
Incremental and Adaptive Software Systems
Development of Natural Language Applications

Elena Lloret†, Santiago Escobar‡, Manuel Palomar†, and Isidro Ramos‡

Abstract Natural Language (NL) processing tools, such as tokenizers, part-of-
speech taggers or syntactic processors obtain knowledge from a set of documents
(e.g., tokens, syntactic patterns, etc.) and produce the different elements that will
take part on the discourse universe in a NL text (e,g., noun phrases, verbs, sen-
tences, etc). In this paper, we present how NL software systems development can be
performed incrementally by using a high-performance specification language like
Maude. A generic algebraic specification for NL is defined, including sorts and sub-
sorts apart from equational properties, such as associativity and commutativity for
built-in lists and sets. Then, the full discourse universe,available for NL processing,
is described in terms of the algebraic specification by providing a non-deterministic
but terminating set of transformation rules. Finally, and as a proof of concept, a set
of documents for NL processing is given to Maude as an input term and successfully
transformed into a proper document, exploring all the non-deterministic possibili-
ties, as well as resolving the ambiguity in language. The main advantages of imple-
menting NL in this manner are: generality, transparency, extensibility, reusability,
and maintainability. To the best of our knowledge, this is the first attempt to rep-
resent and develop complex NL software systems with this formal notation, and
based on the analysis conducted, this implementation constitute the basis for the
design and development of more specific NL processing applications, such as text
summarization.

†Departamento de Lenguajes y Sistemas Informáticos
Universidad de Alicante, Apdo. de correos, 99, E-03080 Alicante, Spain
e-mail: elloret@dlsi.ua.es, mpalomar@dlsi.ua.es
‡Departamentos de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia Valencia, Spain
e-mail: sescobar@dsic.upv.es, iramos@dsic.upv.es

1



2 E. Lloret, S. Escobar, M. Palomar, I. Ramos

1 Introduction

Software Engineering (SE) is a systematic and disciplined approach to developing
software [9]. It applies both computer science and engineering principles and prac-
tices to the creation, operation, and maintenance of software systems. Important
principles in SE are abstraction, modularity, incrementaldevelopment, or functional
independence, among others [17]. A popular approach is Formal Methods (FM),
where a specific notation with a formal semantics, along withautomatic and effec-
tive tools for reasoning, is used to specify, design, analyze, verify, certify, and even
implement software [10].

On the other hand, Natural Language Processing (NLP) is a research area within
computer science that concerns with the design and implementation of artificially
intelligent systems that are capable of using language as fluently and flexibly as hu-
mans do [7]. Intuitively, NLP, as a computer science discipline, should create com-
puter software following a SE methodology, thus, taking into account SE principles.
However, when designing and developing NLP systems, SE aspects are generally
neglected [13], resulting in highly specific applications that work only for restricted
domains that are really difficult to reuse, scale, or adapt. Moreover, such applica-
tions heavily depend on hardware and software local specifications, making hard to
separate the logic of the system from the computing requirements.

NLP applications could significantly benefit when taking into account SE funda-
mentals in the design and development of the components. Currently, natural lan-
guage is modelled differently, depending on several issues, such as the purpose of
its application, or the available resources. No attention is paid, however, to the struc-
tures selected for its modelling, and the manner in which NLPsystems are devel-
oped. For this, it should be necessary to study in a more detailed manner, methods
and models that could be employed in the software development process that allow
the NLP applications to work independently from the environment characteristics,
and produce good quality programs in a systematic, cost-effective and efficient way.

An example of these SE techniques could be the Model-Driven Development
philosophy [8], which considers models as the main assets inthe software develop-
ment process. Models collect the information that describes the information system
at a high abstraction level, allowing the development of theapplication in an auto-
mated way following generative programming techniques [6]. For the Model-Driven
Architecture, we choose the high-performance specification language Maude [4].
The FM approach for software specification and implementation is perfect here by
providing high-level specification languages for rapid software development and
easy-to-check semantics that are also easily extended by repeatedly adding more
algebraic properties. This would allow us to process natural language in an incre-
mental manner with: (i) the possibility to extent and adapt the developing systems
gradually, (ii) guaranteeing SE principles, such as transparency, maintainability, and
reusability of the developed components, and (iii) a high-performance prototype,
(iv) providing a formal and easy-to-check semantics.

The main goal of this paper is to study and analyze how naturallanguage can
be formally defined and modelled. Our approach follows an algebraic specification



Incremental and Adaptive Development of Natural Language Applications 3

approach, via the Maude language [4]. As a result we obtain animplementation con-
sisting of a set of transformation rules that will allow us toprocess natural language
for each context and discourse. Achieving this objective, we will have an indepen-
dent implementation for natural language that will be highly scalable and reusable,
easy to adapt and extend and with the possibility to integrate more knowledge in
an easy way through an incremental development. Moreover, this prototype may
constitute the basis for developing wider NLP applications, such as text summariza-
tion. Specifically, this paper makes three contributions. First, it constitutes one of the
first attempts to represent natural language in terms of a formal specification with
a formal semantics, bringing NLP and SE/FM together. Second, it introduces the
concept of incremental modelling for NLP, and shows how algebraic specification
implemented through Maude can offer great advantages to theincremental develop-
ment of NLP software applications. Third, it discusses how well-known problems
of natural language, such as ambiguity, are resolved with this approach.

In the remainder of the paper, we first provide an analysis of previous work that
bears some relation to ours (Section 2). Then, we focus on describing our formaliza-
tion approach for natural language (Section 3) and its implementation (Section 4).
Finally we summarize the main conclusions and outline future directions obtained
from our research work (Section 5).

2 Related Work

Representation and modelling of natural language has always attracted the attention
of NLP researchers. However, there is no consensus in the NLPresearch community
about the form or the existence of a data structure that is able to describe natural
language texts [5]. From a NLP perspective, natural language is modelled differently
depending on: (i) the level of language analysis performed,and (ii) the specific task
and/or application to be tackled.

Over the years, several mechanisms have been employed to represent natural
language. Grammars were the ones which experimented a huge progress in the late
1990s, since they were a key element in the development of syntactic parsers. In
those years, different types of grammars were developed, including probabilistic
context-free grammars (lexicalized or unlexicalized) [12], definite clause grammars
[16], or combinatory categorial grammars [19], among others. Most of them were
derived from large corpora, such as Penn treebank. However,grammars had well-
known limitations [18]. On the one hand, they were too big to be managed, whereas
their coverage was somewhat limited. On the other hand, the degree of ambiguity
was too great that exhaustive search was not feasible. Otherexisting approaches that
also try to model natural language employ statistical techniques and probability,
such as n-grams or bag-of-words [11], but their objective isto obtain knowledge,
considering that a text is characterized by such elements, rather than proposing a
reusable approach for defining language. Recent efforts have proposed to represent
and model the semantics natural language using ontologies [1], as well to establish



4 E. Lloret, S. Escobar, M. Palomar, I. Ramos

formal mechanisms (e.g., NLP Interchange Format) to facilitate the interoperability
of NLP tools [2]. However, these are still in their early stages.

Platforms such as GATE1 or UIMA2 allow the integration of different NLP re-
sources and tools, that were initially developed in a different way, to build complete
NLP systems. Our aim greatly differs from the development ofthese tools. It fo-
cuses more on the definition of NLP tasks in an incremental andreusable way, so
that complex NLP processes can be built on top of the basic ones with the addition
of minimum knowledge.

To the best of knowledge there is not previous research work with the goal of
modelling natural language from a SE perspective, and more concretely using FM,
and in particular, algebraic specification. By describing natural language in an incre-
mental manner and through a high-performance specificationlanguage like Maude,
as we proposed in our approach, we have a structure flexible and adaptative enough
to be used for developing NLP applications following a standard methodology.

3 Formalization of Natural Language

To set the basis for modelling natural language by means of a formal specification,
we can follow one of these approaches: (i) a manual approach,where a linguistic
expert defines all necessary knowledge and takes into account all its possible vari-
ations; (ii) a fully automatic approach, where existing NLPtools are employed for
extracting and obtaining knowledge from a set of documents;and (iii) a hybrid ap-
proach, where (i) and (ii) are combined, in the sense that theoutput of NLP tools
is revised by an expert human in order to correct the possibleerrors made by the
automatic processing. Our proposed approach follows this latter approach, relying
on the knowledge obtained from automatic NLP tools, and correcting the output of
these tools, when necessary, in order to avoid the time-consuming process of (i),
and the errors derived from automatic tools in (ii). One important difference is that
we explore all possibilities, so returning all possible meanings to a human user for
further inspection.

The process of knowledge extraction follows a top-down methodology. Using
existing NLP tools that take a document as input and obtain information about their
components, we employ such knowledge for describing natural language. Two lev-
els of language analysis are involved in this process: (i) lexical-morphological anal-
ysis through a part-of-speech tagger, and (ii) syntactic analysis through a syntactic
parser. The former is useful for identifying the types of tokens (i.e. words) included
in a document, whereas the second determines the types of syntactic structures.

Then, our framework for describing natural language is as follows. First of all,
a generic algebraic specification for NLP is defined, including sorts and subsorts
apart of equational properties, such as associativity and commutativity for built-in

1 http://gate.ac.uk/
2 uima.apache.org/



Incremental and Adaptive Development of Natural Language Applications 5

lists and sets. This establishes a cornerstone for the assets on generality and exten-
sibility of our incremental natural representation. Then,the full discourse universe,
obtained from existing NLP tools and which must be availablefor processing nat-
ural language, is described in terms of the algebraic specification. For each lexical
element, a transformation rule is defined. If a lexical element has some ambiguity,
several transformation rules would be defined, providing a non-deterministic set of
transformation rules. Also, for each syntactic association, a transformation rule is
defined but in terms of the lexical elements rather the original text elements. This
part is clearly non-deterministic, since multiple combinations of associations may be
possible. The addition of extra transformation rules for lexical elements or syntactic
associations provides the main assets on transparency, reusability, and maintainabil-
ity of our incremental natural language processing. Finally, a set of documents for
natural language processing is given to Maude as an input term and successively
transformed into a proper document, exploring all the non-deterministic possibili-
ties. Since, all the transformation rules are terminating,we know the search space is
finite and, thus, manageable by existing formal methods tools, such as a reachability
command within the specification language Maude.

4 The Rewriting Logic Semantics of Natural Language

This section contains the technical implementation details for representing natural
language in an incremental and adaptive manner, using the Maude language. Maude
[3] is a high-performance reflective language and system supporting both equational
and rewriting logic specification and programming. Functional modules describe
data types and operations on them by means of equational theories. Mathematically,
such a theory can be described as a pair(Σ ,E∪A), where:Σ is the signature that
specifies the type structure (sorts, subsorts, kinds, and overloaded operators);E is
the collection of equations declared in the functional module, andA is the collection
of equational attributes (associativity, commutativity,and so on) that are declared
for the different operators. System modules allow the description of the dynamic
behaviour of a system beyond data types and operations on them by allowing system
transition rules that constitute a search space graph. Given an initial state and a
search pattern, thesearch command performs the search through the rules and
equations defined. These equations are, in fact, rules associated to deterministic
actions and their application do not generate new states in the search space.

4.1 Incremental Implementation

The cornerstone of our framework is the built-in Maude sort for Quoted Identi-
fiers (QID). A QID is denoted by symbol‘ followed by letters and numbers, e.g.
‘account123, and is a wrapper for strings in order to provide a Maude representa-



6 E. Lloret, S. Escobar, M. Palomar, I. Ramos

tion for tokens of Maude syntax, which is essential for the meta-representation and
meta-reasoning capabilities of Maude. We could have used the built-in Maude sort
String for representing words but its treatment is much more inefficient than that
of QID. The module QID-LIST defines a built-in data type of lists of quoted identi-
fiers, and it is our most important tool because it provides anassociative operator__
(this represents the symbol with empty syntax in Maude) withan identity operator
nil for an empty list, allowing yuxtaposition of QID’s. This is crucial for allowing
us to define our types based on sequences of QIDs without having to look for the
individual elements in a different data structure. That is,if we need to search for the
word ‘a followed by the word‘tree with zero or more words between them, for
example to be replaced by‘a ‘dog, we just have to write the transition rule
rl X:QidList ‘a Y:QidList ‘tree Z:QidList

=> X:QidList ‘a Y:QidList ‘dog Z:QidList .

in Maude whereX:QidList, Y:QidList, andZ:QidList can be substituted by the
empty list or any sequence of QID’s. This avoids writing codefor searching for the
word‘a and then searching for the word‘tree or restarting the search after finding
‘a but not finding‘tree, thus easing the way for the specification of NLP.

From the knowledge obtained through the lexical-morphological and syntactic
analysis, we begin with the definition of the most basic types, so complex types
could be then generated from the basic ones. For the implementation of our pro-
totype, a corpus of 567 English newswire documents providedby DUC3 was em-
ployed. This corpus will constitute the discourse universefor our implementation.

From the part-of-speech tagger output (lexical-morphological analysis), the dif-
ferent categories were grouped into 9 general ones (determiner; pronoun; noun;
preposition; adjective; adverb; verb; stopword; punctuation mark). The set of tags
from the part-of-speech tagger4 was automatically mapped to the previously men-
tioned categories. For instance, theverbcategory would consider tags, such asVVN,
VBD, VBG, VBZ, or VBP. Each of these categories will be a different module in
Maude.

For each module, we first define a sort for the category and we specify whether it
is also a subsort of another one. All these basic categories are subsort from the QID
sort. The next step is to define the signature and semantics for each of the modules.
The signature consists of the operations for obtaining the categories. The semantics
of each module will contain the equations and rules by means of which this category
is built. For this, we use a symbol representing each category, i.e.,pronoun,noun,
adverb, etc., and the original word is kept as an argument. We could have defined
a symbol for each word in each category, e.g.pronoun-he or noun-attack,
but it is easier to implement by keeping the original word as an argument. However,
this forces us to make all the category symbols to be frozen for further rewriting
(denoted by the labels[frozen strat (0)] in Maude), i.e., to avoid nested
applications of the transformation rules in the form‘you→ pronoun(‘you)→

pronoun(pronoun(‘you)), leading to an infinite loop.

3 http://www-nlpir.nist.gov/projects/duc/
4 http://www.sketchengine.co.uk/tagsets/penn.html



Incremental and Adaptive Development of Natural Language Applications 7

We next provide an example of the signature and fragments of the semantics for
the categorynoun.

mod NOUN is
protecting QID .

sort Noun .
subsort Qid < Noun .

op noun : Qid -> Noun [frozen strat (0)] .

eq ‘advantages = noun(‘advantages) .
eq ‘adventurers = noun(‘adventurers) .
eq ‘adventures = noun(‘adventures) .
eq ‘advice = noun(‘advice) .
[...]
rl ‘account => noun(‘account) .
rl ‘act => noun(‘act) .
rl ‘aid => noun(‘aid) .
rl ‘bear => noun(‘bear) .
[...]
endm

As it can be seen, for this module, as well as for the remainingtypes (determiner,
verb, adverb, adjective, stopword, and puntuation mark), we define that each type
can take the form of a QID. The attributefrozenis also present in all of them and
it is crucial in the definition, in order to ensure that the program terminates; oth-
erwise, we could end up with an infinite loop. In the semanticsof each type, the
elements of our discourse universe that fall into the corresponding categories are
included. Non-ambiguous terms (e.g.,eq ’advice = noun(‘advice) .) are rep-
resented through equations (eq), whereas rules (rl) are used for the ambiguous ones
(e.g.,rl ’account => noun(‘account) .).

Having implemented the basic categories, we exploit the knowledge obtained
from the syntactic parser (syntactic analysis) for definingtypes of language struc-
tures that are needed for creating sentences, and documents. In particular, the ones
that we intially use for our research are:noun phrase, verb phrase, which will lead
to the definition of the modulesSN, SV in Maude. Below, the implementation ofSN
module is shown.

mod SN is
protecting DETERMINER .
protecting PRONOUN .
protecting STOPWORD .
protecting PREPOSITION .
protecting ADJECTIVE .
protecting NOUN .
protecting QID-LIST .

sort Sn .
subsort QidList < Sn .
op sn : QidList -> Sn [frozen strat (0)] .



8 E. Lloret, S. Escobar, M. Palomar, I. Ramos

rl noun(A:Qid) => sn(A:Qid) .
rl pronoun(A:Qid) => sn(A:Qid) .
rl determiner(A:Qid) sn(B:QidList) => sn(A:Qid B:QidList) .
rl preposition(A:Qid) sn(B:QidList) => sn(A:Qid B:QidList) .
rl stopword(A:Qid) sn(B:QidList) => sn(A:Qid B:QidList) .
rl adjective(A:Qid) sn(B:QidList) => sn(A:Qid B:QidList) .
rl sn(A:QidList) sn(B:QidList) => sn(A:QidList B:QidList) .
endm

TheSNmodule inherits the properties of some of the basic categories, as well as
the built-in QID-LIST Maude module. The rules reflected in the definition of this
type shows how a noun phrase could be produced. These are recursive rules, that will
allow the construction of noun phrases following a recursive and transformational
process starting from the basic types of words included in the text. Following an
analogously process, but taking into account the elements that would constitute a
verb phrase, we define theSV type.

With theSNandSVdata types, we can define the signature and semantics for a
sentence and a document. We define a sentence as a structure that contains a noun
phrase, followed by a verb phrase, and ended with a punctuation mark. In addition,
the syntactic analysis carried out also detected as sentences, grammatical structures
involving either a noun or a verb phrase followed by a punctuation mark. Finally,
we create a module for representing natural language documents. We assume that a
document can be formed by a single sentence or a concatenation of them.

It should be immediate to understand for the reader that all the modules are easily
extensible and reusable, since all the lexical and syntactical information is defined
by transformation rules/equations and all such rules/equations are local to the spe-
cific word or token being used, so there is no necessary globaldata or context in-
formation. Furthermore, these modules provide a lot of generality and transparency,
since the set of new defined sorts is minimal.

4.2 Analysis and Discussion

Once all the necessary data types via Maude modules were implemented, we con-
duct an analysis of its performance. In this analysis, we want to check if natural lan-
guage can be represented through our proposed types. Moreover, we want to check
whether our approach would be computationally efficient, even though optimization
is out of the scope of this paper.

We conduct a battery of tests in order to evaluate our implementation in a qual-
itative manner. Next, we provide several representative examples for the different
types and discuss their results.
Example 1: Basic categories.

The following examples show cases where individual words are tested in order
to check if they belong to the correct category.

search ‘happy =>* adjective(Q:Qid) .



Incremental and Adaptive Development of Natural Language Applications 9

Solution 1 (state 0)
Q:Qid --> ‘happy
No more solutions.

search ‘happy =>* verb(Q:Qid) .
No solution.

search ‘account =>* verb(Q:QidList) .
Solution 1 (state 2)
Q:QidList --> ‘account
No more solutions.

search ‘account =>* noun(Q:QidList) .
Solution 1 (state 1)
Q:QidList --> ‘account
No more solutions.

As it can be seen, the token “happy” is correctly recognized as an adjective,
and not as a verb. It is worth mentioning how ambiguity is tackled at the execution
stage. Let’s consider the term“account” . This word is ambiguous since it can act
as a noun as well as a verb. At the execution time, we perform a search within a
particular category, so for all the possible states in the specific category, the program
will check whether the wordaccountexists. In our examples, when we search this
word either in the space of a verb or a noun, the word will be recognized.

Another issue that is also important to note is the number of states visited and
the time spent for processing the terms. Maude is really fast, consuming less than 1
second of CPU time. The predominant use of rules and equations makes the program
to be faster than if we had used only rules for implementing the semantics for all the
types.
Example 2: Language structures for creating sentences

These examples show how natural language structures can be also identified.

search ‘the ‘account =>* sn(Q:QidList) .
Solution 1 (state 5)
Q:QidList --> ‘the ‘account
No more solutions.

search
’the ‘dog ‘and ‘the ‘bear =>* sn(Q:QidList) .
Solution 1 (state 22)
Q:QidList --> ‘the ‘dog ‘and ‘the ‘bear
No more solutions.

Concerning verb phrases (SV), our implementation deals with verb phrase that in-
clude prepositional phrases form with a preposition, a determiner and a noun.

search
’play ‘with ‘the ‘cat =>* sv(Q:QidList) .
Solution 1 (state 20)
Q:QidList --> ‘play ‘with ‘the ‘cat
No more solutions.



10 E. Lloret, S. Escobar, M. Palomar, I. Ramos

Finally, we provide an example in order to ensure that noun phrases are not recog-
nized as verb phrases.

search
’the ‘dog ‘and ‘the ‘bear =>* sv(Q:QidList) .
No solution.

From all these illustrative examples, we can highlight the fact that although the
number of states and rewriting steps have increased with respect to the search per-
formed for the basic categories, the time spent for obtaining the solution is marginal.
Example 3: Sentence and document recognition

Provided that we have the vocabulary employed in our discourse universe, our
model for representing natural language will be able to recognize sentences and
documents. In these cases, the number of rewriting steps is higher than in the pre-
vious examples. The longer and more complex the sentence or the document is, the
longer it takes for the system to analyze it. Moreover, for their definition, we only
have used rules and not equations, leading to the fact that the search space is higher.

search ‘the ‘dog ‘plays ‘with ‘the ‘cat ‘;
=>* sentence(Q:QidList) .

Solution 1 (state 81)
states: 82
rewrites: 158 in 0ms cpu
Q:QidList --> ‘the ‘dog ‘plays

‘with ‘the ‘cat ‘;
No more solutions.
states: 95
rewrites: 191 in 0ms cpu

search ‘nero ‘specializes ‘in ‘sniffing
‘out ‘bombs ‘and ‘narcotics ‘;
=>* sentence(Q:QidList) .

Solution 1 (state 602)
states: 603
rewrites: 1805 in 12ms cpu
Q:QidList --> ‘nero ‘specializes ‘in ‘sniffing

‘out ‘bombs ‘and ‘narcotics ‘;
No more solutions.
states: 616
rewrites: 1848 in 12ms cpu

search ‘the ‘dog ‘plays ‘with ‘the ‘cat ‘;
‘nero ‘specializes ‘in ‘sniffing
‘out ‘bombs ‘and ‘narcotics ‘;
=>* document(Q:QidList) .

Solution 1 (state 58515)
states: 58516
rewrites: 288541 in 1928ms cpu
Q:QidList --> ‘the ‘dog ‘plays ‘with ‘the

‘cat ‘; ‘nero ‘specializes ‘in
‘sniffing ‘out ‘bombs ‘and
‘narcotics ‘;

No more solutions.



Incremental and Adaptive Development of Natural Language Applications 11

states: 58549
rewrites: 288737 in 1932ms cpu

In this paper, we have focused on the presentation of the framework and further
optimizations on the search space have to be considered, which is a typical topic of
research in formal methods applied to verification. The key idea is that the trans-
formation rules are terminating and, thus, the search spacewould always be finite.
Although our approach has not been evaluated in a quantitative manner, we have
verify the adequacy of our method through a set of representative examples, focus-
ing also on the time spent for processing the different modules. More evaluation
examples and their performance analysis can be found in [14].

5 Conclusion and Future Directions

In this paper we modelled natural language following an incremental and adaptive
algebraic specification approach via a high-performance language (Maude). As far
as we know, this is the first attempt to represent natural language in this manner.
NLP tools were employed for obtaining and extracting knowledge from documents,
and such knowledge was used to define sorts, subsorts and equational properties.
Not only was a novel method to represent natural language proposed, but also our
implementation was designed in a way that is highly scalableand reusable, thus
taking into consideration SE principles, which are not often paid attention by the
NLP research community.

An important advantage of this representation is that it would be very easy to add
further knowledge, as well as to extend it to other languages. Furthermore, the de-
velopment of more complex NLP applications, such as information retrieval or text
summarization, could be quite straightforward, given thatthe necessary language
analysis levels are performed.

Taking this preliminary study as a starting point, there areseveral interesting
issues that will guide our research work in the future. In theshort-term we plan to
define more complex data types, as well as optimizing the performance of our initial
prototype. The addition of new knowledge as well as new data types will constitute
the basis for the development of complex NLP applications, e.g., text summariza-
tion, that we plan to tackle in the long-term. Moreover, we also plan to adopt the
ideas for natural language deconstruction proposed in [15]that could benefit our
approach by providing a flexible approach and determining which language struc-
tures should be modelled depending on the aim of the NLP application.

Acknowledgements This research has been partially funded by the Spanish Government through
the project TEXT-MESS 2.0 (TIN2009-13391-C04) and Técnicas de Deconstrucción en la Tec-
nologı́as del Lenguaje Humano (TIN2012-31224) and by the Generalitat Valenciana through
project PROMETEO (PROMETEO/2009/199). Moreover, S. Escobar has been partially supported
by the EU (FEDER) and the Spanish MEC/MICINN under grant TIN 2010-21062-C02-02, and by
Generalitat Valenciana PROMETEO2011/052.



12 E. Lloret, S. Escobar, M. Palomar, I. Ramos

References

1. Bateman, J.A., Hois, J., Ross, R., Tenbrink, T.: A linguistic ontology of space for natural
language processing. Artificial Intelligence174(14), 1027 – 1071 (2010)

2. Chiarcos, C.: A generic formalism to represent linguistic corpora in rdf and owl/dl. In:
Proceedings of the Eight International Conference on Language Resources and Evaluation
(LREC’12) (2012)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: The
Maude 2.0 system. In: Rewriting Techniques and Applications (RTA 2003), 2706, pp. 76–87
(2003)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.L. (eds.):
All About Maude - A High-Performance Logical Framework, Howto Specify, Program and
Verify Systems in Rewriting Logic,Lecture Notes in Computer Science, vol. 4350 (2007)

5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural lan-
guage processing (almost) from scratch. Journal of MachineLearning Research12, 2493–
2537 (2011)

6. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and applications.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA(2000)

7. Dale, R., Somers, H.L., Moisl, H. (eds.): Handbook of Natural Language Processing. Marcel
Dekker, Inc., New York, NY, USA (2000)

8. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing. John Wiley
& Sons, Inc., New York, NY, USA (2002)

9. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals ofSoftware Engineering, 2nd edn.
Prentice Hall PTR, Upper Saddle River, NJ, USA (2002)

10. Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T.: Software engineer-
ing and formal methods. Commun. ACM51(9), 54–59 (2008)

11. Huang, F., Yates, A., Ahuja, A., Downey, D.: Language models as representations for weakly-
supervised nlp tasks. In: Proceedings of the Fifteenth Conference on Computational Natural
Language Learning, pp. 125–134 (2011)

12. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics - Volume 1, pp. 423–430. Association
for Computational Linguistics, Stroudsburg, PA, USA (2003)

13. Leidner, J.: Current issues in software engineering fornatural language processing. In: Pro-
ceedings of the Workshop on Software Engineering and Architecture of Language Technology
Systems, pp. 45–50 (2003)

14. Lloret, E., Escobar, S., Palomar, M., Ramos, I.: Naturallanguage modelling using maude.
Tech. rep., University of Alicante (2013)

15. Martı́nez-Barco, P., Ferrández-Rodrı́guez, A., Tom´as, D., Lloret, E., Saquete, E., Llopis, F.,
Peral, J., Palomar, M., Gmez-Soriano, J.M., Romá, M.T.: Legolang: Técnicas de decon-
strucción en la tecnologı́as del lenguaje humano. Procesamiento de Lenguaje Natural (51)
(2013)

16. Pereira, F., Warren, D.: Definite clause grammars for language analysis - a survey of the for-
malism and a comparison with augmented transition networks. Artificial Intelligence 13,
231–278 (1980)

17. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 5th edn. McGraw-Hill
Higher Education (2001)

18. Steedman, M.: Some important problems in natural language processing. Tech. rep., Univer-
sity of Edinburgh (2010)

19. Steedman, M., Baldridge, J.: Combinatory Categorial Grammar, pp. 181–224. Wiley-
Blackwell (2011)


