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Maŕıa Alpuente a,∗, Santiago Escobar a, José Iborra a
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Abstract

This paper describes several classes of term rewriting systems (TRS’s) where nar-
rowing has a finite search space and is still (strongly) complete as a mechanism
for solving reachability goals. These classes do not assume confluence of the TRS.
We also ascertain purely syntactic criteria that suffice to ensure the termination
of narrowing and include several subclasses of popular TRS’s such as right-linear
TRS’s, almost orthogonal TRS’s, topmost TRS’s, and left-flat TRS’s. Our results
improve and/or generalize previous criteria in the literature regarding narrowing
termination.

1 Introduction

Narrowing is a generalization of term rewriting that allows free variables in
terms (as in logic programming) and replaces pattern matching with syntactic
unification in order to (non–deterministically) reduce these terms. Narrowing
was originally introduced as a mechanism for solving equational unification
problems (Fay, 1979) and then generalized to solve the more general problem
of symbolic reachability (Meseguer and Thati, 2007). The narrowing mech-
anism has a number of important applications including automated proofs
of termination (Arts and Zantema, 1996), execution of functional–logic pro-
gramming languages (Dershowitz, 1995; Hanus, 1994; Reddy, 1985; Meseguer,
1992), verification of cryptographic protocols (Meseguer and Thati, 2007), and
equational unification (Hullot, 1980), just to mention a few.
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Example 1 Consider the following term rewriting system (TRS) defining the
addition add on natural numbers built from 0 and s:

add(0, y) → y (R1)

add(s(x), y) → s(add(x, y)) (R2)

There are infinitely many narrowing derivations issuing from the input expres-
sion add(w, s(0)) (at each step, the narrowing relation ; is labelled with the
applied substitution and rule 3 , and the reduced subterm is underlined):

add(w, s(0)) ;{w 7→0},(R1) s(0)

add(w, s(0)) ;{w 7→s(x)},(R2) s(add(x, s(0))) ;{x 7→0},(R1) s(s(0))

add(w, s(0)) ;{w 7→s(x)},(R2) s(add(x, s(0))) ;{x 7→s(x′)},(R2) s(s(add(x′, s(0))))

;{x 7→0},(R1) s(s(s(0)))
...

The following infinite narrowing derivation resulting from applying rule (R2)
infinitely many times can also be proved

add(w, s(0)) ;{w 7→s(x)},(R2) s(add(x, s(0))) ;{x 7→s(x′)},(R2) s(s(add(x′, s(0)))) · · ·

Due to nontermination, narrowing behaves as a semi-decision procedure for
the problem of equational unification in a wide variety of equational theories.
For instance, in the equational theory defined by the above rules (R1) and
(R2), narrowing allows us to prove that the formula ∃w∃z s.t. add(w, s(0)) =
s(s(z)) holds by computing the solution {w 7→ s(0), z 7→ 0}, whereas it
cannot prove that the formula ∃w s.t. add(w, s(0)) = 0 does not hold.

Under appropriate conditions, narrowing is complete as an equational unifica-
tion algorithm as well as a procedure to solve reachability problems; that is,
it is able to find “more general” solutions σ for the variables of terms s and t,
such that sσ rewrites to tσ in R in a number of steps. For instance, narrow-
ing computes the solution {w 7→ s(z)} for the reachability problem ∃w∃z s.t.
add(0, w) →∗ s(z).

In this paper, we are interested in identifying classes of TRS’s where narrowing
terminates and is still complete for solving reachability problems. Termina-
tion of narrowing is an important property for finitary equational unification
(Dershowitz and Mitra, 1999; Fay, 1979; Hullot, 1980; Mitra and Dershowitz,
1996) and equational constraint solving (Alpuente et al., 1993, 1995a), as well
as for developing semantics–based tools such as model checkers (Escobar and
Meseguer, 2007), and program specializers or debuggers (Alpuente et al., 1998,

3 Substitutions are restricted to the input variables.
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2002) for functional logic programming languages whose operational principle
is based on narrowing (Dershowitz, 1995; Hanus, 1994; Reddy, 1985; Meseguer,
1992). In this article, we do not consider extra artifacts to reduce or limit the
narrowing space.

Basically, the only positive result in the literature concerning the termination
of ordinary narrowing was proved by Christian (1992). It holds for every left-
flat TRS R (each argument of the left–hand side of a rewrite rule is either
a variable or a ground term) such that the rewrite rules are oriented by a
termination ordering >: R ⊆ >.

A faulty termination result for ordinary narrowing was published in (Hul-
lot, 1980, Proposition 1) and is the starting point for our work. This result
incorrectly stated that ordinary narrowing terminates in canonical TRS’s if
all basic narrowing derivations (narrowing derivations which do not reduce
certain blocked positions) that issue from the right hand side of each rewrite
rule terminate. Unfortunately, under the conditions established by Hullot, his
proof only allows one to conclude the termination of basic narrowing, which
was implicitly corrected in (Hullot, 1981). Results in the literature that take
advantage of, or are built on top of, Hullot’s termination result for narrowing
are based on a false assumption and may need to be revised in light of the
results presented in this article.

A detailed discussion of existing completeness and termination results for nar-
rowing is given in Section 3.

1.1 Our contributions

The contributions of this paper are as follows:

(1) We fix Hullot’s termination result for ordinary narrowing in canonical
TRS’s where all basic derivations issuing from the rhs’s of the rules ter-
minate. This is achieved by requiring the TRS to satisfy Réty’s maximal
commutation conditions, which allow the establishment of a correspon-
dence between ordinary and basic narrowing derivations (Corollary 13).
In the process we explicitly drop the superfluous requirement of canonic-
ity from Hullot’s result, as few cognoscenti tacitly do.

To our knowledge, this is the first termination result in the literature
for ordinary narrowing which holds in (a subclass of) linear TRS’s and is
enunciated in Hullot’s style without requiring canonicity.

(2) From Corollary 13, we distill a practical criterion for the termination of
narrowing that has not been previously identified in the related literature
and that does not yet require confluence of the TRS nor a termination
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ordering. We achieve this by imposing that the TRS be linear and rnf-
based, a novel class of TRS’s that can be seen as a generalization of left-
linear constructor systems and that satisfy Réty’s normalization condition
(Corollary 22).

A TRS is rnf-based if each argument occurring in the lhs of every re-
write rule is “unnarrowable”, called rigid normal form (rnf), i.e., contains
no subterm that unifies with the lhs of any rule. The class of rnf-based
TRS’s includes both constructor systems and almost orthogonal TRS’s
as a particular case.

(3) Then, we consider the class of TRS’s where narrowing is strongly com-
plete, as a procedure to solve reachability goals. This allows us to prove
narrowing termination in a number of TRS’s where right–linearity is not
explicitly required (Corollary 32).

(4) Inspired by Christian’s termination result (Christian, 1992), we are able
to further improve our results and also get rid of left–linearity, by proving
termination for a subclass of left-plain TRS’s, a novel class where argu-
ments of the lhs’s can be either ground or rnf–patterns (Theorem 44).

(5) Finally, by using the known results for the strong reachability complete-
ness of narrowing recently given by Meseguer and Thati (2007), we iden-
tify several purely syntactical, non–trivial classes of TRS’s where narrow-
ing has a finite search space and is still (strongly) complete as a procedure
to solve reachability goals (Corollary 45).

From the above results, termination of several popular TRS’s follow,
including right–rnf TRS’s which are either (i) almost orthogonal, (ii)
constructor and either right–linear or confluent, (iii) topmost, and (iv)
right–linear. These results are particularly practical since many inter-
esting TRS’s fit into one of these classes. Differently from Christian’s
criterion (Christian, 1992), our termination criteria do not resort to ter-
mination orderings, and are thus simpler to check.

A table summarizing the relevant results is included at the end of the paper.

1.2 Plan of the paper

Section 2 presents some preliminary notions and results. Section 3 summarizes
the main completeness and termination results in the literature of narrowing.
In Section 4, we clarify the main source of error in Hullot’s termination result
for canonical TRS’s, and we correct it by using Réty’s maximal commutation
property (Réty, 1987). In Section 5, we show that canonicity is a superfluous
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requirement in Hullot’s termination result, and then distill a practical criterion
for narrowing termination which holds for TRS’s that are linear and rnf–
based. Section 6 introduces the class of reachability-complete TRS’s, which
allows us to get rid of right–linearity. Finally, Section 7 provides a strong
narrowing termination criterion which holds in left-plain, right–rnf TRS’s,
provided they are also reachability–complete. Section 8 concludes. Proofs of
the main technical results are given in Appendix.

2 Preliminaries

In this section, we briefly recall the essential notions and terminology of term
rewriting (Dershowitz and Jouannaud, 1990; Ohlebusch, 2002; TeReSe, 2003).
V denotes a countably infinite set of variables, and Σ denotes a set of function
symbols, or signature, each of which has a fixed associated arity. Terms are
viewed as labelled trees in the usual way, where T (Σ,V) and T (Σ) denote
the non-ground term algebra and the ground algebra built on Σ ∪ V and Σ,
respectively. Positions are defined as sequences of positive natural numbers
used to address subterms, with the empty sequence ε as the root (or top)
position. Concatenation of positions p and q is denoted by p.q, and p < q
is the usual prefix ordering. The concatenation of a position p and a set of
positions P is p.P = {p.q | q ∈ P}. Two positions p, q are disjoint, denoted
by p ‖ q, if neither p < q, p > q, nor p = q. Given S ⊆ Σ ∪ V , PosS(t)
denotes the set of positions of a term t that are rooted by function symbols
or variables in S. Pos{f}(t) with f ∈ Σ∪V is simply denoted by Posf (t), and
PosΣ∪V(t) is simply denoted by Pos(t). t|p is the subterm at the position p
of t. t[s]p is the term t with the subterm at the position p replaced with term
s. Syntactic equality of terms is represented by ≡. By Var(s), we denote the
set of variables occurring in the syntactic object s. By x̄, we denote a tuple of
pairwise distinct variables. A fresh variable is a variable that appears nowhere
else. A linear term is one where every variable occurs only once.

A substitution is a mapping from the set of variables V into the set of terms
T (Σ,V). A substitution is represented as {x1 7→ t1, . . . , xn 7→ tn} for variables
x1, . . . , xn and terms t1, . . . , tn. The application of substitution θ to term t is
denoted by tθ, using postfix notation. Composition of substitutions is denoted
by juxtaposition, i.e., the substitution σθ denotes (θ ◦ σ). The domain of a
substitution σ is Dom(σ) = {x ∈ V | xσ 6≡ x}, and Rng(σ) = {xσ | x ∈
Dom(σ)} is its range. The set of variables in Rng(σ) is denoted by VRng(σ).
The empty substitution is denoted by id, i.e., Dom(id) = ∅. A substitution θ is
more (or equally) general than σ, denoted by θ ≤ σ, if there is a substitution γ
such that σ = θγ. We write θ|̀Var(s) to denote the restriction of the substitution
θ to the set of variables in s; by abusing notation, we often simply write θ|̀s.
Given a set of variables W , we write θ = ν [W ] for θ|̀W = ν|̀W , i.e., ∀x ∈ W ,
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xθ ≡ xν. A renaming is a substitution σ for which there exists the inverse
σ−1, such that σσ−1 = σ−1σ = id. A unifier of terms s and t is a substitution
ϑ such that sϑ ≡ tϑ. The most general unifier of terms s and t, denoted by
mgu(s, t), is a unifier θ such that for each other unifier θ′, θ ≤ θ′.

A term rewriting system R (TRS for short) is a pair (Σ, R), where R is a
finite set of rewrite rules of the form l → r such that l, r ∈ T (Σ,V), l 6∈ V ,
and Var(r) ⊆ Var(l). We will often write just R instead of (Σ, R). For TRS
R, l → r << R denotes that l → r is a new variant of a rule in R such that
l → r contains only fresh variables, i.e., contains no variable previously met
during any computation (standardized apart). A TRS R is called conservative
(or regular) if, for every l → r ∈ R, V ar(l) = V ar(r). A TRS R is called left–
linear (respectively right–linear) if, for every l → r ∈ R, l (respectively r) is
a linear term. A linear TRS is both left and right–linear.

Given a TRS R = (Σ, R), the signature Σ is often partitioned into two disjoint
sets Σ := C ] D, where D := {f | f(t1, . . . , tn) → r ∈ R} and C := Σ \ D.
Symbols in C are called constructors, and symbols in D are called defined
functions. The elements of T (C,V) are called constructor terms. A TRS is a
constructor system (CS for short) if the left–hand sides of R are patterns, i.e.,
terms of the form f(d1, . . . , dk) where f ∈ D and d1, . . . , dk are constructor
terms.

A rewrite step is the application of a rewrite rule to an expression. A term
s ∈ T (Σ,V) rewrites to a term t ∈ T (Σ,V), denoted by s →R t, if there
exist p ∈ PosΣ(s), l → r << R, and substitution σ such that s|p ≡ lσ and
t ≡ s[rσ]p. When no confusion can arise, we omit the subscript R. A term s
is a normal form w.r.t. the relation →R (or simply a normal form), if there is
no term t such that s →R t. This notion is lifted to substitutions as follows: a
substitution σ is normalized if, for every x ∈ V , xσ is a normal form.

A TRS R is terminating (also called strongly normalizing or noetherian) if
there are no infinite reduction sequences t1 →R t2 →R . . .. In other words,
every reduction sequence eventually ends in a normal form. A TRSR is conflu-
ent if, whenever t →∗

R s1 and t →∗
R s2, there exists a term w s.t. s1 →∗

R w and
s2 →∗

R w. A confluent and terminating TRS is called canonical 4 . In canonical
TRS’s, each term has one (and only one) normal form. Two (possibly renamed)
rules l → r and l′ → r′ overlap if there is p ∈ PosΣ(l) and substitution σ such
that l|pσ ≡ l′σ. The pair 〈lσ[r′σ]p, rσ〉 is called a critical pair ; it is called an
overlay if p ≡ ε. A critical pair 〈t, s〉 is trivial if t ≡ s. A left-linear TRS with-
out critical pairs is called orthogonal. A left-linear TRS whose critical pairs
are trivial overlays is called almost orthogonal. Note that orthogonal TRS’s
are almost orthogonal and almost orthogonality implies confluence (TeReSe,

4 Canonical TRS’s are sometimes called complete (Knuth and Bendix, 1970; Hullot,
1980; Middeldorp and Hamoen, 1994).
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2003).

A TRSR is called topmost if, for every term t, all rewritings on t are performed
at the root position of t. Although topmost TRS’s are not commonly used in
term rewriting, they are relevant in programming languages. For instance, in
Haskell (Peyton Jones, 2003) or Maude (Clavel et al., 2007), rewrite rules can
be defined so that the type (or sort) information forces rewrites to happen
only at the top of terms. In Maude, it is also possible to introduce freezing
specifications that block rewrites at any proper subterm position. Actually,
many concurrent systems of interest, including the vast majority of distributed
algorithms, admit quite natural topmost specifications (Meseguer and Thati,
2007). In an unsorted setting like ours, topmost TRS’s are only those that
do not contain any function symbol whose arity is greater than 0 (that is, all
rules have the form a → b).

Narrowing is a symbolic computation mechanism that generalizes rewriting
by replacing pattern matching with syntactic unification. W.l.o.g. we restrict
ourselves to narrowing of terms; the extension of narrowing for (equational
as well as reachability) goals is straightforward, see e.g. (Hölldobler, 1989;
Meseguer and Thati, 2007). A term s ∈ T (Σ,V) narrows to t ∈ T (Σ,V),
denoted by s ;θ,R t if there exist p ∈ PosΣ(s), l → r << R, and substitution
θ such that θ = mgu(s|p, l) and t ≡ (s[r]p)θ. When we want to emphasize the
position p where a rewriting (respectively narrowing) step took place, we write

s
p→R t (respectively s

p
;θ,R t). We may also write s

p
;θ,l→r t when we also

want to emphasize the applied rule. We denote the transitive and reflexive
closure of →R (respectively ;θ,R) by →∗

R (respectively ;∗
θ′,R).

3 Existing Termination and Completeness Results for Narrowing

Existing termination results for narrowing have been obtained as a by-product
of other works that address the decidability of equational unification or the
completeness of narrowing-based equational unification algorithms. To facili-
tate the understanding of our results, let us first summarize the existing com-
pleteness results for narrowing as a procedure to solve equational unification
as well as reachability goals.

3.1 Existing completeness results for narrowing

Fay (1979) and Hullot (1980) demonstrated that narrowing is a complete
method for solving equational unification goals s1 = t1, . . . , sn = tn in an
equational theory defined by a canonical term rewriting system R. In the
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equational setting, completeness means that, for every solution ρ to a given
equational goal G (i.e., R ` siρ = tiρ, for all i s.t. 1 ≤ i ≤ n), a more general
solution η can be found by narrowing. Strictly speaking, the relative generality
of substitution η w.r.t. ρ holds modulo R and is restricted to the variables of
G, or more formally:

η ≤R ρ [Var(G)] (unification–completeness)

This means that there exists a substitution σ s.t., for all x ∈ Var(G), the
equation xρ = xησ holds in R, which can be proved by rewriting terms xρ
and xησ in R to the same normal form, due to canonicity. The subindex R in
≤R can be dropped only when we restrict our interest to normalized (or irre-
ducible) substitutions, which is generally understood as a weaker result from
both the semantic as well as the pragmatic point of view (Meseguer and Thati,
2007). If we drop the termination of R while keeping confluence, narrowing
is (unification-) complete only w.r.t. normalizable solutions (Middeldorp and
Hamoen, 1994).

In the extensive literature about narrowing, unification–completeness has been
thoroughly investigated for a number of narrowing restrictions which are ob-
tained by imposing specific narrowing strategies; see (Hanus, 1994) for a sur-
vey. In this work, we restrict our interest to ordinary (sometimes called full,
unrestricted or simple) narrowing, as defined in Section 2. An investigation of
completeness or termination for sophisticated narrowing strategies is beyond
the scope of this paper.

From a practical point of view, equational unification problems can be seen
as a special case of reachability problems. Namely, under canonicity of R,
solving a unification problem ∃x̄. s = t can be transformed into solving the
corresponding reachability problem ∃x̄. (s ≈ t) →∗ true in the extended term
rewriting system R ∪ (x ≈ x → true) where both problems have the same
solutions provided that ≈ is a fresh binary function symbol and true is a
fresh constant (Meseguer and Thati, 2007; Middeldorp and Hamoen, 1994).
The extension of R with the extra rule (x ≈ x → true) allows treating
equality = as an ordinary function symbol ≈ and syntactic unification as a
narrowing step, i.e., in the extended TRS, the “term” s ≈ t narrows to true

with substitution σ iff σ is the most general unifier of s and t. Alternative
formulations of narrowing-based equational unification procedures that do not
extend R by this extra rewrite rule complement the narrowing calculus with
an additional inference rule to cope with syntactic unification, e.g. (Hölldobler,
1989).

As stated above, the completeness of narrowing as a procedure to solve equa-
tional goals heavily depends on the condition that the rewrite rules are con-
fluent. Actually, in the standard equational setting, confluence is the prop-
erty which allows considering equations as rewrite rules (oriented from left
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to right). The equational theory axiomatized by {f(a) = b, f(a) = c} is a
trivial counter-example to unification–completeness when confluence does not
hold. Here narrowing fails to prove the equation b = c in the corresponding
(oriented) TRS R = {f(a) → b, f(a) → c}, whereas b = c holds in the
original equational theory.

In (Meseguer and Thati, 2007), reachability goals s1 →∗ t1, . . . , sn →∗ tn are
investigated in non–confluent term rewriting systems in order to solve ver-
ification problems of cryptographic protocols. Many safety properties (i.e.,
properties of a system that are defined in terms of certain events not hap-
pening) can be characterized in terms of reachability problems. By finding
all solutions to a reachability goal s →∗ t (i.e., the substitutions σ such that
R ` sσ →∗ tσ), the subset of the states denoted by s that can reach a subset
of the states denoted by t can be easily inferred. Hence, reachability problems
extend narrowing capabilities to a wider spectrum that includes the analysis of
concurrent systems. Similarly to the equational case, the procedure for solving
reachability goals performs syntactic unification at the last step of the deriva-
tion; this way, trivial goals such as x →∗ y (where there is no redex to narrow)
do succeed in computing a more general solution. In the reachability context,
confluence is no longer a reasonable (or needed) assumption and is thus done
away with (e.g., concurrent systems are inherently non–deterministic).

The new completeness results for narrowing given in (Meseguer and Thati,
2007) 5 for solving reachability goals in (possibly) non–confluent TRS’s are
summarized as follows. Narrowing is weakly complete, i.e., complete w.r.t.
normalized solutions: for every normalized solution ρ to a reachability goal G,
a (syntactically) more general solution η is found by narrowing, in symbols:

η ≤ ρ [Var(G)] (weak reachability–completeness)

Note that neither confluence nor termination of R are required.

In (Meseguer and Thati, 2007), strong reachability–completeness (i.e., com-
pleteness w.r.t. not necessarily normalized solutions, i.e. solutions that can be
further rewritten by R) is proved to hold only in the following two particular
classes of TRS’s: (i) topmost, and (ii) right–linear (provided that we addition-
ally restrict ourselves to linear reachability goals ∧n

i=1(si →∗ ti), where each
si is linear). Under these asumptions, for every solution ρ to a reachability
goal G, a more general solution η (modulo R) is computed by narrowing, i.e.,
η ≤R ρ [Var(G)]. In the reachability setting, where confluence cannot be as-
sumed and thus equality in R cannot be decided by rewriting, the definition
is translated as follows: there is a (syntactic) instance θ of the computed sub-

5 The completeness results in (Meseguer and Thati, 2007) concern more general re-
write theories that consist of a set of rewrite rules R together with a set of equations
E so that rewriting and narrowing in R are defined modulo E.
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stitution η such that the (possibly not normalized) solution ρ reduces to θ. To
be precise:

ρ|̀Var(G) →∗
R θ|̀Var(G) and η ≤ θ [Var(G)] (strong reachability–completeness)

Of course, unification–completeness trivially implies reachability–complete-
ness, hence (strong) reachability–completeness of narrowing holds for canon-
ical programs, whereas narrowing is not unification–complete in either right–
linear or topmost TRS’s (Middeldorp and Hamoen, 1994).

In the case of right–linear TRS’s, linearity of the goal is a key requirement
which cannot be dropped, as shown in the following example.

Example 2 (Meseguer and Thati, 2007) Consider the TRS R = {f(b,c)→
d, a→ b, a→ c}. The non–linear reachability goal f(x,x)→∗ d has a solution
{x 7→ a}, whereas there is no narrowing derivation stemming from the term
f(x,x).

This example shows that reachability–incompleteness of narrowing for general
TRS’s is mainly due to rewrites that must happen within non–normalized
substitutions but are missed by the narrowing procedure, since narrowing
steps do not apply to variable positions. In the standard equational setting,
these “under the feet” rewritings are inconsequential, due to confluence.

3.2 Existing termination results for narrowing

In the literature, the termination of narrowing has received less attention
than completeness. Actually, termination of narrowing is a much more dif-
ficult property to achieve than termination of standard term rewriting; see
(Ohlebusch, 2002) for a survey on rewriting termination.

Termination results for narrowing calculi have been obtained as a by-product
of other works that address the decidability of equational unification; a sum-
mary can be found in (Dershowitz and Mitra, 1999). Most of these results
are truly restrictive and do not allow any recursively defined function. Most
works introduce specially-tailored equational unification procedures based on
the generally more expensive “top-down decomposition approach” outlined in
(Martelli et al., 1986) (not considered in this paper). Narrowing–based proce-
dures with a finite search space often incorporate a test to cut unproductive,
infinitely failing derivations (Alpuente et al., 1995b; Chabin and Réty, 1991;
Dershowitz and Sivakumar, 1988) or a kind of graph-based memoization tech-
nique (Antoy and Ariola, 1997; Escobar and Meseguer, 2007) to achieve, in
some cases, a finite representation of an infinite narrowing space. There are

10



popular 6 (syntactic) conditions that, together with termination and (often)
confluence of R, are required for the termination of these procedures. These
include (Dershowitz and Mitra, 1999): left–linearity (no variable appears in
the lhs of a rewrite rule more than once); right–hand side (rhs) groundness,
right–groundness (rhs’s of rewrite rules contain no variable); and left–flatness
(each argument occurring at the lhs of a rewrite rule is either a variable —often
called shallow (Comon et al., 1994)— or a ground term).

Unfortunately, the decidability of unification for a given equational theory does
not imply the termination of ordinary narrowing in the corresponding TRS.
For instance, unification is decidable in the equational theory associated to
the function add of Example 1 above (see e.g. (Dershowitz and Mitra, 1999))
whereas narrowing does not terminate for the input equation add(w, s(0)) = 0

(as we have shown). Achieving termination without losing completeness is
possible for this particular example by adding an extra “failure rule”, which
is able to detect a clash conflict between the irreducible symbols 0 and s in
the derived equational goal s(add(x, s(0))) = 0. However, as the following
example shows it is more difficult in general.

Example 3 Consider the TRS consisting of the “shallow” oriented commu-
tativity axiom for a binary symbol f : R = {f(x,y) → f(y,x)}. An extra
artifact such as a “loop checker” would be needed to stop narrowing from the
input equation f(x,y) = z in R, whereas the corresponding equational theory
defined by R is not only decidable but actually finitary (Siekmann, 1989) (ac-
tually, the considered equational goal has exactly two solutions {z 7→ f(x,y)}
and {z 7→ f(y,x)}).

Summarizing, the only positive result in the literature concerning the termi-
nation of ordinary narrowing was proved in (Christian, 1992) and holds for
every left-flat TRS R that is compatible with a termination ordering <. Ter-
mination of narrowing does not hold for systems with flat right-hand sides
(even if linearity is also imposed), as proved in (Mitra and Dershowitz, 1996).

In general, whenever the lhs of a rewrite rule is not flat, aliasing due to repeated
variables can cause troublesome propagation of hazardous structure as shown
by the following example.

Example 4 (Christian, 1992) The non–flat rule f(f(x))→ x is “safe” when
used to narrow a linear term like c(f(u),v): it produces the term c(x,v),
which cannot be further narrowed. However, the non–linear term c(f(x),x)

6 These properties have been studied in the context of other rewriting-related prop-
erties and problems also, such as joinability, modularity of termination, and modu-
larity of confluence.
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can be narrowed indefinitely:

c(f(x),x) ;{x 7→f(x’)} c(x’,f(x’)) ;{x’ 7→f(x’’)} c(f(x’’),x’’) · · ·

A number of mistakes concerning completeness and termination proofs and
results for narrowing (and some of its variants) have been pointed out in the
related literature and summarized in (Middeldorp and Hamoen, 1994). In the
following section, we focus on one of them, which is the starting point for our
work.

3.3 A faulty result concerning termination of narrowing

Hullot (1980) introduced a restricted form of narrowing called basic narrowing
(see the next section for details) which obtains a search space reduction by
restricting narrowing steps to subterms that were not introduced by instanti-
ation, while still being unification–complete for canonical TRS’s.

For canonical TRS’s, the seminal paper by Hullot (1980) establishes a faulty
result for the termination of narrowing in (Hullot, 1980, Proposition 1). The re-
sult incorrectly stated that ordinary narrowing terminates in canonical TRS’s
when all basic narrowing derivations issued from the right hand side of each
rewrite rule terminate. This result can be refuted by the following counterex-
ample.

Example 5 Consider again the TRS of Example 4, which is canonical and
trivially satisfies the requirement that (basic) narrowing terminates for the
rhs x. However, Example 4 above shows that an infinite narrowing derivation
exists in R.

Actually, under the conditions established by Hullot’s proof, nothing beyond
the termination of basic narrowing can be concluded, as implicitly 7 corrected
in Hullot’s thesis (1981). Note that basic narrowing does “safely” handle the
TRS {f(f(x))→ x} of Example 4 and blocks the infinite narrowing derivation
after the first step.

7 The correct termination result which only guarantees the termination of basic
narrowing under the same assumptions was established in (Hullot, 1981), and subse-
quently referred to in a number of works (Hölldobler, 1989; Middeldorp and Hamoen,
1994; Réty, 1987).
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4 Repairing Hullot’s termination result for Canonical TRS’s

Here we formulate basic narrowing using the original definition, given by Hul-
lot and subsequently used by (Réty, 1987; Middeldorp and Hamoen, 1994),
which is based on restricting narrowing steps to a distinguished set of ba-
sic positions. Nevertheless, for the proofs given in Appendix B, we find more
convenient to use an equivalent, easier formalization of (Hölldobler, 1989).

Given a narrowing derivation D: t0
p1
;θ1,R t1

p2
;θ2,R · · · pn

;θn,R tn, where li→ri ∈
R is used at step i, we inductively define the basic positions of D as B0 =
PosΣ(t0) and Bi = (Bi−1 \ pi.Pos(ti−1|pi

)) ∪ pi.PosΣ(ri). Informally, a basic
occurrence is a non-variable occurrence of the original term or one that was
introduced by the non-variable content of the rhs of an applied rule.

We define a basic narrowing derivation s ;∗
θ t as s0

p1
;θ1 s1 · · · sn−1

pn
;θn sn

such that s ≡ s0, t ≡ sn, θ ≡ θ1 · · · θn, and pi ∈ Bi−1 for 1 ≤ i ≤ n.

Example 6 Consider the TRS R = {a → 0, f(x) → h(x)} and input
term f(a). The following narrowing derivation is not basic f(a) ;id,f(x)→h(x)

h(a) ;id,a→0 h(0), since position 1 selected at the second narrowing step
is not basic (the narrowing redex a was introduced by instantiation of the
rhs h(x) of the second rule). A basic narrowing derivation is f(a) ;id,a→0

f(0) ;id,f(x)→h(x) h(0).

As mentioned above, Hullot (1981) proved two different results for basic nar-
rowing:

(1) its unification–completeness for canonical TRS’s, and
(2) its termination for canonical TRS’s where all basic narrowing derivations

issuing from the right–hand side of every rule terminate.

It is important to recall here that, in contrast to ordinary narrowing, unifi-
cation–completeness of basic narrowing is lost when termination is dropped,
even if we restrict ourselves to normalizable substitutions (Middeldorp and
Hamoen, 1994). Unification–completeness of basic narrowing can be restored
(for normalizable substitutions) by additionally requiring R to be right–linear
(Middeldorp and Hamoen, 1994).

The termination of basic narrowing was established in Hullot’s PhD thesis for
canonical TRS’s as follows.

Proposition 7 (Termination of B. Narrowing for Canonical TRS’s)
(Hullot, 1981, Proposition 7.1) Let R be a canonical TRS. If for every l → r ∈
R, all basic narrowing derivations issuing from r terminate, then any basic
narrowing derivation issuing from any term terminates.

13



Hullot’s condition on the rhs’s of rewrite rules is essential for the termination
of basic narrowing, as illustrated in the following example.

Example 8 (Chabin and Réty, 1991) Consider the canonical TRS
R = {h(f(y)) → h(y)}. The following infinite basic narrowing derivation
can be proved:

h(x)
id
;{x 7→f(y)},R h(y)

id
;{y 7→f(y’)},R h(y’) . . .

A termination result similar to Proposition 7 does not hold for ordinary nar-
rowing, even when strengthen the condition by requiring termination of or-
dinary narrowing for the rhs’s of the rules (instead of the less demanding
condition of basic narrowing termination). The TRS of Example 4 would be
an easy counter–example.

In the following, we ascertain the conditions which allow us to achieve the
first positive termination result which holds for ordinary narrowing and is
formulated in Hullot’s style. This is done by considering a particular class of
TRS’s where there is a precise correspondence between basic narrowing and
ordinary narrowing derivations. This class was first identified in a commutation
result for narrowing sequences proved by Réty (Réty, 1987, June) (for the sake
of self–containment, Réty’s technical result is recalled in Appendix A).

Réty’s commutation result is based on the condition that narrowing produces
only normalized substitutions, as formalized in the following definition.

Definition 9 (Rety’s normalization condition) (Réty, 1987) A TRS R
satisfies Rety’s normalization condition if, for every term s, every substitution
θ computed by an ordinary narrowing derivation issuing from s satisfies that
θ|̀Var(s) is normalized.

A popular class of TRS’s that satisfy the normalization condition is the class
of left-linear constructor systems (Reddy, 1985), that only compute 8 con-
structor substitutions. Nevertheless, in Section 5.1 we are able to define a
more general, syntactic characterization of TRS’s satisfying this condition.

Together with the normalization condition, Réty’s “maximal commutation
property” of narrowing sequences requires two additional conditions: right–
linearity, and either left–linearity or conservativeness (Réty, 1987). By requir-
ing all these properties, we are able to achieve the desired narrowing termina-
tion result. The proof of this result is given in Appendix A.

Theorem 10 (Termination of Narrowing) Let R be a right–linear TRS

8 This is desired in some functional logic languages (Hanus, 1994), since a broader
class of solutions may contain unevaluated or undefined expressions.
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which satisfies Réty’s normalization condition and is either left–linear or con-
servative. If basic narrowing terminates in R, then ordinary narrowing also
terminates in R.

Note that Example 4 satisfies all conditions required in Theorem 10, except
for Réty’s normalization condition. In the following section, we improve this
result by explicitly getting rid of canonicity.

5 Getting rid of canonicity and characterizing Réty’s normaliza-
tion condition

Hullot’s basic narrowing termination result for canonical TRS’s recalled in
Proposition 7 has been referred to in a number of works, e.g. (Hölldobler,
1989; Middeldorp and Hamoen, 1994; Réty, 1987). However, to the best of our
knowledge, no one has explicitly pointed out that canonicity is not explicitly
used in Hullot’s proof. This seems to suggest that canonicity of R might be
superfluous for Hullot’s basic narrowing termination result and that is only
required for deriving both termination and unification completeness of the
basic narrowing mechanism in one go. By providing a new proof for Hullot’s
basic narrowing termination result, in this section we confirm this presumption
and demonstrate that canonicity can be safely removed.

The following result establishes the termination of basic narrowing without
the canonicity requirement. A proof of this result is given in Appendix B.

Theorem 11 (Termination of Basic Narrowing) Let R be TRS. If for
every l → r ∈ R, all basic narrowing derivations issuing from r terminate,
then every basic narrowing derivation issuing from any term terminates.

Note that the termination of basic narrowing in R does not imply that R is
terminating.

Example 12 Consider the following non-terminating and non-confluent TRS
R borrowed from (Toyama, 1987), which satisfies Réty’s normalization con-
dition 9 :

f(b,c,x)→ f(x,x,x) a→ b a→ c

By applying Theorem 11, there is no infinite basic narrowing derivation in R.

The following Hullot–like termination result follows from Theorem 11.

9 It satisfies the sufficient characterization given in Section 5.1.
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Corollary 13 (Termination of Narrowing) Let R be a right–linear TRS
which satisfies Réty’s normalization condition and is either left–linear or con-
servative. If for every l → r ∈ R all basic narrowing derivations issuing from r
terminate, then every narrowing derivation issuing from any term terminates.

Proof. It follows immediately from Theorem 10 and Theorem 11. 2

Example 14 Consider the following linear TRS R satisfying 10 Réty’s nor-
malization condition.

f(a,x)→ a f(f(b,x),a)→ c(h(x)) h(c(x)))→ x

By applying Corollary 13, since all basic narrowing derivations issuing from
the rhs’s of the rules in R terminate, then narrowing terminates in R.

Note that right-linearity is essential for Réty’s maximum commutation prop-
erty and hence cannot be dropped from Corollary 13, as shown in the following
example.

Example 15 Consider again the TRS of Example 12, which also satisfies
Réty’s normalization condition. However, note that it is not right–linear. Basic
narrowing terminates in this TRS, as seen before, but an infinite ordinary
narrowing sequence exists for input term f(a,a,a), which is set off when we
instantiate the rhs f(x,x,x) of the first rule using the non-normalized binding
{x 7→ a}:

f(a, a, a) → f(b, a, a) → f(b, c, a) → f(a, a, a) → f(b, a, a) · · · .

Unfortunately, both Hullot’s termination condition based on the rhs’s of re-
write rules and Réty’s normalization condition are not syntactical. Hullot’s
termination condition has been approximated in the related literature by the
following syntactic criterion, assuming that R terminates: every non–ground
rhs of a rewrite rule is a constructor term (Dershowitz et al., 1992; Prehofer,
1994). This generalizes the original characterization given by Hullot (Hullot,
1980), who required all non–ground rhs’s to be variables. Note that these
syntactic characterizations do not work under the conditions of Theorem 11
since termination is not explicitly required, and we would require also ground
rhs’s to be constructor terms (the rule a → a would be an easy counter—
example).

With regard to Réty’s normalization condition, we already mentioned a pop-
ular class of TRS’s satisfying this property: left-linear constructor systems.

10 It satisfies the sufficient characterization of TRS’s satisfying Réty’s normalization
condition given in Section 5.1.
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In the following section, we demonstrate that Réty’s condition also holds in
the more general class of left-linear, rnf–based TRS’s. This leads to a practi-
cal approximation of the termination result for ordinary narrowing given in
Corollary 13 which holds in (a subclass of) linear, rnf–based TRS’s.

Moreover, by further exploring the notion of rigid normal form, in Sections 6
and 7, we will be also able to generalize the popular approximation of Hullot’s
termination condition based on the rhs’s of the rules, and provide stronger
(purely syntactical in some cases) termination results for ordinary narrowing
in a class of systems where right–linearity as well as left–linearity are no longer
required.

5.1 Rigid normal forms and rnf-based TRS’s

Let us define the class of rnf–based TRS’s by introducing the notion of rigid
normal form 11 (rnf), which lifts the standard notion of (rewriting) normal
form to narrowing.

Definition 16 (Rigid normal form) A term s is a rigid normal form (rnf)

if there is no term t, substitution θ, and position p such that s
p
;θ,R t.

The notion of rnf is stronger than the standard notion of rewriting normal
form but can still be easily decided by simply checking that no subterm of the
considered term unifies with the lhs of any rule in R. This notion extends to
rigidly normalized substitutions in the obvious way.

We define the new class of rnf–based TRS’s as follows.

Definition 17 (rnf–pattern) A term f(t1, ..., tn) ∈ T (Σ,V) is a rnf–pattern
if, for all i s.t. 1 ≤ i ≤ n, ti is a rnf.

Definition 18 (rnf–based TRS) Given a TRS R, we call it rnf-based if the
left–hand side of every rule in R is a rnf–pattern.

Note that two popular classes of rnf–based, left-linear TRS’s are: (i) left-linear
constructor systems, and (ii) almost orthogonal TRS’s, i.e., typical functional
programs.

11 Our rnf notion is more general than the strongly ;-irreducible terms proposed
in (Escobar et al., 2006) for topmost theories, where t is strongly ;-irreducible if
tσ is a normal form for every normalized substitution σ. Consider, e.g. the non-
confluent, non-topmost TRS R = {f(a)→ b, a→ b}. The term f(x) is strongly ;-
irreducible, since non-normalized substitutions such as {x 7→ a} are not considered
within the definition. However, it is not a rigid normal form.
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Proposition 19 Almost orthogonal TRS’s are rnf-based.

Proof. By definition of almost orthogonal TRS, every critical pair is an overlay,
i.e., two lhs’s overlap only at the root position. Therefore, the lhs of every
rewrite rule is a rnf-pattern. 2

The following result is instrumental and shows that rnf’s are closed under
substitution.

Lemma 20 For every rigidly normalized substitution θ, if t is a rigid normal
form, then tθ is also a rigid normal form.

Proof. By contradiction. Let us assume that tθ is not a rigid normal form, i.e.,
there is a term s, substitution σ, rule R, and p ∈ Pos(tθ) such that tθ

p
;σ,R s.

Actually, since θ is rigidly normalized, then p ∈ PosΣ(t). Therefore, we have
that tθ|p and l unify with unifier σ, whereas by hypothesis t|p and l do not
unify, which leads to contradiction. 2

From Lemma 20, it follows that, in rnf–based left–linear TRS’s, all substitu-
tions computed by narrowing are rigidly normalized, hence also normalized.

Theorem 21 (Rigid normalization) Let R be a rnf–based, left–linear TRS.
Every substitution θ computed by an ordinary narrowing derivation issuing
from the term t satisfies that θ|̀Var(t) is rigidly normalized.

Proof. Consider a narrowing sequence

t ≡ t0
p1
;θ1,l1→r1

t1 · · · tn−1
pn
;θn,ln→rn

tn ≡ s

At each narrowing step t
p
;θ,l→r s, the substitution θ|̀Var(t) is rigidly normal-

ized, since l is linear and every subterm of l is a rnf. We proceed by induction
on n. The base case n = 0 is trivial. For the case when n > 0, by induction
hypothesis we have that ϑ ≡ (θ1 · · · θn−1)|̀Var(t) is rigidly normalized, i.e., for
each binding x 7→ w ∈ ϑ, we have that w is a rigid normal form. Now, by
Lemma 20, we have that wθn is also a rigid normal form, and the conclusion
follows. 2

From Theorem 21 and Corollary 13, the following practical criterion for ter-
mination of narrowing in rnf–based, linear TRS’s easily follows.

Corollary 22 Let R be a linear, rnf–based TRS. If for every l → r ∈ R, all
basic narrowing derivations issuing from r terminate, then every narrowing
derivation issuing from any term terminates.
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6 Getting rid of right–linearity

Our narrowing termination results in Section 5.1 rely on Réty’s commuta-
tion result (Réty, 1987, June), which requires right–linearity and either left–
linearity or conservativeness. In this section, we provide new termination re-
sults that are not based on Réty’s commutation property, and thus get rid of
linearity in some cases.

The notions of root-stable rigid normal form (rs−rnf) and stable rigid nor-
mal form (srnf) are the key for achieving termination when right–linearity is
dropped.

6.1 Stable and Root-stable Rigid normal forms

Let us highlight the insufficiency of considering rigid normal forms for ensuring
the narrowing termination when right–linearity of R is not imposed. Basically,
the problem lies in the fact that rigid normal forms are not stable under
instantiation by non-normalized substitutions, as illustrated in the following
example.

Example 23 Consider again the left–linear and rnf–based TRS R of Example
12, which is non–confluent and not right–linear. The term f(x,x,x) in the
rhs of the first rule is a rigid normal form since it does not unify with lhs
f(b,c,x); hence, it cannot be narrowed. However, the instance f(a,a,a) is
no longer a rnf since it can be rewritten (in two steps) to f(b,c,a), which
can then be rewritten (hence narrowed) at the top position by using the first
rule of R.

Let us introduce the notion of root-stable rigid normal form, which lifts to
narrowing the standard notion of root-stable (or head) normal form. Then, a
suitable definition of “stable rigid normal form t” is provided which ensures
that every subterm s of t is conveniently “protected”, in the sense that no
instantiation can enable a “non-topmost” rewriting sequence such that then
the resulting term can be narrowed at the top.

Definition 24 (stable and root-stable rigid normal forms) A term s is
a root-stable rigid normal form (rs−rnf) if either s is a variable or there are

no substitutions θ and θ′ and terms s′ and s′′ s.t. sθ
>ε→∗

R s′
ε

;θ′ s′′. A term t
is a stable rigid normal form (srnf) if every subterm of t is a root-stable rigid
normal form.

The above notions extend to root-stable rigidly normalized substitutions and
stable rigidly normalized substitutions in the natural way.
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Note that the notion of stable rigid normal form is stronger than the notion
of rigid normal form. Example 23 above shows that the inverse does not hold.
By definition, non-variable stable rigid normal forms are stable under instan-
tiation, even under non-normalized substitutions. Also, constructor terms as
well as ground normal forms are trivial cases of stable rigid normal forms.
Therefore, the approximation of Hullot’s basic narrowing termination condi-
tion based on checking that the rhs’s of the rules are constructor terms is
subsumed by the more general right–srnf condition.

Definition 25 (Right–rnf TRS) A TRS is called right–rnf if the right-hand
side of every rule in R is a rnf.

The notion of right–srnf TRS can be defined similarly. The following interest-
ing property holds.

Proposition 26 Every right–srnf TRS is terminating.

Proof. (Sketch) We apply the dependency pairs technique (Arts and Giesl,
2000) for proving termination of rewriting. Since by definition a right–srnf
TRS R can have no chains, then R terminates by (Arts and Giesl, 2000,
Thm. 6). 2

Note that the right–srnf condition required in Proposition 26 cannot be weak-
ened to right–rnf. The TRS of Example 12 is an easy counterexample.

In order to provide a general termination result for right–srnf TRS’s, we need
the following notion.

Definition 27 (Stable rigid normalization condition (SRNC)) A TRS
R satisfies the stable rigid normalization condition if, for every term s, every
substitution θ computed by an ordinary narrowing derivation issuing from s
satisfies that θ|̀Var(s) is stable rigidly normalized.

By requiring the SRNC (instead of Réty’s maximal commutation condition),
we are able to provide the following termination result for narrowing. The
proof is in Appendix C.

Theorem 28 (Termination of narrowing under the SRNC) Let R be a
right–srnf TRS that satisfies the stable rigid normalization condition. Every
narrowing derivation issuing from any term terminates.

Even if the above result may seem of little interest in the context of functional
(logic) programming, since it precludes recursion, we would like to highlight its
interest for proving the termination of narrowing–based procedures that are
used in the context of bottom–up program analysis and abstract diagnosis.
The key ingredient for the analyses is often a suitable, collecting program
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semantics that is also expressed as a set of rules. And it happens that those
rules are often right–srnf. (Alpuente et al., 2003).

The following example demonstrates that stable rigid normal forms cannot be
replaced by rough rigid normal forms in Theorem 28.

Example 29 Consider again the left–linear and rnf–based TRS of Example
12, where we showed that the term f(x,x,x) in the rhs of the first rule is a
rnf. However, it is not a srnf and actually narrowing does not terminate for
the input term f(a,a,a), as shown in Example 12.

In the following section, we characterize the class of TRS’s where all rigid
normal forms are stable thus guaranteeing that the new structure that is
introduced through ordinary narrowing steps by instantiation cannot burst
an infinite derivation. This is the final ingredient we need in order to derive a
purely syntactical characterization of narrowing termination which does not
require the right–linearity of R.

6.2 Reachability-complete TRS’s

Let us introduce a new class of TRS’s (which we call reachability–complete
TRS’s) where narrowing is strongly reachability–complete. This is inspired by
the commonly used terminology which, recalling the unification-completeness
of narrowing for canonical TRS’s, uses the name “complete TRS” as an alter-
native terminology to refer to this particular class (Knuth and Bendix, 1970;
Hullot, 1980; Middeldorp and Hamoen, 1994).

Definition 30 (Reachability–complete TRS) A TRS R is reachability–
complete iff the narrowing procedure is strongly reachability–complete for R.

The following interesting result holds for reachability–complete TRS’s.

Proposition 31 Let R be a reachability–complete TRS. If s is a rigid normal
form, then s is also a stable rigid normal form.

Proof. By contradiction. Assume that s is a rigid normal form and there is a
position p in s such that s|p is not a root-stable rigid normal form. Then, there

are two substitutions ρ and ρ′ and terms t and t′ such that s|pρ
>ε→∗

R t
ε

;ρ′ t′.
Let s′ = s[t′]p. Since R is reachability–complete, for the reachability goal
s →∗ s′ narrowing computes a solution η more general than ρρ′ s.t. s ;∗

η s′′,
with s′′ ≤ s′. Hence, s is not a rigid normal form, which contradicts the initial
assumption. 2
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Proposition 31 reveals that reachability-completeness can be understood as the
property that shelters rnf’s with a suitable form of stability which suffices to
prevent non-normalized bindings from introducing the possibility of initiating
an infinite narrowing derivation. Actually, under reachability-completeness we
are able to weaken stable rigid normal forms down to the purely syntactic
notion of rigid normal form, which is easier to check.

As a corollary of Theorem 28, by using Proposition 31, we achieve the following
termination result for reachability–complete TRS’s. Note that reachability–
complete TRS’s that satisfy Réty’s normalization condition also satisfy SRNC.

Corollary 32 Let R be a reachability–complete, right–rnf TRS which satisfies
Réty’s normalization condition. Every narrowing derivation issuing from any
term terminates.

In the above result, reachability–completeness allows us to get rid of right–
linearity, e.g. in TRS’s that are confluent or topmost (Meseguer and Thati,
2007). Unfortunately, this is not the case for left–linearity, which is still re-
quired in the sufficient criteria for Réty’s normalization condition.

Inspired by Christian’s narrowing termination result for left–flat TRS’s (Chris-
tian, 1992), in the last section we further refine our termination results by also
getting rid of left–linearity, and syntactically characterize a very wide class of
TRS’s where narrowing terminates, while still being complete as a procedure
for solving reachability goals.

7 Getting rid of left–linearity

In (Christian, 1992), termination of narrowing was proved for left–flat TRS’s
(i.e., each argument occurring in the lhs of a rewrite rule is either a variable
or a ground term), provided the rewrite rules are also compatible with a ter-
mination ordering <. A termination ordering < is a well–founded ordering on
ground terms such that, if s < t, then sσ < tσ for any substitution σ; see
(Dershowitz, 1987) for a survey on termination orderings. Christian formal-
ized a stability (“harmlessness”) criterion for narrowing as an extension <L of
< as follows: s <L t whenever the number of distinct variables in s is either
(i) less than the number in t; or (ii) equal to the number in t, and s and t
are identical everywhere, except at some position p such that s|p < t|p. Then
he demonstrated that, whenever any term t narrows to t′, then t′ <L t, which
ensures termination of narrowing.

Informally, the reason why left–flat rules “behave well” is that they do not
introduce new variables in the term: each narrowing step either reduces the
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number of distinct variables, or produces a smaller term under the < well–
founded ordering.

Example 33 Consider the following non–flat TRS f(f(x)) → f(x) which
can be oriented with the following termination ordering: t > s iff |tσ| > |sσ|
for every substitution σ, where |t| denotes the size of t. However, this rule
raises the infinite narrowing sequence

f(x) ;{x 7→f(x’)} f(x’) ;{x’ 7→f(x’’)} f(x’’) ;{x’’7→f(x’’’)} . . .

Note that the ultimate source of narrowing non-termination in this TRS is
the introduction of “fresh variables” x’, x’’, which causes the terms f(x’),
f(x’’), . . . to enter at some point in the derivation, whereas f(x’) 6<L f(x).

In order to combine and generalize the termination results that hold for TRS’s
which are either left–flat (Christian, 1992) or rnf-based (Section 6), we extend
the stable rigid normalization condition (SRNC) as follows. Informally, the
key idea is to ensure that the substitutions applied in narrowing steps cannot
introduce any new term that is not a rs−rnf and may only replicate in the
worst case (strict) subterms of existing ones.

Definition 34 (Quasi stable rigidly normalized substitution) Given a
TRS R, a term s, a substitution θ is quasi stable rigidly normalized w.r.t. s
and R if, for each variable x ∈ Var(s) that appears in s more than once, xθ is
either (i) a ground term, (ii) a stable rigid normal form, or (iii) there exists
a position p ∈ PosΣ(s) such that xθ ≡ (sθ)|p.

Note that every substitution is quasi stable rigidly normalized w.r.t. a linear
term, for any TRS.

Example 35 Consider the TRS R of Example 4, and the term s =
c(c(x,f(x)),f(y)). Assume a is a new constant in the signature of R. The
following substitutions are QSRNC w.r.t. s and R: {x → a}, by (i); {x →
c(z,z)}, by (ii); {x→ f(y)}, by (iii). Note that {x→ f(z)} is not QSRNC
w.r.t. s and R.

The following result is trivial due to linearity.

Corollary 36 In a right-linear TRS R, every substitution computed by nar-
rowing for a linear term s is quasi stable rigidly normalized w.r.t. s and R.

Definition 37 (Quasi stable rigid normalization condition (QSRNC))
A TRS R satisfies the quasi stable rigid normalization condition if, for every
term s, every substitution θ computed by an ordinary narrowing derivation
issuing from s satisfies that θ|̀Var(s) is quasi stable rigidly normalized w.r.t. s
and R.
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Note that SRNC implies QSRNC. Now we are ready to provide our most
general result for narrowing termination. The proof of the following theorem
is given in Appendix D.

Theorem 38 (Termination of narrowing under QSRNC) Let R be a
right–srnf TRS that satisfies the quasi stable rigid normalization condition.
Every narrowing derivation issuing from any term terminates.

Theorem 38 and Corollary 36 provide the following result.

Corollary 39 (Termination of Narrowing for right–linear TRS’s) Let
R be a right–linear, right–srnf TRS. Every narrowing derivation in R issuing
from any linear term terminates.

Now we are ready to introduce the notion of left–plain TRS’s as a natural
generalization, with regard to narrowing termination, of both left–flat as well
as rnf-based TRS’s. Note that the case of a variable argument is considered
in the definition below, since variables are rigid normal forms.

Definition 40 (Left–plain TRS) A TRS R is called left–plain if every non-
ground strict subterm of the left–hand side of every rule of R is a rigid normal
form.

Example 41 The following TRS defining a specialized version of the xor

operator used in many security protocols (Comon-Lundh, 2004; Cortier et al.,
2006) is left–plain. The symbol h is constructor; it might represent e.g. the
hash of a message.

x + x→ 0 x + 0→ x (0 + 0) + h(x)→ h(x)

Note that the third rule is neither left–flat nor rnf-based.

Example 42 The rule 0 + (0 + x) → x is not left–plain, since the non–
ground subterm 0 + x is not a rnf. Indeed, the following infinite narrowing
derivation can be proved

c(0 + x,x) ;{x 7→0 + x’} c(x’,0 + x’) ;{x’ 7→0 + x’’} c(0 + x’’,x’’) · · ·

By using Proposition 31, we are able to demonstrate the QSRNC property for
left–plain, reachability–complete TRS’s.

Lemma 43 Every left-plain, reachability-complete TRS satisfies the quasi sta-
ble rigid normalization condition.

Now, by using Lemma 43, the following result directly follows as a specializa-
tion of Theorem 38 for left-plain TRS’s.
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Corollary 44 (Termination of Narrowing for left-plain TRS’s) Let R
be a left–plain, reachability complete, right–rnf TRS. Every narrowing deriva-
tion issuing from any term terminates.

Note that the above result is very handy as it can be applied to TRS’s which
are neither purely left–flat or rnf-based, as illustrated in Example 41.

Finally, by using the known results for the strong reachability-completeness of
narrowing given by Meseguer and Thati (2007), we are able to particularize
Corollary 44 to a number of purely syntactical, non–trivial classes of TRS’s
where narrowing has a finite search space and is still (strongly) complete as
a procedure to solve reachability goals. The following result also subsumes
Corollary 39.

Corollary 45 (Termination of Narrowing for right-rnf TRS’s) Let R
be a right-rnf TRS which is either

(1) right-linear,
(2) confluent and left–plain, or
(3) topmost.

Then, every narrowing derivation issuing from any term terminates. In the
case of (1), the termination (proved in Corollary 39) only holds for linear
input terms.

Example 46 Let us consider the following rule defining the exponentiation
function used as a primitive operation for key exchange in the Diffie-Hellman
key agreement protocol (Comon-Lundh, 2004; Cortier et al., 2006), where sym-
bols * and g are constructors 12 .

exp(exp(g,y),z)→ exp(g, y * z)

This rule satisfies both criteria 1 and 2 of Corollary 45, hence we conclude
that narrowing derivations w.r.t. this rule terminate.

The criteria given in Corollary 45 are particularly practical, since many inter-
esting TRS’s fit in one of the above classes. For instance, termination of the
following TRS’s follows from Corollary 45 straightforwardly (other examples
are given in Table 1):

• almost orthogonal, right-rnf TRS’s (including right-rnf orthogonal TRS’s as
a particular case);

• constructor, confluent, and right-rnf TRS’s;
• right-linear, right-rnf TRS’s (only for linear input terms).

12 * is commonly defined as a (built-in) associative commutative operator with iden-
tity element 1.
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Restrictions on R Reference
LF + cT (Christian, 1992, Lemma 2)
RL + (LL or Co) + NC + bnT Thm. 10 (Hullot’s result generalized)
RL + (LL or Co) + NC + R–bnT Cor. 13 (Hullot’s result repaired)

R-rnf + L + rnf–B Corollary 22
e.g. R-rnf + L + CS

RL + R-rnf (+linear term) Corollary 39
LP + RC + R-rnf Corollary 44

R-rnf + LP + C Corollary 45
e.g. R-rnf + (either aO or CS + C)

R-rnf + Tp Corollary 45
RL + (LL or Co) + NC + St Thm. 10, by (Nieuwenhuis, 1996)
Legend
C confluent LL left–linear RL right–linear
Tp topmost Co conservative CS constructor system
R-rnf right–rnf rnf–B rnf–based LP left–plain
LF left–flat L linear aO almost Orthogonal
bnT basic narrowing terminates NC Rety’s normalization condition
R–bnT all basic narrowing derivations starting from rule rhs’s terminate
St standard theories saturated by basic paramodulation
cT compatible with a termination ordering

Fig. 1. Criteria for Narrowing termination

Note that the TRS in Example 1 satisfies all the above requirements, except
for the condition to be right-rnf.

We would like to note that our results are not comparable to those of (Chris-
tian, 1992), i.e., we do not claim to subsume Christian’s results. As a coun-
terexample, it suffices to consider any left–flat TRS that is compatible with a
termination ordering but is neither right–rnf nor reachability–complete. Obvi-
ously, (Christian, 1992) does not subsume our results either, since Christian’s
criterion cannot deal with TRS’s that are not left–flat.

The main advantage of our approach w.r.t. (Christian, 1992) is that our criteria
are truly syntactic and do not rely on termination orderings. As an additional
advantage, note that some of our results are based (and hence preserve) the
strong reachability–completeness of R, besides ensuring the narrowing termi-
nation, which is not guaranteed by Christian’s result.

8 Conclusion

We conclude by summarizing in Figure 1 all known results (including the ones
presented in this paper) for termination of ordinary narrowing. We would like
to point out that, even if functional programs may unlikely fulfil the right–
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rnf condition required for some of our results, it might be still very useful as
a criterion for proving the termination of narrowing–based procedures that
use an extensional, rule-based presentation of the program semantics (where
the rhs’s of the equations in the semantics are rnf’s, e.g. values), rather than
termination of the program itself.

It is challenging to identify more general classes of TRS’s where narrowing
terminates. However, this seems difficult without losing the ability to test (al-
most purely) syntactic properties of individual rewrite rules. Let us emphasize
that all the results in this paper apply to proving termination of sophisticated
narrowing strategies such as innermost or lazy narrowing (Hanus, 1994), where
narrowing steps are restricted to a suitable subset of the term positions. Ob-
viously, more general classes of TRS’s may exist where a particular narrowing
strategy terminates.

Theorem 10 provides a powerful criterion for proving narrowing termination
in TRS’s or theories where basic narrowing terminates, often called BNT-
theories; see e.g. (Schmidt-Schauß, 1988). We consider that this criterion is
quite versatile and lays the ground for further research in the area. Recently,
we have studied in (Alpuente et al., 2008) the modularity of basic narrowing
termination, showing that it is modular for several classses of unions of TRS’s.
Under the conditions for Theorem 10, the modularity results of (Alpuente
et al., 2008) also apply to ordinary narrowing. On the other hand, Nieuwenhuis
(1996) demonstrated that, for some kinds of theories closed under some basic
inference rules, equational unification can be proved terminating by again
applying these inference rules. This entails termination of basic narrowing
e.g. in shallow theories (where all variables in the axiomatization are shallow)
that are saturated under a rule which subsumes basic narrowing, called basic
paramodulation. A similar result holds in standard theories, which extend
shallow theories by only requiring shallowness to the variables that appear on
both sides of the equations. We consider standard theories to be an interesting
topic for further research on narrowing termination.

Part of the inspiration for this work goes back to 1991, when Maŕıa Alpuente
developed her PhD thesis under the supervision of Giorgio Levi regarding
CLP(H/E), an instance of the constraint logic programming scheme CLP(X)
(Jaffar and Lassez, 1987) which used an incremental constraint solver based on
narrowing to semi–decide the solvability of equational constraints (Alpuente
and Falaschi, 1991; Alpuente et al., 1992, 1993, 1995a). Termination of the
narrower was an important problem in CLP(H/E), which led to the develop-
ment of static analysis techniques to finitely approximate the unsatisfiability
of a set of equations with respect to a given equational theory (Alpuente et al.,
1995b).
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APPENDIX

A Proof of Theorem 10

Our restoration of Hullot’s result is based on Réty’s commutation properties
for basic narrowing, which rely on the following notion of antecedent of a
position in a rewrite sequence (Réty, 1987, June).

Definition 47 (Antecedent of a position) (Réty, 1987, June) Let t
p→l→r t′

be a rewriting step, v ∈ Pos(t), and v′ ∈ Pos(t′). We say position v is an an-
tecedent of v′ iff

(1) v ‖ p, i.e., v is incomparable to p, and v ≡ v′, or
(2) there is a variable x ∈ Var(r), u′ ∈ Posx(r), and u ∈ Posx(l) s.t. v′ ≡

p.u′.w and v ≡ p.u.w.

This notion extends to a rewrite sequence by transitive closure of the rewriting
relation in the usual way.

With the notations of the previous definition, we have:

(1) t|v ≡ t′|v′ ,
(2) v′ may have no antecedent if v′ = p.u′ with u′ ∈ PosΣ(r), or if v′ < p,
(3) v′ may have several antecedents if l is not linear.

Therefore, the notion of antecedent is (nearly) dual to the standard notion
of descendants of a position in a rewrite sequence (TeReSe, 2003). The main

difference is that, given a rewriting step t
p→l→r t′ and a position q such that

q ≤ p, then q is not an antecedent of any position in t′ whereas the same
position q in t′ is commonly considered the descendant of q in t. Therefore,
there are positions that do not have an antecedent in any previous term in
the rewriting sequence.

Definition 48 (Terminal antecedents) (Réty, 1987, June) Let D be a re-
write sequence t0 →R t1... →R tn, and qn ∈ Pos(tn). Given an antecedent
qi ∈ Pos(ti) of qn, we say that qi is terminal in D iff either i = 0 or qi has no
antecedent in ti−1.

The notion of antecedent can be extended to narrowing as follows:

Definition 49 (Narrowing antecedent of a position) (Réty, 1987, June)
Let t ;∗

σ,R t′, v ∈ Pos(t), and v′ ∈ Pos(t′). We say v is a (terminal) an-
tecedent of t iff v is a (terminal) antecedent of v′ in the rewrite sequence
tσ →∗

R t′.
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The following proposition holds.

Proposition 50 (Réty, 1987) Given a narrowing sequence t0
p1
;σ1,l1→r1

t1 · · ·
tn−1

pn
;σn,ln→rn

tn. If qi ∈ Pos(ti) is an antecedent of qn ∈ Pos(tn), then
(ti(σi+1..σn))|qi

≡ tn|qn.

As we mentioned, when R is not left-linear, a given position may have sev-
eral antecedents in a previous term in the derivation, and may also have
antecedents in different previous terms which are not antecedents from one
another. Therefore, a position may have terminal antecedents in different pre-
vious terms of the sequence.

Also note that, whenever an expression is introduced by instantiation, and sub-
sequently propagated along the narrowing derivation, its terminal antecedents
are all in the initial input term of the sequence, and occur exactly at the posi-
tions of the input term which become instantiated. This is due to the absence
of extra variables in rhs’s.

The following commutation property is the key of our proof. For ϑ ≡ ϑ1 · · ·ϑk,

we use t
u1,...,uk

; ϑ,l→r s as a shorthand to denote the narrowing sequence

t
u1

;ϑ1,l→r s1 · · ·
uk

;ϑk,l→r s.

Proposition 51 (Maximum commutation) (Réty, 1987, June) Let R be
a right–linear TRS, which is also either left–linear or conservative. Consider
a narrowing sequence

t0
p1
;σ1,l1→r1

t1 · · · tn−1
pn
;σn,ln→rn

tn

such that σ1 · · ·σn, restricted to Var(t0), is normalized. Then, there exists a
commuted narrowing derivation

t0
u1
1,...,u

k1
1

; θ1,ln→rn

p1
;σ′1,l1→r1

t′1
...

t′n−2

u1
n−1,...,u

kn−1
n−1

; θn−1,ln→rn

pn−1
; σ′n−1,ln−1→rn−1

t′n−1

t′n−1

pn
;θn,ln→rn

tn

such that θ1σ
′
1 · · · θn−1σ

′
n−1θn ≡ σ1 · · ·σn[Var(t0)], where u1

1, . . . , u
ki
i are the

terminal antecedents of position pn in term ti.

The following commutation result for ordinary narrowing derivations easily
follows.

Proposition 52 Let R be a TRS that satisfies Rety’s normalization con-
dition as well as the conditions for Rety’s maximum commutation property
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(i.e. right–linearity, and either left–linearity or conservativeness). For ev-

ery narrowing sequence t0
p1
;θ1,R t1 · · ·

pn
;θn,R tn, there is a commuted ba-

sic narrowing sequence t0
q1
;σ1,R t′1 · · ·

qm
;σm,R t′m such that t′m ≡ tn, and

θ1 · · · θn ≡ σ1 · · ·σm[Var(t0)].

Proof. By successive applications of Proposition 51.

Given the narrowing sequence t0
p1
;θ1,R t1 · · ·

pn
;θn,R tn, assume that pi is the

first non-basic position selected in the derivation. By Proposition 51, we can
commute the derivation so that the step i is performed on the terminal an-
tecedent positions of pi. Those terminal antecedents occur at basic positions,
since redexes are never introduced in a basic narrowing derivation by instanti-
ation due to the Rety’s normalization condition. Note that the procedure that
repeatedly applies Proposition 51 to the derivation which results from the pre-
vious commutation is finite since the number of non-basic steps to commute
is reduced at each application. 2

Now we are able to prove the desired termination result for ordinary narrowing.

Theorem 10 (Termination of Narrowing) Let R be a right–linear TRS
which satisfies Réty’s normalization condition and is either left–linear or con-
servative. If basic narrowing terminates in R, then ordinary narrowing also
terminates in R.

Proof. By contradiction. Assume that there exists an infinite narrowing deriva-
tion D issuing from a given term t. Then, we can obtain infinitely many finite
subsequences (prefixes) of D. By Proposition 52, each of these finite subse-
quences has a corresponding, commuted basic narrowing derivation issuing
from t. Hence, there are infinitely many basic narrowing derivations issuing
from the very same term t, each of which is: (i) finite (by definition), and (ii)
a prefix of the subsequent one (by Proposition 52), which yields to contradic-
tion. 2

B Proof of Theorem 11

To prove Theorem 11, we find it useful to use the alternative definition of ba-
sic narrowing given in (Hölldobler, 1989). In this formulation, elements of the
derivation are split into a skeleton and an environment part. The environment
part keeps track of the accumulated substitutions so that, at each step, sub-
stitutions are composed in the environment part, but are not applied to the
expressions in the skeleton part, as opposed to ordinary narrowing. Due to this
representation, the basic occurrences in tθ are all in t, whereas the non-basic
occurrences are all in the codomain of θ. This ensures that no narrowing step
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will reduce any expression brought by a substitution computed in a previous
step. Given a term s ∈ T (Σ,V) and a substitution σ, a basic narrowing step
is defined by 〈s, σ〉 ;θ,R 〈t, σ′〉 if there exist p ∈ PosΣ(s), l → r << R, and
substitution θ such that θ ≡ mgu(s|pσ, l), t ≡ (s[r]p), and σ′ ≡ σθ.

We say that two idempotent substitutions θ1 and θ2 are compatible if their
correponding bindings “unify”, that is, there is θ s.t. xθ1θ ≡ xθ2θ, for all
x ∈ Dom(θ1) ∪ Dom(θ2).

Lemma 53 Let R be a TRS, t be a term, and σ be a substitution. Let n be
the length of the longest basic narrowing derivation for 〈t, σ〉 in R. Then, for
every substitution ϑ, n is an upper bound for the length of the basic narrowing
derivations issuing from 〈t, σϑ〉 in R.

Proof. By induction on n.

The case when n = 0 is straightforward, since no basic narrowing step issuing
from 〈t, σϑ〉 can be proved for any ϑ, either.

Consider now the case when n > 0. If there is no basic narrowing sequence
such that the substitution θ computed in the first step 〈t, σ〉 ;θ,R 〈t′, σθ〉 is
compatible with ϑ, then there is no basic narrowing sequence issuing from
〈t, σϑ〉, and the conclusion follows. Assume that 〈t, σ〉 ;θ,R 〈t′, σθ〉 is the first
step of a basic narrowing derivation for 〈t, σ〉 such that θ is compatible with
ϑ. Since ϑ and θ are compatible, the narrowing step 〈t, (σϑ)〉 ;θ′,R 〈t′, (σϑ)θ′〉
can be proven, and (σϑ)θ′ is compatible with σθ. By hypothesis, the lengths
of the derivations issuing from 〈t′, σθ〉 are bounded by n − 1, hence so are
the lengths of the derivations issuing from 〈t′, (σϑ)θ′〉, which concludes the
proof. 2

Theorem 11 (Termination of Basic Narrowing) Let R be a TRS. If for
every l → r ∈ R, all basic narrowing derivations issuing from r terminate,
then every basic narrowing derivation issuing from any term terminates.

Proof. We prove the slightly more general result that, for every term t and
substitution σ, every basic narrowing derivation issuing from 〈t, σ〉 terminates.
We proceed by structural induction on the term t.

• The case when t is a variable is straightforward.
• Let t ≡ f(t1, . . . , tm), m ≥ 0, and consider any basic narrowing derivation

D : 〈t, σ〉 p1
;θ1,R 〈t2, σ2〉

p2
;θ2,R · · · stemming from 〈t, σ〉. We distinguish

two cases: either none of the positions pj for j > 0 is ε, or there is k > 0
such that the k–th narrowing step in D takes place at the root position of
tk. In the first case, by the induction hypothesis the derivation terminates,
since every basic narrowing derivation issuing from 〈ti, σ〉 terminates, for
i ∈ {1, . . . ,m}. In the second case, 〈tk, σk〉

ε
;θk,{l→r} 〈r, σk+1〉. Since all
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basic narrowing derivations issuing from r terminate, then by Lemma 53
the derivation terminates. Thus, the conclusion follows. 2

C Proof of Theorem 28

The proof of Theorem 28 is subsumed by the more general result proved below
in Theorem 38, since SRNC implies QSRNC.

D Proof of Theorem 38

We first prove the following auxiliary result.

Lemma 43 Every left-plain, reachability-complete TRS satisfies the quasi sta-
ble rigid normalization condition.

Proof. By reachability-completeness, we can safely consider rigid normal forms
instead of stable rigid normal forms. On the other hand, since the composition
of two rigidly normalized substitutions is also rigidly normalized, we can safely
consider the substitutions computed at each narrowing step.

Let us consider a term t and the narrowing step t
p
;σ,l→r t′. We prove the result

by induction on the number of bindings in σ. If σ = id, the conclusion follows
straightforwardly. Let x 7→ u ∈ σ and suppose that u does not satisfy any of
the conditions (i), (ii), and (iii) of Definition 34, i.e., u is not ground, is not
a rigid normal form, and is not a non–variable subterm of tσ. By definition,
there is at least one position p′ ∈ Pos(l)∩Pos(t|p) s.t. t|p.p′ = x and tσ|p.p′ =
lσ|p′ = u. Let us consider an arbitrary such p′. We distinguish the cases when
l|p′ is a variable or not. If l|p′ = y ∈ V , then y 7→ u ∈ σ and y must be a
repeated variable in l, since u is not a variable (it is not a rigid normal form)
and σ is the most general unifier. Therefore, there is a position p′′ ∈ PosΣ(t|p)
s.t. tσ|p.p′′ = u. But this contradicts condition (iii) of Definition 34. If l|p′ 6∈ V ,
then l|p′ itself is not ground and is not a rigid normal form, since x cannot
appear in l|p′ and, by induction hypothesis, σ \ {x 7→ u} satisfies conditions
(i), (ii), and (iii) of Definition 34. However, this contradicts condition (ii) of
Definition 34, and the conclusion follows. 2

In order to prove the main result in this section, let us introduce the following
measure functions. We use the following notation: a term that is not a root-
stable rigid normal form is called a non-rs−rnf. Given a multiset M and an
element u, we denote the number of occurrences of u in M by M(u).
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Definition 54 Let R be a TRS and t be a term. We define D∗
R(t) (resp.

DR(t)) to be the multiset of subterms (resp. non-ground subterms) of t that
are not root-stable rigid normal forms.

We drop the subindex R in DR(t) and D∗
R(t) when it is clear from the context.

Example 55 Assume any TRS R such that any term rooted by symbol f is
not a root-stable rigid normal form w.r.t. R, whereas terms rooted by symbols
a or s are root-stable rigid normal forms. Then,

(1) for t1 = f(a, a), we have D(t1) = ∅ and D∗(t1) = {f(a, a)},
(2) for t2 = f(s(x), f(a, a)), we have D(t2) = {f(s(x), f(a, a))} and

D∗(t2) = {f(s(x), f(a, a)), f(a, a)},
(3) for t3 = f(f(x, y), a), we have D(t3) = D∗(t3) = {f(f(x, y), a), f(x, y)},
(4) for t4 = f(f(x, y), f(x, y)), we have D(t4) = D∗(t4) = {f(f(x, y), f(x, y)),

f(x, y), f(x, y)}, and
(5) for t5 = f(f(x, y), f(x′, y′)), we have D(t5) = D∗(t5) = {f(f(x, y), f(x′, y′)),

f(x, y), f(x′, y′)}.

Let us now define an ordering .θ on terms. The main idea behind the definition
is to capture that whenever t narrows to t′ with substitution θ, all non-rs−rnf
terms in t′ are just descendants of (possibly instantiated) strict subterms of
non-rs−rnf terms of t.

Definition 56 Let t, s be two terms and θ a substitution. We say t.θ s if there
is a position p ∈ PosΣ(t) such that s ≡ tθ|p and either p > ε or θ 6= id. We
write t Iθ s whenever t .θ s and s is a strict subterm of t (i.e., p > ε).

We recall the definition of a multiset ordering.

Definition 57 (Multiset ordering) (Baader and Nipkow, 1998) Let (M,�)
be a partial ordering. The multi-set extension of � to multi-sets over M is de-
fined by S1 �mul S2 ⇔ S1 6≡ S2 and ∀m ∈ M, S2(m) > S1(m) ⇒ ∃m′ ∈ M :
(m′ � m, S1(m

′) > S2(m
′)).

Since a term might be instantiated further and further, the orderings .θ and
Iθ are not well-founded, hence neither of their multiset extensions (.θ)mul and
(Iθ)mul are well-founded. Nevertheless, we can prove that there are no infinite
decreasing sequences generated by narrowing steps. Informally, the idea is that
no new non-rs−rnf terms are introduced by narrowing and it may replicate in
the worst case (strict) subterms of existing ones.

Definition 58 (Non-additive) We say a decreasing sequence S0 (.θ1)mul S1

(.θ2)mul · · · (.θn)mul Sn of term multisets is non-additive if no new terms are
introduced at any step of the sequence, i.e., for every i > 0 and term t in
Si such that Si(t) > 0, there is a term t′ in Si−1 such that Si−1(t

′) > 0 and
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t ≡ t′θi.

Definition 59 (Monotonically decreasing) We say a non-additive decrea-
sing sequence S0 (.θ1)mul S1 (.θ2)mul · · · (.θn)mul Sn of term multisets is
monotonically decreasing if replication of a term t implies consumption of a
term u lying strictly above t, i.e., for every i > 0 and terms t in Si and t′ in
Si−1 such that t ≡ t′θi, Si−1(t

′) > 0, and Si(t) > Si−1(t
′), there are terms u in

Si and u′ in Si−1 such that u ≡ u′θi, Si−1(u
′) > Si(u), and u′ Iid t′.

Lemma 60 Every monotonically decreasing sequence of term multisets is fi-
nite.

Proof. By contradiction. Let us assume an infinite monotonically decreasing
sequence

S0 (.θ1)mul S1 (.θ2)mul · · · (.θn)mul Sn · · ·
Since it is non-additive, there must be a term u0 in the original multiset S0

that is replicated infinitely many times, i.e., for all i there is ui in Si such
that, for some p, ui ≡ u0θ1 · · · θi|p and Si(ui) ≥ S0(u0). However, this leads
to a contradiction since the sequence is monotonically decreasing and u0 is
finite. 2

We prove that that the conditions of the previous result do hold for the class
of TRS’s considered in this appendix.

Proposition 61 Let R be a right–srnf TRS that satisfies the quasi stable rigid
normalization condition. For each narrowing sequence t0

p1
;θ1,l1→r1

t1 · · · tn−1
pn
;θn,ln→rn

tn · · · the sequence D(t0) (.θ1)mul D(t1) (.θ2)mul D(t2) · · · of term
multisets is monotonically-decreasing.

Proof. The proof that the sequence is non-additive is obtained by considering
that new non-ground, non-rs−rnf terms are never introduced by narrowing
steps, since (i) R is right–srnf, and (ii) the computed substitutions are QSRNC
and thus any eventual new non-rs−rnf brought by instantiation is ground.

The proof that the sequence is monotonically decreasing is obtained by con-
sidering that any new non-rs−rnf term u of ti is ground, and any non-rs−rnf
subterm u of ti−1 that has more occurrences in ti than in ti−1 satisfies ti−1|pi

Iid

u. 2

Now, we provide two auxiliary results for proving Theorem 38: (i) for the
case when a narrowing step produces a stable rigidly normalized substitution,
and (ii) for the case when a narrowing step produces a quasi stable rigidly
normalized substitution. Intuitively, when a term t narrows to t′, we take into
account the number of variables of t and t′ and the number of non-rs−rnf
subterms in t and t′, and show that at least one of these numbers decreases.
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We first prove that whenever a term t narrows to t′ by computing a stable
rigidly normalized computed substitution θ, D∗(t) (.θ)mul D∗(t′).

Lemma 62 Let R be a right–srnf TRS. For every narrowing step t
p
;θ,l→r t′

such that θ is a stable rigidly normalized substitution, D∗(t) (.θ)mul D∗(t′).

Proof. By Definition 57, let us assume that there exists a term u such that
D∗(t′)(u) > D∗(t)(u); otherwise it is trivial. We have to prove that there is a
subterm w of t s.t. w .θ u and D∗(t)(w) > D∗(t′)(w). We consider the cases
when D∗(t)(u) = 0 and D∗(t)(u) > 0 separately.

If D∗(t)(u) = 0, then u does not appear in t because u is an instantiated
version of a subterm u′ of t. That is, since θ is a stable rigidly normalized
substitution and r is a srnf, there is a subterm u′ of t such that u ≡ u′θ and
θ|̀V ar(u′) 6≡ id. Therefore, u′.θ u, D∗(t)(u′) > D∗(t′)(u′) = 0, and the conclusion
follows.

If D∗(t)(u) > 0, then the extra occurrences of u in t′ have been introduced
by propagation of the applied substitution due to the possible non-linearity
of r (the possible non-linearity of l did not have any effect because θ is stable
rigidly normalized), which implies that u is a strict subterm of t|p. However,
we have that D∗(t)(t|p) > D∗(t′)(t|p) (at least in one unit since t|p has been
narrowed) and t|p .θ u, since u is a subterm of t|p. Therefore, the conclusion
follows. 2

The previous result can be easily extended to D(t) instead of D∗(t) when we
consider narrowing steps on non-ground terms.

Corollary 63 Let R be a right–srnf TRS. For every narrowing step t
p
;θ,l→r t′

such that t|p is non-ground and θ is a stable rigidly normalized substitution,
D(t) (.θ)mul D(t′).

Now we are ready to extend the previous results to the case when the computed
substitutions are not stable rigidly normalized.

Lemma 64 Let R be a right–srnf TRS. For every narrowing step t
p
;θ,l→r t′

such that t|p is non-ground and θ is a quasi stable rigidly normalized substi-
tution w.r.t. t, D(t) (.θ)mul D(t′).

Proof. By Definition 57, let us assume that there exists a non–ground term
u such that D(t′)(u) > D(t)(u); otherwise it is trivial. We have to prove that
there is a subterm w of t s.t. w .θ u and D(t)(w) > D(t′)(w). We consider the
cases when D(t)(u) = 0 and D(t)(u) > 0 separately.

If D(t)(u) = 0, then, since θ is a quasi stable rigidly normalized substitution
w.r.t. t and r is a srnf, there is a subterm u′ of t such that u ≡ u′θ and
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θ|̀V ar(u′) 6≡ id. Therefore, u′ .θ u, D(t)(u′) > D(t′)(u′) = 0, and the conclusion
follows.

If D(t)(u) > 0, then the extra occurrences of u in t′ have been introduced by
propagation of the applied substitution, due to the possible non-linearity of
either l or r. In both cases, u is a strict subterm of t|p, and since t|p is non-
ground and r is a srnf, D(t)(t|p) > D(t′)(t|p) (at least in one unit), t|p Iθ u,
and the conclusion follows. 2

Let us finally demonstrate our main result in this section.

Theorem 38 (Termination of narrowing under QSRNC) Let R be a
right–srnf TRS that satisfies the quasi stable rigid normalization condition.
Every narrowing derivation issuing from any term terminates.

Proof. Given a narrowing sequence

D = t0
p1
;θ1,l1→r1

t1 · · · tn−1
pn
;θn,ln→rn

tn · · ·

we define an order based on pairs 〈D(ti), D
∗(ti)〉 and ordered by

〈M1, M2〉 �θ 〈M ′
1, M

′
2〉 if M1 (.θ)mul M ′

1 or M1 = M ′
1 and M2 (.θ)mul M2.

Note that the order is noetherian due to Proposition 61 and Lemma 60. Then,
we prove termination of narrowing by noetherian induction on 〈D(tn), D∗(tn)〉
and �θn .

(1) (Base case) 〈D(tn), D∗(tn)〉 = 〈∅, ∅〉, which implies that there are no
narrowable subterms in tn, and the claim follows trivially.

(2) (Induction case) We have 〈D(tn), D∗(tn)〉 6= 〈∅, ∅〉, and consider the sub-
sequent narrowing step

tn
pn+1
; θn+1,ln+1→rn+1

tn+1

We consider the following three cases separately,
(a) if tn|pn+1 is a ground term, then D(tn) = D(tn+1) and θn+1 is a

stable rigidly normalized substitution. Then by Lemma 62, D∗(tn)
(.θn+1)mul D∗(tn+1);

(b) if tn|pn+1 is a non-ground term and θn+1 is a stable rigidly normalized
substitution, then by Corollary 63, D(tn) (.θn+1)mul D(tn+1);

(c) if tn|pn+1 is a non-ground term and θn+1 is a quasi stable rigidly
normalized substitution w.r.t. tn, then by Lemma 64, D(tn) (.θn+1)mul

D(tn+1).
In the three cases, the result follows by induction hypothesis. 2
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