| ncremental and Adaptive Software Systems
Development of Natural Language Applications

Elena Lloret, Santiago Escob&rManuel Palomdr, and Isidro Ramds

Abstract Natural Language (NL) processing tools, such as tokenizeag-of-
speech taggers or syntactic processors obtain knowledgedrset of documents
(e.g., tokens, syntactic patterns, etc.) and produce fifereht elements that will
take part on the discourse universe in a NL text (e,g., nouagas, verbs, sen-
tences, etc). In this paper, we present how NL software systevelopment can be
performed incrementally by using a high-performance djpation language like
Maude. A generic algebraic specification for NL is definedluding sorts and sub-
sorts apart from equational properties, such as assdtyadivd commutativity for
built-in lists and sets. Then, the full discourse univees@jlable for NL processing,
is described in terms of the algebraic specification by mliog a non-deterministic
but terminating set of transformation rules. Finally, aschgroof of concept, a set
of documents for NL processing is given to Maude as an inpot g;nd successfully
transformed into a proper document, exploring all the netedninistic possibili-
ties, as well as resolving the ambiguity in language. Thenradivantages of imple-
menting NL in this manner are: generality, transparencteresibility, reusability,
and maintainability. To the best of our knowledge, this is finst attempt to rep-
resent and develop complex NL software systems with thisiébmotation, and
based on the analysis conducted, this implementation itatesthe basis for the
design and development of more specific NL processing agijfmits, such as text
summarization.

TDepartamento de Lenguajes y Sistemas Informaticos

Universidad de Alicante, Apdo. de correos, 99, E-03080aklte, Spain
e-mail: elloret@dlsi.ua.es, mpalomar@disi.ua.es

*Departamentos de Sistemas Informaticos y Computacion
Universidad Politécnica de Valencia Valencia, Spain

e-mail: sescobar@dsic.upv.es, iramos@dsic.upv.es

2 E. Lloret, S. Escobar, M. Palomar, |. Ramos

1 Introduction

Software Engineering (SE) is a systematic and disciplingmi@ach to developing
software [9]. It applies both computer science and engingerinciples and prac-
tices to the creation, operation, and maintenance of soétwgstems. Important
principles in SE are abstraction, modularity, incremedésielopment, or functional
independence, among others [17]. A popular approach is &avethods (FM),
where a specific notation with a formal semantics, along aittomatic and effec-
tive tools for reasoning, is used to specify, design, arglyerify, certify, and even
implement software [10].

On the other hand, Natural Language Processing (NLP) isearels area within
computer science that concerns with the design and impletien of artificially
intelligent systems that are capable of using language estuand flexibly as hu-
mans do [7]. Intuitively, NLP, as a computer science diseglshould create com-
puter software following a SE methodology, thus, taking amtcount SE principles.
However, when designing and developing NLP systems, SEctspee generally
neglected [13], resulting in highly specific applicatiohattwork only for restricted
domains that are really difficult to reuse, scale, or adaptredver, such applica-
tions heavily depend on hardware and software local spatidits, making hard to
separate the logic of the system from the computing requrgs

NLP applications could significantly benefit when takingiatcount SE funda-
mentals in the design and development of the componentse@ly; natural lan-
guage is modelled differently, depending on several isssigsh as the purpose of
its application, or the available resources. No attensqyeid, however, to the struc-
tures selected for its modelling, and the manner in which Ni&tems are devel-
oped. For this, it should be necessary to study in a moreldétaianner, methods
and models that could be employed in the software developpmeness that allow
the NLP applications to work independently from the envinemt characteristics,
and produce good quality programs in a systematic, cost#fe and efficient way.

An example of these SE techniques could be the Model-Drivemeldpment
philosophy [8], which considers models as the main asseteisoftware develop-
ment process. Models collect the information that dessribe information system
at a high abstraction level, allowing the development ofapplication in an auto-
mated way following generative programming techniquesi6t the Model-Driven
Architecture, we choose the high-performance specifinddaguage Maude [4].
The FM approach for software specification and implemeonas perfect here by
providing high-level specification languages for rapidteafe development and
easy-to-check semantics that are also easily extendedpeatedly adding more
algebraic properties. This would allow us to process natarguage in an incre-
mental manner with: (i) the possibility to extent and ad> developing systems
gradually, (ii) guaranteeing SE principles, such as trarspcy, maintainability, and
reusability of the developed components, and (iii) a highfgrmance prototype,
(iv) providing a formal and easy-to-check semantics.

The main goal of this paper is to study and analyze how natanguage can
be formally defined and modelled. Our approach follows aelalgic specification

Incremental and Adaptive Development of Natural Languagpli&ations 3

approach, via the Maude language [4]. As a result we obtaimplementation con-
sisting of a set of transformation rules that will allow ugptocess natural language
for each context and discourse. Achieving this objective will have an indepen-
dent implementation for natural language that will be hyggdalable and reusable,
easy to adapt and extend and with the possibility to integnadre knowledge in
an easy way through an incremental development. Moreadvisrptrototype may
constitute the basis for developing wider NLP applicati@osh as text summariza-
tion. Specifically, this paper makes three contributiomstHt constitutes one of the
first attempts to represent natural language in terms ofradbspecification with
a formal semantics, bringing NLP and SE/FM together. Secitndtroduces the
concept of incremental modelling for NLP, and shows how lalgie specification
implemented through Maude can offer great advantages ia¢chemental develop-
ment of NLP software applications. Third, it discusses hosllaknown problems
of natural language, such as ambiguity, are resolved wishajbproach.

In the remainder of the paper, we first provide an analysig@fipus work that
bears some relation to ours (Section 2). Then, we focus aritesy our formaliza-
tion approach for natural language (Section 3) and its implgation (Section 4).
Finally we summarize the main conclusions and outline futlirections obtained
from our research work (Section 5).

2 Related Work

Representation and modelling of natural language has alatiracted the attention
of NLP researchers. However, there is no consensus in the&iidarch community
about the form or the existence of a data structure that is @mbtlescribe natural
language texts [5]. From a NLP perspective, natural langisgnodelled differently
depending on: (i) the level of language analysis perforraad,(ii) the specific task
and/or application to be tackled.

Over the years, several mechanisms have been employedreseap natural
language. Grammars were the ones which experimented a hogeegs in the late
1990s, since they were a key element in the development ¢hcyn parsers. In
those years, different types of grammars were developetydimg probabilistic
context-free grammars (lexicalized or unlexicalized)|[t2finite clause grammars
[16], or combinatory categorial grammars [19], among athdtost of them were
derived from large corpora, such as Penn treebank. Howgrenmars had well-
known limitations [18]. On the one hand, they were too bigeaanaged, whereas
their coverage was somewhat limited. On the other hand, ¢hee¢ of ambiguity
was too great that exhaustive search was not feasible. &tisting approaches that
also try to model natural language employ statistical teples and probability,
such as n-grams or bag-of-words [11], but their objectivi@isbtain knowledge,
considering that a text is characterized by such elemeatser than proposing a
reusable approach for defining language. Recent efforis piposed to represent
and model the semantics natural language using ontolotjieaq well to establish

4 E. Lloret, S. Escobar, M. Palomar, |. Ramos

formal mechanisms (e.g., NLP Interchange Format) to fatdithe interoperability
of NLP tools [2]. However, these are still in their early stag

Platforms such as GATEor UIMA? allow the integration of different NLP re-
sources and tools, that were initially developed in a déffemway, to build complete
NLP systems. Our aim greatly differs from the developmerthete tools. It fo-
cuses more on the definition of NLP tasks in an incrementalrangable way, so
that complex NLP processes can be built on top of the basis with the addition
of minimum knowledge.

To the best of knowledge there is not previous research widttk tve goal of
modelling natural language from a SE perspective, and mameretely using FM,
and in particular, algebraic specification. By describiatunal language in an incre-
mental manner and through a high-performance specificktiguage like Maude,
as we proposed in our approach, we have a structure flexidladaptative enough
to be used for developing NLP applications following a stmddnethodology.

3 Formalization of Natural Language

To set the basis for modelling natural language by means afradl specification,
we can follow one of these approaches: (i) a manual appredgoére a linguistic
expert defines all necessary knowledge and takes into atatts possible vari-
ations; (ii) a fully automatic approach, where existing NioBls are employed for
extracting and obtaining knowledge from a set of documentd; (iii) a hybrid ap-
proach, where (i) and (ii) are combined, in the sense thabtiteut of NLP tools
is revised by an expert human in order to correct the possititas made by the
automatic processing. Our proposed approach follows #fierlapproach, relying
on the knowledge obtained from automatic NLP tools, andemtimg the output of
these tools, when necessary, in order to avoid the timetenimg process of (i),
and the errors derived from automatic tools in (ii). One im@uot difference is that
we explore all possibilities, so returning all possible miags to a human user for
further inspection.

The process of knowledge extraction follows a top-down meéthogy. Using
existing NLP tools that take a document as input and obtddrmation about their
components, we employ such knowledge for describing ndamguage. Two lev-
els of language analysis are involved in this process:Xit&-morphological anal-
ysis through a part-of-speech tagger, and (ii) syntactadyesis through a syntactic
parser. The former is useful for identifying the types ofenk (i.e. words) included
in a document, whereas the second determines the typestatgrstructures.

Then, our framework for describing natural language is #svis. First of all,
a generic algebraic specification for NLP is defined, inalgdsorts and subsorts
apart of equational properties, such as associativity anghtutativity for built-in

1 http://gate.ac.uk/
2 vima.apache.org/

Incremental and Adaptive Development of Natural Languagpli&ations 5

lists and sets. This establishes a cornerstone for thesamsetenerality and exten-
sibility of our incremental natural representation. Thidve, full discourse universe,
obtained from existing NLP tools and which must be availdbteprocessing nat-
ural language, is described in terms of the algebraic spatifin. For each lexical
element, a transformation rule is defined. If a lexical eleni@s some ambiguity,
several transformation rules would be defined, providingm:deterministic set of
transformation rules. Also, for each syntactic assoamtétransformation rule is
defined but in terms of the lexical elements rather the oaigiext elements. This
partis clearly non-deterministic, since multiple combioas of associations may be
possible. The addition of extra transformation rules fardal elements or syntactic
associations provides the main assets on transparensghiéity, and maintainabil-
ity of our incremental natural language processing. Fnallset of documents for
natural language processing is given to Maude as an input &ed successively
transformed into a proper document, exploring all the netexdninistic possibili-
ties. Since, all the transformation rules are terminativggknow the search space is
finite and, thus, manageable by existing formal methods{solkch as a reachability
command within the specification language Maude.

4 The Rewriting L ogic Semantics of Natural Language

This section contains the technical implementation defail representing natural
language in an incremental and adaptive manner, using thiel&anguage. Maude
[3]is a high-performance reflective language and systematipg both equational
and rewriting logic specification and programming. Funadiomodules describe
data types and operations on them by means of equationaidbelathematically,
such a theory can be described as a paiE UA), where:X is the signature that
specifies the type structure (sorts, subsorts, kinds, aadaaded operatorsk is
the collection of equations declared in the functional MedandA is the collection
of equational attributes (associativity, commutativapd so on) that are declared
for the different operators. System modules allow the detion of the dynamic
behaviour of a system beyond data types and operations orithallowing system
transition rules that constitute a search space graph.nGiveinitial state and a
search pattern, theear ch command performs the search through the rules and
equations defined. These equations are, in fact, rulesiagsdd¢o deterministic
actions and their application do not generate new statémisdarch space.

4.1 Incremental | mplementation

The cornerstone of our framework is the built-in Maude sort@uoted Identi-
fiers (QID). A QID is denoted by symbdl followed by letters and numbers, e.g.
“account 123, and is a wrapper for strings in order to provide a Maude =pr&-

6 E. Lloret, S. Escobar, M. Palomar, |. Ramos

tion for tokens of Maude syntax, which is essential for theawepresentation and
meta-reasoning capabilities of Maude. We could have usedufit-in Maude sort
String for representing words but its treatment is much more inefficthan that
of QID. The module QID-LIST defines a built-in data type ofdief quoted identi-
fiers, and it is our most important tool because it providegsmociative operator
(this represents the symbol with empty syntax in Maude) aithidentity operator
ni | foran empty list, allowing yuxtaposition of QID’s. This isuial for allowing
us to define our types based on sequences of QIDs withoutdh&vilook for the
individual elements in a different data structure. Thaif iwe need to search for the
word* a followed by the word t r ee with zero or more words between them, for
example to be replaced by ‘ dog, we just have to write the transition rule

ri XxQdList ‘“a Y:QdList ‘tree Z: Q dList
=> X:QdList ‘a Y:QdList ‘dog Z Q dList .
in Maude wherex: Q dLi st, Y: Q dLi st, andz: Q dLi st can be substituted by the
empty list or any sequence of QID’s. This avoids writing céalesearching for the
word* a and then searching for the wordr ee or restarting the search after finding
*a but not finding t r ee, thus easing the way for the specification of NLP.

From the knowledge obtained through the lexical-morphicklgand syntactic
analysis, we begin with the definition of the most basic tymescomplex types
could be then generated from the basic ones. For the implkai@m of our pro-
totype, a corpus of 567 English newswire documents provieBUC® was em-
ployed. This corpus will constitute the discourse univéos@ur implementation.

From the part-of-speech tagger output (lexical-morphiciganalysis), the dif-
ferent categories were grouped into 9 general odesetminer pronoun noury
preposition adjective adverh verb, stopword punctuation mark The set of tags
from the part-of-speech tagdewas automatically mapped to the previously men-
tioned categories. For instance, trexbcategory would consider tags, suchvasN,
VBD, VBG, VBZ or VBP. Each of these categories will be a different module in
Maude.

For each module, we first define a sort for the category and eefgpvhether it
is also a subsort of another one. All these basic categaresudsort from the QID
sort. The next step is to define the signature and semantieaéh of the modules.
The signature consists of the operations for obtaining #tegories. The semantics
of each module will contain the equations and rules by metwsich this category
is built. For this, we use a symbol representing each cageger,pr onoun, noun,
adver b, etc., and the original word is kept as an argument. We coale kdefined
a symbol for each word in each category, @gonoun- he or noun- att ack,
but it is easier to implement by keeping the original wordmaaument. However,
this forces us to make all the category symbols to be frozefuidher rewriting
(denoted by the labelsf rozen strat (0)] in Maude), i.e., to avoid nested
applications of the transformation rules in the fdrjnou — pr onoun(‘ you) —
pr onoun(pronoun(‘ you)), leading to an infinite loop.

3 http://www-nlpir.nist.gov/projects/duc/
4 http://www.sketchengine.co.uk/tagsets/penn.html

Incremental and Adaptive Development of Natural Languagpligations 7

We next provide an example of the signature and fragmentsea$émantics for
the categorynoun

nmod NOUN i s
protecting QD .

sort Noun .
subsort Qd < Noun .

op noun : Qd -> Noun [frozen strat (0)]

eq ‘advantages = noun(‘advantages)
eq ‘adventurers = noun(‘adventurers)
eq ‘adventures = noun(‘'adventures)
eq ‘advice = noun(‘advice)

]

rl “account => noun(‘account)
ri “act => noun('act)

ri “aid => noun(*aid)

ri “bear => noun(‘ bear)

[...]

endm

As it can be seen, for this module, as well as for the remaityipgs (determiner,
verb, adverb, adjective, stopword, and puntuation mark)define that each type
can take the form of a QID. The attributi®zenis also present in all of them and
it is crucial in the definition, in order to ensure that the gnaim terminates; oth-
erwise, we could end up with an infinite loop. In the semamniceach type, the
elements of our discourse universe that fall into the cpoeding categories are
included. Non-ambiguous terms (e.gy, ' advi ce = noun(*‘ advice) .) are rep-
resented through equations (eq), whereas rules (rl) acefaséhe ambiguous ones
(e.g.,r1 ’account => noun(‘account) .).

Having implemented the basic categories, we exploit theMeage obtained
from the syntactic parser (syntactic analysis) for definypes of language struc-
tures that are needed for creating sentences, and docurrepésticular, the ones
that we intially use for our research areaun phraseverb phrasewhich will lead
to the definition of the moduleSN SVin Maude. Below, the implementation 8N
module is shown.

nod SN is

protecting DETERM NER .
protecti ng PRONOUN .
protecting STOPWORD .
protecting PREPOCSI TI ON .
protecting ADJECTI VE .
protecting NOUN .
protecting QD-LIST .

sort Sn .
subsort QdList < Sn .
op sn : QdList -> Sn [frozen strat (0)]

8 E. Lloret, S. Escobar, M. Palomar, |. Ramos

ri- noun(A:Q@d) => sn(A Qd)

ri- pronoun(A:Qd) => sn(A Qd)

ri determner (A Qd) sn(B:QdList) => sn(AQd B:QdList) .

ri preposition(A:Qd) sn(B:QdList) => sn(A Qd B:QdList)

ri- stopword(A:Qd) sn(B:QdList) => sn(A Qd B:Q dList)

ri adjective(A:Qd) sn(B:QdList) => sn(A:Qd B:Q dList)

ri- sn(A:QdList) sn(B:QdList) => sn(A QdList B:Q dList)
endm

The SNmodule inherits the properties of some of the basic categpais well as
the built-in QID-LIST Maude module. The rules reflected ie thefinition of this
type shows how a noun phrase could be produced. These arsiveaules, that will
allow the construction of noun phrases following a recwwsind transformational
process starting from the basic types of words included éntéixt. Following an
analogously process, but taking into account the eleméatswould constitute a
verb phrase, we define ti&/type.

With the SNandSV data types, we can define the signature and semantics for a
sentence and a document. We define a sentence as a struatuweritains a noun
phrase, followed by a verb phrase, and ended with a punctuatark. In addition,
the syntactic analysis carried out also detected as sergegi@mmatical structures
involving either a noun or a verb phrase followed by a puntnamark. Finally,
we create a module for representing natural language daasm&e assume that a
document can be formed by a single sentence or a concateétivtem.

It should be immediate to understand for the reader thatalftodules are easily
extensible and reusable, since all the lexical and sywtdtiformation is defined
by transformation rules/equations and all such rulesféopusare local to the spe-
cific word or token being used, so there is no necessary gttdtal or context in-
formation. Furthermore, these modules provide a lot of gaitg and transparency,
since the set of new defined sorts is minimal.

4.2 Analysis and Discussion

Once all the necessary data types via Maude modules werernmapited, we con-
duct an analysis of its performance. In this analysis, wetwacheck if natural lan-
guage can be represented through our proposed types. Mora@/want to check
whether our approach would be computationally efficiergnethough optimization
is out of the scope of this paper.

We conduct a battery of tests in order to evaluate our impieation in a qual-
itative manner. Next, we provide several representatiaamptes for the different
types and discuss their results.

Example 1: Basic categories.

The following examples show cases where individual wor@stested in order

to check if they belong to the correct category.

search ‘happy =>* adjective(Q Q d)

Incremental and Adaptive Development of Natural Languagpli&ations 9

Solution 1 (state 0)
QQd --> ‘happy
No nore sol utions.

search ‘happy =>* verb(Q Q d)
No sol ution.

search ‘account =>+ verb(Q Q dLi st)
Solution 1 (state 2)

Q QdList --> “account

No nore sol utions.

search ‘account =>+ noun(Q Q dLi st)
Solution 1 (state 1)

Q QdList --> ‘account

No nore sol utions.

As it can be seen, the token “happy” is correctly recognizecma adjective,
and not as a verb. It is worth mentioning how ambiguity is tedlat the execution
stage. Let’s consider the terfaccount”. This word is ambiguous since it can act
as a noun as well as a verb. At the execution time, we perforeaeck within a
particular category, so for all the possible states in tieeiie category, the program
will check whether the wordccountexists. In our examples, when we search this
word either in the space of a verb or a noun, the word will begezed.

Another issue that is also important to note is the numbetatés visited and
the time spent for processing the terms. Maude is really ¢asisuming less than 1
second of CPU time. The predominant use of rules and eqatiakes the program
to be faster than if we had used only rules for implementiegstmantics for all the
types.

Example 2: Language structuresfor creating sentences
These examples show how natural language structures cdsdidentified.

search ‘the “account =>* sn(Q Q dLi st)
Solution 1 (state 5)

QQdList --> ‘the ‘account

No nore sol utions.

search

"the ‘dog ‘and ‘the ‘bear =>* sn(Q Q dList)
Solution 1 (state 22)

QQdList --> ‘the ‘dog ‘and ‘the ‘bear

No nore sol utions.

Concerning verb phraseSY), our implementation deals with verb phrase that in-
clude prepositional phrases form with a preposition, ardgtesr and a noun.

search

"play ‘with ‘the ‘cat =>* sv(Q Q dList)
Solution 1 (state 20)

QQdList --> ‘play ‘“with ‘the ‘cat

No nore sol utions.

10 E. Lloret, S. Escobar, M. Palomar, |. Ramos

Finally, we provide an example in order to ensure that nouag#s are not recog-
nized as verb phrases.

search
"the ‘dog ‘and ‘the ‘bear =>* sv(Q Q dList)
No sol ution.

From all these illustrative examples, we can highlight thet that although the
number of states and rewriting steps have increased wigiecéso the search per-
formed for the basic categories, the time spent for obtgitiie solution is marginal.
Example 3: Sentence and document recognition

Provided that we have the vocabulary employed in our dissuniverse, our
model for representing natural language will be able to gacze sentences and
documents. In these cases, the number of rewriting stepgghehthan in the pre-
vious examples. The longer and more complex the sentenbe diocument is, the
longer it takes for the system to analyze it. Moreover, fairtldefinition, we only
have used rules and not equations, leading to the fact thaethrch space is higher.

search ‘the ‘dog ‘plays ‘with ‘the ‘cat *;
=>+ sentence(Q Q dLi st)
Solution 1 (state 81)
states: 82
rewites: 158 in Onms cpu
Q QdList --> ‘the ‘dog ‘plays
‘with ‘the ‘cat *;
No nore sol utions.
states: 95
rewites: 191 in Onms cpu

search ‘nero ‘specializes ‘in ‘sniffing
‘out ‘bonmbs ‘and ‘narcotics ‘;
=>x sentence(Q Q dLi st)

Solution 1 (state 602)

states: 603

rewites: 1805 in 12ns cpu

QQdList --> ‘nero ‘specializes “in ‘sniffing

‘out ‘bonmbs ‘and ‘narcotics ‘;

No nore sol utions.

states: 616

rewites: 1848 in 12ns cpu

search ‘the ‘dog ‘plays ‘with ‘the ‘cat ‘;
‘nero ‘specializes ‘in ‘sniffing
‘out ‘bombs ‘and ‘narcotics ‘;
=>+ docunent (Q Q dLi st)

Solution 1 (state 58515)

states: 58516

rewites: 288541 in 1928ns cpu

QQdList --> ‘the ‘dog ‘plays ‘with ‘the

‘cat ‘; ‘nero ‘specializes ‘in
‘sniffing ‘out ‘bonbs ‘and
‘narcotics *;

No nore sol utions.

Incremental and Adaptive Development of Natural Languagpligations 11

states: 58549
rewites: 288737 in 1932ns cpu

In this paper, we have focused on the presentation of theefnamrk and further
optimizations on the search space have to be considerech vegha typical topic of
research in formal methods applied to verification. The kimaiis that the trans-
formation rules are terminating and, thus, the search spacéd always be finite.
Although our approach has not been evaluated in a quanétatanner, we have
verify the adequacy of our method through a set of repreteatxamples, focus-
ing also on the time spent for processing the different megluMore evaluation
examples and their performance analysis can be found in [14]

5 Conclusion and Future Directions

In this paper we modelled natural language following aneneental and adaptive
algebraic specification approach via a high-performarmguage (Maude). As far
as we know, this is the first attempt to represent naturaldagg in this manner.
NLP tools were employed for obtaining and extracting knagkefrom documents,
and such knowledge was used to define sorts, subsorts antioegliaroperties.

Not only was a novel method to represent natural languageogesl, but also our
implementation was designed in a way that is highly scalable reusable, thus
taking into consideration SE principles, which are not ofpaid attention by the
NLP research community.

An important advantage of this representation is that itldibe very easy to add
further knowledge, as well as to extend it to other languageghermore, the de-
velopment of more complex NLP applications, such as infaoionaetrieval or text
summarization, could be quite straightforward, given that necessary language
analysis levels are performed.

Taking this preliminary study as a starting point, there seeeral interesting
issues that will guide our research work in the future. Inghert-term we plan to
define more complex data types, as well as optimizing thepadnce of our initial
prototype. The addition of new knowledge as well as new dgtes will constitute
the basis for the development of complex NLP applicatiorts, éext summariza-
tion, that we plan to tackle in the long-term. Moreover, wgogblan to adopt the
ideas for natural language deconstruction proposed intfidi] could benefit our
approach by providing a flexible approach and determiningchvianguage struc-
tures should be modelled depending on the aim of the NLP eetjwin.

Acknowledgements This research has been partially funded by the Spanish @mest through
the project TEXT-MESS 2.0 (TIN2009-13391-C04) and Téanide Deconstruccion en la Tec-
nologias del Lenguaje Humano (TIN2012-31224) and by thee@ditat Valenciana through
project PROMETEO (PROMETEQO/2009/199). Moreover, S. Eactias been partially supported
by the EU (FEDER) and the Spanish MEC/MICINN under grant TIN@-21062-C02-02, and by
Generalitat Valenciana PROMETEO2011/052.

12 E. Lloret, S. Escobar, M. Palomar, I. Ramos
References
1. Bateman, J.A., Hois, J., Ross, R., Tenbrink, T.: A lingaisntology of space for natural

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

language processing. Atrtificial Intelligen&@4(14), 1027 — 1071 (2010)

. Chiarcos, C.: A generic formalism to represent linguistdrpora in rdf and owl/dl. In:

Proceedings of the Eight International Conference on LagguResources and Evaluation
(LREC'12) (2012)

. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-&li N., Meseguer, J., Talcott, C.: The

Maude 2.0 system. In: Rewriting Techniques and Applicati@RTA 2003), 2706, pp. 76-87
(2003)

. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-&liN., Meseguer, J., Talcott, C.L. (eds.):

All About Maude - A High-Performance Logical Framework, HosvSpecify, Program and
Verify Systems in Rewriting Logid,ecture Notes in Computer Scieneel. 4350 (2007)

. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukglu, K., Kuksa, P.: Natural lan-

guage processing (almost) from scratch. Journal of Machésening Research?2, 2493—
2537 (2011)

. Czarnecki, K., Eisenecker, U.W.: Generative prograngminethods, tools, and applications.

ACM Press/Addison-Wesley Publishing Co., New York, NY, U&800)

. Dale, R., Somers, H.L., Moisl, H. (eds.): Handbook of MaltlLanguage Processing. Marcel

Dekker, Inc., New York, NY, USA (2000)

. Frankel, D.: Model Driven Architecture: Applying MDA taierprise Computing. John Wiley

& Sons, Inc., New York, NY, USA (2002)

. Ghezzi, C., Jazayeri, M., Mandrioli, D.: FundamentalsSoftware Engineering, 2nd edn.

Prentice Hall PTR, Upper Saddle River, NJ, USA (2002)

Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowdn, Margaria, T.: Software engineer-
ing and formal methods. Commun. ACB4(9), 54-59 (2008)

Huang, F., Yates, A., Ahuja, A., Downey, D.: Language elsds representations for weakly-
supervised nip tasks. In: Proceedings of the Fifteenth &ente on Computational Natural
Language Learning, pp. 125-134 (2011)

Klein, D., Manning, C.D.: Accurate unlexicalized pagsi In: Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics - Male 1, pp. 423—430. Association
for Computational Linguistics, Stroudsburg, PA, USA (2P03

Leidner, J.: Current issues in software engineeringiéural language processing. In: Pro-
ceedings of the Workshop on Software Engineering and Aechite of Language Technology
Systems, pp. 45-50 (2003)

Lloret, E., Escobar, S., Palomar, M., Ramos, |.: Natlamyuage modelling using maude.
Tech. rep., University of Alicante (2013)

Martinez-Barco, P., Ferrandez-Rodriguez, A., @snD., Lloret, E., Saquete, E., Llopis, F.,
Peral, J., Palomar, M., Gmez-Soriano, J.M., Roma, M.Tgadlang: Técnicas de decon-
struccion en la tecnologias del lenguaje humano. Protestéo de Lenguaje Natural (51)
(2013)

Pereira, F., Warren, D.: Definite clause grammars fayuage analysis - a survey of the for-
malism and a comparison with augmented transition networkgificial Intelligence 13,
231-278 (1980)

Pressman, R.S.: Software Engineering: A Practitisn&pproach, 5th edn. McGraw-Hill
Higher Education (2001)

Steedman, M.: Some important problems in natural laggpaocessing. Tech. rep., Univer-
sity of Edinburgh (2010)

Steedman, M., Baldridge, J.: Combinatory Categorigdn@nar, pp. 181-224. Wiley-
Blackwell (2011)

