defined in the program. Redundancy of a
parameter means that replacing it by any expression does not change
the result. In this work, we provide a method for the analysis and elim-
ination of redundant arguments in term rewriting systems as a model
for the programs that can be written in more sophisticated languages.
On the basis of the uselessness of redundant arguments, we also propose
an erasure procedure which may avoid wasteful computations while still
preserving the semantics (under ascertained conditions). A prototype im-
plementation of these methods has been undertaken, which demonstrates
the practicality of our approach.

1 Introduction

A number of researchers have noticed that certain processes of optimization,
transformation, specialization and reuse of code often introduce anomalies in
the generated code that programmers usually (or ideally) do not write [6, 16,25,
26]. Examples are redundant arguments in the functions defined by the program,
as well as useless program rules.

Ezample 1. Consider the following program, which calculates the last element
of a list and the concatenation of two lists of natural numbers, respectively:

data Nat = O | S Nat

append:: [Nat] -> [Nat] -> [Nat] last::[Nat] -> Nat
append nil y=y last (x:nil) = x
append (x:xs) y = x:(append xs y) last (x:y:ys) = last (y:ys)

Assume that we specialize this program for the call (applast ys z) =
(last (append ys (z:nil))), which appends an element z at the end of a
given list ys and then returns the last element, z, of the resulting list (the exam-
ple is borrowed from DPPD library of benchmarks [24] and was also considered
in [23,33] for logic program specialization). Commonly, the optimized program

* Work partially supported by CICYT TIC2001-2705-C03-01, Acciones Integradas
HI2000-0161, HA2001-0059, HU2001-0019, and Generalitat Valenciana GV01-424.

which can be obtained by using an automatic specializer of functional programs
such as [3-5] is:
applast::[Nat] -> Nat -> Nat lastnew: :Nat -> [Nat] -> Nat -> Nat

applast nil z =2z lastnew x nil z =2z
applast (x:xs) z = lastnew x xs z lastnew x (y:ys) z = lastnew y ys z

This program is too far from {applast’ ys z = lastnew' z, lastnew’ z = z},
a more feasible program with the same evaluation semantics, or even the “op-
timal” program —without redundant parameters— {applast” z = z} which one
would ideally expect (here the rule for the “local” function lastnew’ is dis-
regarded, since it is not useful when the definition of applast’ is optimized).
Indeed, note that the first argument of the function applast is redundant (as
well as the first and second parameters of the auxiliary function lastnew) and
would not typically be written by a programmer who writes this program by
hand. Also note that standard (post-specialization) renaming/compression pro-
cedures cannot perform this optimization as they only improve programs where
program calls contain dead functors or multiple occurrences of the same vari-
able, or the functions are defined by rules whose rhs’s are normalizable [3,11,
12]. Known procedures for removing dead code such as [7,19,26] do not apply
to this example either.

It seems interesting to formalize program analysis techniques for detecting these
kinds of redundancies as well as to formalize transformations for eliminating
dead code which appears in the form of redundant function arguments or use-
less rules and which, in some cases, can be safely erased without jeopardizing
correctness. In this work, we investigate the problem of redundant arguments in
term rewriting systems (TRSs), as a model for the programs that can be written
in more sophisticated languages.

At first sight, one could naively think that redundant arguments are a straight
counterpart of “needed redex” positions, which are well studied in [15]. Unfor-
tunately, this is not true as illustrated by the following example.

Ezxample 2. Consider the optimized program of Example 1 extended with:

take:: Nat -> [Nat] -> [Nat]
take 0 xs = [
take (S n) (x:xs) = x:take n xs

The contraction of redex (take 1 (1:2:[1)) at position 1 in the term
t —applast (take 1 (1:2:[1)) 0 (we use 1, 2 instead of S 0, S (S 0)) is
needed to normalize t (in the sense of [15]). However, the first argument of
applast is redundant for normalization, as we showed in Example 1, and the
program could be improved by dropping this useless parameter.

In this paper, we provide a semantic characterization of redundancy which is
parametric w.r.t. the observed semantics S. After some preliminaries in Section 2,
in Section 3 we consider different (reduction) semantics, including the standard
normalization semantics (typical of pure rewriting) and the evaluation semantics
(closer to functional programming). In Section 4 we introduce the notion of
redundancy of an argument w.r.t. a semantics S, and derive a decidability result

for the redundancy problem w.r.t. S. Inefficiencies caused by the redundancy of
arguments cannot be avoided by using standard rewriting strategies. Therefore,
in Section 5 we formalize an elimination procedure which gets rid of the useless
arguments and provide sufficient conditions for the preservation of the semantics.
Preliminary experiments indicate that our approach is both practical and useful.
We conclude with some comparisons with the related literature and future work.
Proofs of all technical results are given in [2].

2 Preliminaries

Term rewriting systems provide an adequate computational model for functional
languages which allow the definition of functions by means of patterns (e.g.,
Haskell, Hope or Miranda) [8,17,34]. In the remainder of the paper we follow
the standard framework of term rewriting for developing our results (see [8] for
missing definitions).

Definitions are given in the one-sorted case. The extension to many-sorted
signatures is not difficult [30]. Throughout the paper, X denotes a countable set
of variables and X' denotes a set of function symbols {f, g, ...}, each one having
a fixed arity given by a function ar : ¥ — N. If ar(f) = 0, we say that f is
a constant symbol. By 7 (X, X) we denote the set of terms; 7 (X) is the set
of ground terms, i.e., terms without variable occurrences. A term is said to be
linear if it has no multiple occurrences of a single variable. A k-tuple t1, ...,
of terms is written . The number k of elements of the tuple ¢ will be clarified
by the context. Let Subst(X,X) denote the set of substitutions and Subst(X)
be the set of ground substitutions, i.e., substitutions on 7 (X). We denote by id
the “identity” substitution: id(z) = z for all z € X. By Pos(t) we denote the set
of positions of a term ¢. A rewrite rule is an ordered pair (I,r), written [— r,
with I,r € T(X,X), l € X and Var(r) C Var(l). The left-hand side (lhs) of the
rule is [and r is the right-hand side (rhs). A TRS is a pair R = (X, R) where R
is a set of rewrite rules. L(R) denotes the set of lhs’s of R. By NFz we denote
the set of finite normal forms of R. Given R = (X, R), we consider X as the
disjoint union ¥ = C W F of symbols ¢ € C, called constructors, and symbols
f € F, called defined functions, where F = {f | f(I) = r € R} andC = ¥ — F.
Then, T(C, X) is the set of constructor terms. A pattern is a term f(ly,...,1,)
such that f € F and Iy,...,l, € T(C,X). The set of patterns is Patt(X,X).
A constructor system (CS) is a TRS whose lhs’s are patterns. A term ¢ is a
head-normal form (or root-stable) if it cannot be rewritten to a redex. The set
of head-normal forms of R is denoted by HNF%.

3 Semantics

The redundancy of an argument of a function f in a TRS R depends on the
semantic properties of R that we are interested in observing. Our notion of
semantics is aimed to couch operational as well as denotational aspects.

A term semantics for a signature X' is a mapping S : 7(X) — P(T (X)) [28].
A rewriting semantics for a TRS R = (X, R) is a term semantics S for X' such
that, for all t € 7(X) and s € S(¢), t =% s.

The semantics which is most commonly considered in functional program-
ming is the set of values (ground constructor terms) that R is able to pro-
duce in a finite number of rewriting steps (evalg(t) = {s € T(C) | t =% s}).
Other kinds of semantics often considered for R are, e.g., the set of all possible
reducts of a term which are reached in a finite number of steps (redg(t) = {s €
T(X) | t »% s}), the set of such reducts that are ground head-normal forms
(hnfr (t) = redr (t)NHNFx), or ground normal forms (nfz (t) = hnfr (t)NNFx).
We also consider the (trivial) semantics empty which assigns an empty set to
every term. We often omit R in the notations for rewriting semantics when it is
clear from the context.

The ordering < between semantics [28] provides some interesting properties
regarding the redundancy of arguments. Given term semantics S, S’ for a signa-
ture X, we write S < S’ if there exists T' C 7 (X) such that, for all ¢t € T(X),
S(t) = S'(t) N T. We have empty < evalg < nfr < hnfrp < redx.

Given a rewriting semantics S, it is interesting to determine whether S pro-
vides non-trivial information for every input expression. Let R be a TRS and S
be a rewriting semantics for R, we say that R is S-defined if for all t € T(X),
S(t) # @ [28]. S-definedness is monotone w.r.t. <: if S < S’ and R is S-defined,
R is also S'-defined.

S-definedness has already been studied in the literature for different seman-
tics [28]. In concrete, the eval-definedness is related to the standard notion of
completely defined (CD) TRSs (see [18,20]). A defined function symbol is com-
pletely defined if it does not occur in any ground term in normal form, that is
to say functions are reducible on all ground terms (of appropriate sort). A TRS
R is completely defined if each defined symbol of the signature is completely
defined. In one-sorted theories, completely defined programs occur only rarely.
However, they are common when using types, and each function is defined for
all constructors of its argument types.

Let R be a normalizing (i.e., every term has a normal form) and completely
defined TRS; then, R is evalr-defined. Being completely defined is sensitive
to extra constant symbols in the signature, and so is redundancy; we are not
concerned with modularity in this paper.

4 Redundant arguments

Roughly speaking, a redundant argument of a function f is an argument ¢;
which we do not need to consider in order to compute the semantics of any call
containing a subterm f(t1,...,).

Definition 1 (Redundancy of an argument). Let S be a term semantics
for a signature X, f € X, and i € {1,...,ar(f)}. The i-th argument of f is
redundant w.r.t. S if, for all contexts C[]| and for all t,s € T(X) such that
root(t) = f, S(C[t]) = S(C[¢[s:])-

We denote by rargs(f) the set of redundant arguments of a symbol f € X w.r.t.
a semantics S for X. Note that every argument of every symbol is redundant
w.r.t. empty. Redundancy is antimonotone with regard to the ordering < on
semantics.

Theorem 1. Let S,S' be term semantics for a signature X. If S < S', then, for
all f € X, rargs, (f) C rargs(f).

The following result guarantees that constructor symbols have no redundant
arguments, which agrees with the common understanding of constructor terms
as completely meaningful pieces of information.

Proposition 1. Let R be a TRS such that T(C) # @, and consider S such that
evalg < S. Then, for all c € C, rargs(c) = @.

In general, the redundancy of an argument is undecidable. In the following, for
a signature X, term semantics S for X, f € ¥, and i € {1,...,ar(f)}, by “the
redundancy problem w.r.t. S”, we mean the redundancy of the i-th argument
of f w.r.t. S. The following theorem provides a decidability result w.r.t. all
the semantics considered in this paper. This result recalls the decidability of
other related properties of TRSs, such as the confluence and joinability, and
reachability problems (for left-linear, right-ground TRSs) [10, 29].

Theorem 2. For a left-linear, right-ground TRSR = (X, R) over a finite signa-
ture X, the redundancy w.r.t. semantics redg, hnf, nfr, and evaly is decidable.

In the following sections, we address the redundancy analysis from a comple-
mentary perspective. Rather than going more deeply in the decidability issues,
we are interested in ascertaining conditions which (sufficiently) ensure that an
argument is redundant in a given TRS. In order to address this problem, we
investigate redundancy of positions.

4.1 Redundancy of positions

When considering a particular (possibly non-ground) function call, we can ob-
serve a more general notion of redundancy which allows us to consider arbitrary
(deeper) positions within the call. We say that two terms t,s € T(X,X) are
p-equal, with p € Pos(t) N Pos(s) if, for all occurrences w with w < p, t|,, and
s|w have the same root.

Definition 2 (Redundant position). Let S be a term semantics for a signa-
ture X and t € T(X,X). The position p € Pos(t) is redundant in t w.r.t. S if,
for allt';s € T(X) such that t and t' are p-equal, S(t') = S(¥'[s],).

We denote by rposg(t) the set of redundant positions of a term ¢ w.r.t. a semantics
S. Note that the previous definition cannot be simplified by getting rid of #
and simply requiring that for all s € T(X), S(¢t) = S(¢[s]p) since redundant
positions cannot be analyzed independently if the final goal is to remove the
useless arguments, i.e. our notion of redundancy becomes not compositional.

Ezxample 3. Let us consider the TRS R:
f(a,a) — a f(a,b) — a f(b,a) — a f(b,b) > b

Given the term f(a,a), for all term s € T(X), evalg(t[s];) = evalr(t) and
evalg (t[s]2) = evalr (t). However, evalg (t[b]1[b]2) # evalz(t).

The following result states that the positions of a term which are below the
indices addressing the redundant arguments of any function symbol occurring in
t are redundant.

Proposition 2. Let S be a term semantics for a signature ¥ = F W C, t €
T(X,X), p € Pos(t), f € F. For all positions q,p’ and i € rargs(f) such that
p = q.i.p' and root(t|y) = f, p € rposg(t) holds.

In the following section, we provide some general criteria for ensuring redundancy
of arguments on the basis of the (redundancy of some) positions in the rhs’s of
program rules, specifically the positions of the rhs’s where the arguments of the
functions defined in the lhs’s ‘propagate’ to.

4.2 Using redundant positions for characterizing redundancy

Theorem 1 says that the more restrictive a semantics is, the more redundancies
there are for the arguments of function symbols. According to our hierarchy
of semantics (by <), eval seems to be the most fruitful semantics for analyzing
redundant arguments. In the following, we focus on the problem of characterizing
the redundant arguments w.r.t. eval by studying the redundancy w.r.t. eval of
some positions in the rhs’s of program rules.

We say that p € Pos(t) is a sub-constructor position of ¢ if for all ¢ < p,
root(t|g) € C. In particular, A is a sub-constructor position.

Definition 3 ((f,i)-redundant variable). Let S be a term semantics for a
signature X, f € F, i € {1,...,ar(f)}, and t € T(X,X). The variable z € X
is (f,i)-redundant in t if it occurs only at positions p € Pos,(t) which are
redundant in ¢, in symbols p € rposg(t), or it appears in sub-constructor posi-
tions of the i-th parameter of f-rooted subterms of ¢, in symbols 3¢, ¢' such that
p=q.i.q', root(tly) = f and ¢' is a sub-constructor position of subterm t|y.;.

Note that variables which do not occur in a term ¢ are trivially (f,7)-redundant
intforany f € ¥ and i € {1,...,ar(f)}. Given a TRS R = (X, R), we write
Ry to denote the TRS Ry = (X,{l = r € R | root(l) = f}) which contains the
set of rules defining f € F.

Theorem 3. Let R = (C W F,R) be a left-linear CS. Let f € F and i €
{1,...;ar(f)}. If, for alll — r € Ry, l|; is a variable which is (f,3)-redundant
in T, then i € rarge,, ., (f).

Ezample 4. A standard example in the literature on useless variable elimination
(UVE) -a popular technique for removing dead variables, see [36,19]- is the
following program?!:

loop(a,bogus,0) — loop(f(a,0),s(bogus),s(0))

loop(a,bogus,s(j)) — a
Here it is clear that the second argument does not contribute to the value of the
computation. By Theorem 3, the second argument of loop is redundant w.r.t.
evaly.

The following example demonstrates that the restriction to constructor sys-
tems in Theorem 3 above is necessary.

Ezample 5. Consider the following TRS R {f (x) =g (£ (x)), g(f(x)) —x}. Then,
the argument 1 of £ (x) in the lhs of the first rule is a variable which, in the cor-

responding rhs of the rule, occurs within the argument 1 of a subterm rooted

by f, namely f(x). Hence, by Theorem 3 we would have that 1 € rarge,, (f)-

However, evalg (f(a)) = {a} # {b} = evalgr (£ (b)) (considering a, b € C), which

contradicts 1 € rarge,,, (£)-

Using Theorem 3, we are also able to conclude that the first argument of
function lastnew in Example 1 is redundant w.r.t. evalz. Unfortunately, Theo-
rem 3 does not suffice to prove that the second argument of lastnew is redundant
w.r.t. evalg.

In the following, we provide a different sufficient criterion for redundancy
which is less demanding regarding the shape of the left hand sides, although it
requires orthogonality and eval-definedness, in return. The following definitions
are auxiliary.

Definition 4. Let X be a signature, t = f(t1,...,tx), s = f(s1,...,5k) be terms
and i € {1,...,k}. We say that t and s unify up to i-th argument with mgu o
if (b1, s tic1,tig1y - tk) and (81,...,8i—1,8i41,--.,8k) unify mith mgu o.

Definition 5 ((f,?)-triple). Let R=(X,R) be a CS, f €X,andi€{l,...,ar(f)}.
Giwen two different (possibly renamed) rules I — r, I' = r' in Ry such that
Var(l) N Var(l') = @, we say that (I — r,lI' = r',0) is an (f,i)-triple of R if |
and ' unify up to i-th argument with mgu o.

Example 6. Consider the following CS R from Example 1:
applast(nil,z) — z lastnew(x,nil,z) — z
applast(x:xs,z) — lastnew(x,xs,z) lastnew(x,y:ys,z) — lastnew(y,ys,z)
This program has a single (lastnew, 2)-triple:
(lastnew(x,nil,z) — z,lastnew(x,y:ys,z) — lastnew(y,ys,z),id)

Definition 6 (Joinable (f,i)-triple). Let R = (CWF,R) be a CS, f € F, and
i€ {1,...;ar(f)}. An (f,i)-triple {l = r,I' = ',0) of R is joinable if oc(r)

! The original example uses natural 100 as stopping criteria for the third argument,
while we simplify here to natural 1 in order to code it as 0/s terms.

and oc(r') are joinable (i.e., they have a common reduct). Here, substitution oc
is given by:
o ettty

a otherwise, where a€C is an arbitrary constant of appropriate sort.

Ezample 7. Consider again the CS R and the single (lastnew, 2)-triple given
in Example 6. With ¢ given by ¢ = {y — 0, ys — nil}, the corresponding
rhs’s instantiated by 9, namely z and lastnew(0,nil,z), are joinable (z is the
common reduct). Hence, the considered (1lastnew,2)-triple is joinable.

Roughly speaking, the result below formalizes a method to determine redun-
dancy w.r.t. eval which is based on finding a common reduct of (some particular
instances of) the right-hand sides of rules.

Definition 7 ((f,i)-joinable TRS). Let R = (X, R) be a TRS, S be a rewrit-
ing semantics for R, f € X, and i € {1,...,ar(f)}. R is (f,i)-joinable if, for
alll - r € Ry and x € Var(l|;), z is (f,i)-redundant in r and all (f,i)-triples
of R are joinable.

Theorem 4. Let R = (C W F,R) be an orthogonal and evalg -defined CS. Let
feFandie{1,...,ar(f)}. If R is (f,i)-joinable then i € rarge,,, (f).

Joinability is decidable for terminating, confluent TRSs as well as for other
classes of TRSs such as right-ground TRSs (see e.g., [29]). Hence, Theorem 4
gives us an effective method to recognize redundancy in CD, left-linear, and
(semi-)complete TRSs, as illustrated in the following.

Example 8. Consider again the CS R of Example 6. This program is orthogonal,
terminating and CD (considering sorts), hence is eval-defined. Now, we have the
following. The first argument of lastnew is redundant w.r.t. evalg (Theorem 3).
The second argument of lastnew is redundant w.r.t. evalg (Theorem 4). As a
consequence, the positions of variables x and xs in the rhs of the first rule of
applast have been proven redundant. Then, since both lastnew(0,nil,z) and
z rewrite to z, Rapplast iS (applast,l)-joinable. By Theorem 4, we conclude
that the first argument of applast is redundant.

5 Erasing redundant arguments

The presence of redundant arguments within input expressions wastes memory
space and can lead to time consuming explorations and transformations (by re-
placement) of their structure. Redundant arguments are not necessary to deter-
mine the result of a function call. At first sight, one could expect that a suitable
rewriting strategy which is able to avoid the exploration of redundant arguments
of symbols could be defined. In Example 2, we showed that needed reduction is
not able to avoid redundant arguments. Context-sensitive rewriting (csr) [27],
which can be used to forbid reductions on selected arguments of symbols, could
also seem adequate for avoiding fruitless reductions at redundant arguments. In

csr, a replacement map p indicates the arguments u(f) C {1,...,ar(f)} of func-
tion symbol f on which reductions are allowed. Let R be the program applast
of Example 1 extended with the rules for function take of Example 2. If we fix
u(applast) = {2} to (try to) avoid wasteful computations on the first argument
of applast, using csr we are not able to reduce applast (take 1 (1:2:[]1)) 0
to 0.

In this section, we formalize a procedure for remowving redundant arguments
from a TRS. The basic idea is simple: if an argument of f is redundant, it does
not contribute to obtaining the value of any call to f and can be dropped from
program R. Hence, we remove redundant formal parameters and corresponding
actual parameters for each function symbol in R. We begin with the notion of
syntactic erasure which is intended to pick up redundant arguments of function
symbols.

Definition 8 (Syntactic erasure). A syntactic erasure is a mapping p : X —
P(N) such that for all f € X, p(f) C {1,...,ar(f)}. We say that a syntactic
erasure p is sound for a semantics S if, for all f € X, p(f) C rargs(f).

Ezample 9. Given the signature ¥ = {0,nil,s, :,applast,lastnew} of the
TRS R in Example 6, with ar(0) = ar(nil) =0, ar(s) =1, ar(:) = ar(applast) =
2, and ar(lastnew) = 3, the following mapping p is a sound syntactic erasure
for the semantics evalg: p(0) = p(nil) = p(s) = p(:) = &, p(applast) =
{1}, and p(lastnew) = {1,2}.

Since we are interested in removing redundant arguments from function sym-
bols, we transform the functions by reducing their arity according to the informa-
tion provided by the redundancy analysis, thus building a new, erased signature.

Definition 9 (Erasure of a signature). Given a signature X and a syntactic
erasure p : X — P(N), the erasure of X is the signature X, whose symbols
fo € X, are one to one with symbols f € X and whose arities are related by

ar(f,) = ar(f) = |p(f)|-

Exzample 10. The erasure of the signature in Example 9 is ¥, = {0,nil,s, :,
applast, lastnew}, with ar(0) = ar(nil) = 0, ar(s) = ar(applast) =
ar(lastnew) = 1, and ar(:) = 2. Note that, by abuse, we use the same symbols
for the functions of the erased signature.

Now we extend the procedure to terms in the obvious way.

Definition 10 (Erasure of a term). Given a syntactic erasure p : ¥ — P(N),
the function 7, : T(X,X) — T(X,,X) on terms is: 7,(z) = z if x € X and
To(f(b1s- oy tn)) = Fo(mp(tiy), -+ Tp(ti)) where {1,...,n} — p(f) = {41,...,ix}
and iy < ipme1 for 1 <m < k.

The erasure procedure is extended to TRSs: we erase the lhs’s and rhs’s of each
rule according to 7,. In order to avoid extra variables in rhs’s of rules (that arise
from the elimination of redundant arguments of symbols in the corresponding
lhs), we replace them by an arbitrary constant of X' (which automatically belongs
to X,).

Definition 11 (Erasure of a TRS). Let R = (X, R) be a TRS, such that ¥
has a constant symbol a, and p be a syntactic erasure for X. The erasure R,
of R is Ry, = (X,, {m,(1) = o1(7,(r)) | | = r € R}) where the substitution oy
for a lhs 1 is given by oy(x) = a for all x € Var(l) — Var(r,(1)) and oy(y) =y
whenever y € Var(7,(1)).

Example 11. Let R be the TRS of Example 6 and p be the sound syntactic
erasure of Example 9. The erasure R, of R consists of the erased signature of
Example 10 together with the following rules:

applast(z) — z lastnew(z) — z

applast(z) — lastnew(z) lastnew(z) — lastnew(z)
Below, we introduce a further improvement aimed to provide the final, “optimal”
program.

The following theorem establishes the correctness and completeness of the era-
sure procedure for the semantics eval.

Theorem 5 (Correctness and Completeness). Let R = (X, R) be a left-
linear TRS, p be a sound syntactic erasure for evalg, t € T(X), and 6 € T(C).
Then, T,(t) =%, 0 iff 6 € evalr(t).

In the following we ascertain the conditions for the preservation of some com-
putational properties of TRSs under erasure.

Theorem 6. Let R be a left-linear TRS. Let p be a sound syntactic erasure for
evalg. If R is evalr -defined and confluent, then the erasure R, of R is confluent.

Theorem 7. Let R be a left-linear and CD TRS, and p be a sound syntactic
erasure for evalg. If R is normalizing, then the erasure R, of R is normalizing.

In the theorem above, we cannot strengthen normalization to termination. A
simple counterexample showing that termination may get lost is the following.

Ezample 12. Consider the left-linear, (confluent, CD, and) terminating TRS R
{f(a,y)—a, f(c(x),y)—f(x,c(y))}. The first argument of f is redundant
w.r.t. evalg. However, after erasing the argument, we get the TRS {f(y) — a,
£(y) — f£(c(y))}, which is not terminating.

In the example above, note that the resulting TRS is not orthogonal, whereas
the original program is. Hence, this example also shows that orthogonality is not
preserved under erasure.

The following post-processing transformation can improve the optimization
achieved.

Definition 12 (Reduced erasure of a TRS). Let R = (X, R) be a TRS and
p be a syntactic erasure for X. The reduced erasure R|, of R is obtained from
the erasure R, of R by a compression transformation defined as removing any
trivial rule t — t of R, and then normalizing the rhs’s of the rules w.r.t. the

non-trivial rules of R,.

Reduced erasures are well-defined whenever R, is confluent and normalizing
since, for such systems, every term has a unique normal form.

10

Ezample 13. Let R, be the erasure of Example 13. The reduced erasure consists
of the rules {applast(z) — z, lastnew(z) — z}.

Since right-normalization preserves confluence, termination and the equational
theory (as well as confluence, normalization and the equational theory, in almost
orthogonal and normalizing TRSs) [13], and the removal of trivial rules does not
change the evaluation semantics of the TRS R either, we have the following.

Corollary 1. Let R be a left-linear TRS, p be a sound syntactic erasure for
evalg, t € T(X), and § € T(C). If (the TRS which results from removing trivial
rules from) R, is confluent and terminating (alternatively, if it is almost orthog-
onal and normalizing), then, 7,(t) —)3‘2; d if and only if § € evalr(t), where R,
is the reduced erasure of R.

Erasures and reduced erasures of a TRS preserve left-linearity. For a TRS R
satisfying the conditions in Corollary 1, by using [13], it is immediate that the
reduced erasure R, is confluent and normalizing. Also, R/, is CD if R is.

Hence, let us note that these results allow us to perform the optimization of
program applast while guaranteeing that the intended semantics is preserved.

6 Conclusion

This paper provides the first results concerning the detection and removal of
useless arguments in program functions. We have given a semantic definition
of redundancy which takes the semantics S as a parameter, and then we have
considered the evaluation semantics (closer to functional programming).

In order to provide practical methods to recognize redundancy, we have as-
certained suitable conditions which allow us to simplify the general redundancy
problem to the analysis of redundant positions within rhs’s of the program rules.
These conditions are quite demanding (requiring R to be orthogonal and evalg-
defined) but also the optimization which they enable is strong, and powerful. Ac-
tually, inefficiencies caused by the redundancy of arguments cannot be avoided
by using standard reduction strategies. Therefore, we have developed a transfor-
mation for eliminating dead code which appears in the form of useless function
calls and we have proven that the transformation preserves the semantics (and
the operational properties) of the original program under ascertained conditions.
The optimized program that we produce cannot be created as the result of apply-
ing standard transformations of functional programming to the original program
(such as partial evaluation, supercompilation, and deforestation, see e.g. [32]).
We believe that the semantic grounds for redundancy analyses and elimination
laid in this paper may foster further insights and developments in the functional
programming community and neighbouring fields.

The practicality of our ideas is witnessed by the implementation of a pro-
totype system which delivers encouragingly good results for the techniques de-
ployed in the paper (Sections 4.2 and 5). The prototype has been implemented
in PAKCS, the current distribution of the multi-paradigm declarative language
Curry [14], and is publicly available at http://www.dsic.upv.es/users/elp/redargs.

11

We have used the prototype to perform some preliminary experiments (available
at http://www.dsic.upv.es/users/elp/redargs/experiments) which show that our
methodology does detect and remove redundant arguments of many common
transformation benchmarks, such as bogus, lastappend, allzeros, doubleflip,
etc (see [24] and references therein). See [2] for details.

6.1 Related Work

Some notions have appeared in the literature of what it means for a term in a
TRS R to be “computationally irrelevant”. Our analysis is different from all the
related methods in many respects and, in general, incomparable to them.

Contrarily to our notion of redundancy, the meaninglessness of [22,21] is a
property of the terms themselves (they may have meaning in R or may not),
whereas our notion refers to arguments (positions) of function symbols. In [22],
Section 7.1, a term ¢ is called meaningless if, for each context C[] s.t. C[t] has a
normal form, we have that C[t'] has the same normal form for all terms ¢'. This
can be seen as a kind of superfluity (w.r.t. normal forms) of a fixed expression
in any context, whereas our notion of redundancy refers to the possibility of
getting rid of some arguments of a given function symbol with regard to some
observed semantics. The meaninglessness of [22] is not helpful for the purposes of
optimizing programs by removing useless arguments of function symbols which
we pursue. On the other hand, terms with a normal form are proven meaningful
(i.e., not meaningless) in [22,21], whereas we might have redundant arguments
which are normal forms.

Among the vast literature on analysis (and removal) of unnecessary data
structures, the analyses of unneededness (or absence) of functional program-
ming [9,16], and the filtering of useless arguments and unnecessary variables
of logic programming [25,31] are the closest to our work. In [16], a notion of
needed/unneeded parameter for list-manipulation programs is introduced which
is closely related to the redundancy of ours in that it is capable of identifying
whether the value of a subexpression is ignored. The method is formulated in
terms of a fixed, finite set of projection functions which introduces some lim-
itations on the class of neededness patterns that can be identified. Since our
method gives the information that a parameter is definitely not necessary, our
redundancy notion implies Hughes’s unneededness, but not vice versa. For in-
stance, constructor symbols cannot have redundant arguments in our framework
(Proposition 1), whereas Hughes’ notion of unneededness can be applied to the
elements of a list: Hughes’ analysis is able to determine that in the length func-
tion (defined as usual), the spine of the argument list is needed but the elements
of the list are not needed; this is used to perform some optimizations for the com-
piler. However, this information cannot be used for the purposes of our work,
that is, to remove these elements when the entire list cannot be eliminated.

On the other hand, Hughes’s notion of neededness/unneededness should not
be confused with the standard notion of needed (positions of) redexes of [15]:
Example 2 shows that Huet and Levy’s neededness does not imply the non-
redundancy of the corresponding argument or position (nor vice versa).

12

The notion of redundancy of an argument in a term rewriting system can
be seen as a kind of comportment property as defined in [9]. Cousot’s comport-
ment analysis generalizes not only the unneededness analyses but also strictness,
termination and other standard analyses of functional programming. In [9], com-
portment is mainly investigated within a denotational framework, whereas our
approximation is independent from the semantic formalism.

Proietti and Pettorossi’s elimination procedure for the removal of unneces-
sary variables is a powerful unfold/fold-based transformation procedure for logic
programs; therefore, it does not compare directly with our method, which would
be seen as a post-processing phase for program transformers optimization. Re-
garding the kind of unnecessary variables that the elimination procedure can
remove, only variables that occur more than once in the body of the program
rule and which do not occur in the head of the rule can be dropped. This is
not to say that the transformation is powerless; on the contrary, the effect can
be very striking as these kinds of variables often determine multiple traversals
of intermediate data structures which are then removed from the program. Our
procedure for removing redundant arguments is also related to the Leuschel and
Sgrensen RAF and FAR algorithms [25], which apply to removing unnecessary
arguments in the context of (conjunctive) partial evaluation of logic programs.
However, a comparison is not easy either as we have not yet considered the
semantics of computed answers for our programs.

People in the functional programming community have also studied the prob-
lem of useless variable elimination (UVE). Apparently, they were unaware of the
works of the logic programming community, and they started studying the topic
from scratch, mainly following a flow-based approach [36] or a type-based ap-
proach [7,19] (see [7] for a discussion of this line of research). All these works
address the problem of safe elimination of dead wariables but heavily handle
data structures. A notable exception is [26], where Liu and Stoller discuss how
to safely eliminate dead code in the presence of recursive data structures by
applying a methodology based on regular tree grammars. Unfortunately, the
method in [26] does not apply to achieve the optimization pursued in our run-
ning example applast.

Obviously, there exist examples (inspired) in the previously discussed works
which cannot be directly handled with our results, consider the following TRS:

length([1) =0 length(x:xs) — s(length(xs)) f(x) = length(x:[1)

Our methods do not capture the redundancy of the argument of £. In [26] it
is shown that, in order to evaluate length(xs), we do not need to evaluate
the elements of the argument list xs. In Liu et al.’s methodology, this means
that we could replace the rule for £ above by £(.) — length(_:[]) where _
is a new constant. However, as discussed in Section 5, this could still lead to
wasteful computations if, e.g., an eager strategy is used for evaluating the ex-
pressions: in that case, a term ¢ within a call £ (¢) would be wastefully reduced.
Nevertheless, Theorem 3 can be used now with the new rule to recognize the
first argument of £ as redundant. That is, we are allowed to use the following
rule: f — length(_:[]) which completely avoids wasteful computations on re-

13

dundant arguments. Hence, the different methods are complementary and an
enhanced test might be developped by properly combining them.

Recently, the problem of identifying redundant arguments of function sym-

bols has been reduced to proving the validity of a particular class of inductive
theorems in the equational theory of confluent, sufficiently complete TRSs. We
refer to [1] for details, where a comparison with approximation methods based
on abstract interpretation can also be found.

References

1.

2.

10.

11.

12.

13.

14.

15.

M. Alpuente, R. Echahed, S. Escobar, S. Lucas. Redundancy of Arguments Re-
duced to Induction. In Proc. of WFLP’02, ENTCS, to appear, 2002.

M. Alpuente, S. Escobar, S. Lucas. Removing Redundants Arguments of Functions.
Technical report DSIC-11/8/02, UPV, 2002.

M. Alpuente, M. Falaschi, P. Julidn, and G. Vidal. Specialization of Lazy Func-
tional Logic Programs. In Proc. of PEPM’97, ACM Sigplan Notices, volume
32(12):151-162. ACM Press, New York, 1997.

M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic
Programs. ACM TOPLAS, 20(4):768-844, 1998.

M. Alpuente, M. Hanus, S. Lucas, and G. Vidal. Specialization of Inductively
Sequential Functional Logic Programs. In Proc. of ICFP’99, ACM Sigplan Notices,
34(9):273-283, ACM Press, New York, 1999.

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles Techniques and Tools.
Addison-Wesley, 1986.

S. Berardi, M. Coppo, F. Damiani and P. Giannini. Type-Based Useless-Code
Elimination for Functional Programs. In Walid Taha, editor, Proc. of SAIG 2000,
LNCS 1924:172-189, Springer-Verlang, 2000.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

P. Cousot and R. Cousot. Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages), invited paper. In Proc. of ICCL’94, pages 95-112.
IEEE Computer Society Press, Los Alamitos, California, 1994.

M. Dauchet, T. Heuillard, P. Lescanne, and S. Tison. Decidability of the Confluence
of Finite Ground Term Rewrite Systems and of Other Related Term Rewriting
Systems. Information and Computation, 88:187-201, 1990.

J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of PEPM’93,
pages 88-98. ACM, New York, 1993.

R. Glick and M. Sgrensen. Partial deduction and driving are equivalent. In Proc.
of PLILP’94, LNCS 844:165-181. Springer-Verlag, Berlin, 1994.

B. Gramlich. On Interreduction of Semi-Complete Term Rewriting Systems. The-
oretical Computer Science, 258(1-2):435-451, 2001.

M. Hanus. Curry: An Integrated Functional Logic Language. Available at
http://www.informatik.uni-kiel.de/~curry, 2001.

G. Huet and J.J. Lévy. Computations in orthogonal term rewriting systems. In
J.L. Lassez and G. Plotkin, editors, Computational logic: essays in honour of J.
Alan Robinson, pages 395-414 and 415-443. The MIT Press, Cambridge, MA, 1991.

14

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

J. Hughes. Backwards Analysis of Functional Programs. In D. Bjgrner, A.P.
Ershov, and N.D. Jones, editors, IFIP Workshop on Partial Evaluation and Mized
Computation, pages 187-208, 1988.

J.W. Klop. Term Rewriting Systems. In S. Abramsky, D.M. Gabbay and T.S.E.
Maibaum. Handbook of Logic in Computer Science, volume 3, pages 1-116. Oxford
University Press, 1992.

D. Kapur, P. Narendran, and Z. Zhang. On sufficient-completeness and related
properties of term rewriting systems. Acta Informatica 24:395-416, 1987.

N. Kobayashi. Type-based useless variable elimination. In roc. of PEPM-00, pages
84-93, ACM Press, 2000.

E. Kounalis. Completeness in data type specifications. In B.F. Caviness, editor,
Proc. of EUROCAL’85, LNCS 204:348-362. Springer-Verlag, Berlin, 1985.

R. Kennaway, V. van Oostrom, F.J. de Vries. Meaningless Terms in Rewriting.
In Michael Hanus and Mario Rodriguez-Artalejo, editors, Proc. of ALP’96, LNCS
1139:254-268. Springer-Verlag, Berlin, 1996.

J. Kuper. Partiality in Logic and Computation. Aspects of Undefinedness. PhD
Thesis, Universiteit Twente, February 1994.

M. Leuschel and B. Martens. Partial Deduction of the Ground Representation and
Its Application to Integrity Checking. Tech. Rep. CW 210, K.U. Leuven, 1995.
M. Leuschel. The ECCE partial deduction system and the DPPD library of bench-
marks. Tech. Rep., Accessible via http://www.ecs.soton.ac.uk/“mal/.

M. Leuschel and M. H. Sgrensen. Redundant Argument Filtering of Logic Pro-
grams. In Proc of LOPSTR’96, LNCS 1207:83-103. Springer-Verlag, Berlin, 1996.
Y. A. Liu and S. D. Stoller. Eliminating dead code on recursive data. Science of
Computer Programming, 2002. To appear. Preliminary version in Proc. of SAS’99,
LNCS 1694:211-231. Springer-Verlag, Berlin, 1999.

S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1998(1):1-61, January 1998.
S. Lucas. Transfinite Rewriting Semantics for Term Rewriting Systems Proc. of
RTA’01, LNCS 2051:216-230. Springer-Verlag, Berlin, 2001.

M. Oyamaguchi. The reachability and joinability problems for right-ground term
rewriting systems. Journal of Information Processing, 18(3), pp. 347-354, 1990.
P. Padawitz. Computing in Horn Clause Theories. EATCS Monographs on Theo-
retical Computer Science, vol. 16. Springer-Verlag, Berlin, 1988.

A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and
techniques. J. Logic Program. 19,20, 261-320.

A Pettorossi and M. Proietti. A comparative revisitation of some program trans-
formation techniques. In Proc. of the 1996 Dagstuhl Seminar on Partial Evaluation,
LNCS 1110: 355-385. Springer-Verlag, Berlin, 1996.

A. Pettorossi and M. Proietti. A Theory of Logic Program Specialization and
Generalization for Dealing with Input Data Properties. In Proc. of the 1996
Dagstuhl Seminar on Partial Evaluation, LNCS 1110: 386—408. Springer-Verlag,
Berlin, 1996.

R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison Wesley, 1993.

M. Schiitz, M. Schmidt-Schauss and S. E. Panitz. Strictness analysis by abstract
reduction using a tableau calculus. In A. Mycroft, editor, Proc. of SAS’95, LNCS
983:348-365. Springer-Verlag, 1995.

M. Wand and I. Siveroni. Constraint systems for useless variable elimination. In
Proc. of POPL’99, pages 291-302, ACM Press, 1999.

15

