Unification modulo a property of the El Gamal
Encryption Scheme

Serdar Erbatur!, Santiago Escobar?, and Paliath Narendran®

! University at Albany-SUNY (USA), {se,dran}@cs.albany.edu
2 Universidad Politécnica de Valencia (Spain), sescobar@dsic.upv.es

1 Introduction

Equational Unification has recently been applied in the field of formal analysis
of cryptographic protocols. Formal methods have been very useful in detecting
nontrivial flaws in protocols and also to verify their correctness; see Meadows [7]
for a survey of formal verification of cryptographic protocols. Terms in this
approach are often assumed to be in the free algebra, i.e., the function symbols
are not interpreted; in particular algebraic properties of function symbols are
ignored. Thus two terms are equal only if they are syntactically equal; thus the
analysis only requires standard unification. However, it is possible to extend this
analysis by also considering algebraic properties of terms, to get a deeper analysis
against attacks that can possibly exploit those properties [4,5]. Therefore, F-
unification algorithms provide tools to achieve this goal.

In this work, we consider an axiom which is observed in El Gamal encryption.
We briefly explain how a message is encrypted within the El Gamal scheme. Let
p be a prime, g a generator of Z, and x the private key obtained from the range
1 to p — 2. Define h = ¢g* mod p. The public key is the tuple (p, g, h). A message
m is encrypted by first selecting a random integer r s.t. ged(r,p — 1) = 1 and
then computing

a=g modp, b=m=x*h" modp

The ciphertext of m is the pair (a,b). Let us define B(m,r) = m x h". When
using this functionality, there is an important property of B that could be taken
into account. This property is unfolded as follows:

B(my,r1) * B(ma,r2) = my *h™ xmg * A"

and
B(my,r1) * B(ma,r2) = my *mg * h™ 12 (mod q)

where 11772 can be written (abstracted) as ry ® ro. Therefore the equality of
interest is
B(my,r1) * B(ma,re) = B(my *ma, 11 ®13)

In the rest of the paper, we consider the theory with this equality, which we
will denote by £. In Section 2 we give an algorithm and prove decidability of

E-unification. A novel feature of our approach is the use of types in detecting
non-termination. We follow the standard notation in the literature, see [2] for
more details.

2 Unification modulo &€

We present decidability of £-unification by constructing an algorithm along with
a proof of correctness. First, we define a set of inference rules based on standard
forms and observe that those rules are complete and sound similarly to the case
in [1]. This is not very different from our approach in earlier papers, but the
novelty is that termination of the algorithm (i.e., inference rules) is obtained by
introducing a type system for function symbols of £. Note that £ is not defined
as a typed theory. However, using types as described later in this section allows
us to identify a set of equivalence classes that does not grow. Then through a
series of lemmas we show how to detect infinite splitting, which is the hardest
type of failure to detect since new variables are continuously introduced into an
E-unification problem. Thus, the algorithm either transforms an £-unification
problem to dag-solved form or returns failure by finding (i) a function clash,
(ii) (extended) cycle induced by relations among the variables, or (iii) variables
which split indefinitely.

The function symbols B, * and ® are cancellative, i.e., if sq,t1, 82,2 are
ground terms in normal form, then B(sy,t1) =¢ B(s2,t2) if and only if s; =¢ s9
and t; =¢ to; similarly for the other symbols. This can be shown using the fact
that £ can be oriented either way to get a convergent rewrite system.

We now define several relations among variables:

— U »,, V iff there is an equation U =T * V

U >, V iff there is an equation U =V T

= U >, V iff there is an equation U =T ® V'
— U =, V iff there is an equation U =V @ T
U ., V iff there is an equation U = B(T,V)
— U >, V iff there is an equation U = B(V,T')
— U= VitU =y VorU»>=, 6V

- U= VitUs>, VorU:»,6V
—UsrpVitU>,VorlU:»,V

Let ~jp+) and ~,p) be the reflexive, symmetric and transitive closures of
>, and >, respectively. Also, let ==1>g U >, U >p.
(a) Variable Elimination:
{(X="V} w £Q
{xX =" V}u [v/X](£Q)
(b) Cancellation on B:
EQw {X="BV,Y), X="BW,T)}

EQU {X="BW,Y), V=W, Y="T}

if X occurs in £Q

(c) Cancellation on “x*
EQ W {X="VxY, X="W=xT}

EQU{X="VxYy, V=W, Y ="T}
(d) Cancellation on ‘®
EQuw {X="VeY, X="WaeT}

EQU {X="VeY,V="W,Y="T)

(e) Splitting:
EQw {X="BWV,Y), X="WxZ}

EQU{X="WxzZ, V="VoxW, Y ="Yo0Y, W='BW,Y%), Z="B(V,%)}
(f) Failure Rule 1:

EQuw {X="BWV,Y), X="WaT}
FAIL

(g) Failure Rule 2:
EQUW {(X="VxY, X="WeT}
FAIL

(h) Occur-Check:
£Q

FAIL if X =1 X for some X

A set of equations (i.e., a unification problem) is said to be in dag-solved form
(or d-solved form) if and only if they can be arranged as a list

X1 :? tl, vy T :? tn
where (a) each left-hand side z; is a distinct variable, and (b) V1 < ¢ < j < n:
x; does not occur in t; [6].

The variable X in the splitting rule is called an e-peak. That is, an e-peak
is a variable X such that X >=;, W, X >, Z, X >;, V and X >,, Y for
some variables V| Y, W, Z. The rules (a) — (h) can be applied in any order but
we propose the following strategy for efficiency in reaching the dag-solved form.
Rules (a), (f), (g) and (h) have the highest priority, followed by (b), (¢) and (d).
Finally the rule (e) has the lowest priority.

Lemma 1. Rules (a) — (h) are sound and complete for &-unification.
Proof. The result is obtained in a similar way to that of [1]. O

Apart from rules (f), (g) and (h), another failure case is infinite splitting. A
necessary and sufficient condition for this, along with a failure rule, will be given
later in this paper. Two example cases where rule (e) applies infinitely because
of a variable shared between the first argument of B and an argument of x are
shown below. We underline those equations that give rise to a new e-peak in the
conclusion of the inference rule.

(1) Infinite Splitting Case 1:
EQ W {X="B(V,Y), X="VxZ}
EQU{X="VxZ V="VoxW, Y ="YooV, V="BW%), Z="B(V,%)}

(2) Infinite Splitting Case 2:

EQw {X="BV,Y), X="W=xV}

EQU{X="WxV,V="VyxV, Y="Yy@eY, W="B(VW,Y), V="BV,Y)}

Note that if a variable is shared between the second argument of B and the
first or second argument of *, this does not lead to infinite splitting:
(3) Example:)
EQ W {X="BV,)Y), X="WxY}
EQU{X="WxY, V="V V;, Y ="Yo@Y,, W="B(W,Y), Y =" B(Vi,")}

By failure rule (f), case (3) results with a Function Clash. In contrast, note
that cases (1) and (2) cause infinite splitting since they both give rise to e-peaks
repeatedly. To explain this, we first assign the set of types {«, v} to arguments
of function symbols as follows:

B:raxy—=a xtaXa—=a ®:7vXvy =7y

This type mechanism is not strict: in fact one may consider {«, v} as a set
of attributes. Note that a term such as B(X, X) would be problematic for strict
typing but it is reasonable to assume that X has both « and v as “attributes” in
this case. This also explains how types are assigned to existing variables. As an
example, the equation U; =" VW and Uy =" V@ W are typed properly in this
discipline: Uy with «, Uy with v and both V and W with a and ~, respectively.

We, in general, assign types to variables as follows. A variable V' is assigned
type « if and only if there exists a variable U such that one of U =, V,U >, V,
V =, U,or V >, U holds. Likewise, a variable V is assigned type ~ if and
only if there exists a variable U such that U >g V or U >,, VorV >g U or
Vo= U.

We can now observe that in (1) and (2) the new peaks have type o. However,
the set Var(S) for a problem S may get larger because of splitting. Also, if V' is
the representative of an equivalence class of variables with respect to a relation
R € {~ipu),~ipm)) 1€, [V]r, then obviously all variables in [V]g have the
same type as V.

As seen in rule (e), a variable T can split in two ways: either as T = Ty Ty or
as T = Ty ® T1. The splitting rule (e) may be applied further to new variables,
and in general we may obtain a variable T,, where w € {0,1}* is a string of 0’s
and 1’s. Therefore we adopt the general discipline for creating new variables as:
T, = Tyo*T, or T,, = T,0® Ty 3. Also, if w =)\, the empty string, then
T, = T, i.e., T is an original variable. For a variable V, define V.= {V, | w €
{0,1}*}. Note that V may be infinitely large.

Lemma 2. Let V be of type o and |V| be infinite. Then any descendant V,,,
where w € {0,1}* and V =} V,,, joins an originally existing ~1p(B)-€quivalence
class which has type a.

Our main observations are (i) if a variable splits, then its descendants have
the same type, see Lemma 2 and (ii) in case of infinite splitting the new e-peaks

3 Using the type discipline given earlier, we assume that T is a-typed in the former
case and 7-typed in the latter.

are always a-typed. We justify (ii) later in this section. Thus (i) and (ii) allow
us to effectively leave y-typed variables out.

Definition 1. Let V = {X,, | X is a-typed and w € {0,1}*} i.e., the set of
variables which have type a in a given problem. In other words, V includes the
original variables with type o and the new variables that o is assigned as type.

Lemma 3. Let S be an &-unification problem and X € Var(S) such that X is
an e-peak. Then X has type «, i.e., X € V.

Let us consider grouping elements of V with respect to the equivalence re-
lation ~y,(p). That is, we write V = W[X]~,, where X € V. Therefore, we
have a set of ~j,p)-equivalence classes such that the number of them remains
the same even if splitting applies infinitely.

Lemma 4. The number of ~,p-equivalence classes in V' does not increase.

Let us define 3 = ~,(g) © =« o ~y(py- Then the following result gives us a
way to detect infinite splitting.

Lemma 5. Ifrule (e) applies infinitely, then there exists a B-cycle among ~y,p)-
equivalence classes in V.

We define an interpretation which gives a valid model for £. If B is interpreted as
projection to its first argument, i.e., left projection, then we get m*n = msx*n out
of £. This is useful since the unification problem is solvable only if its interpreted
version is also solvable.

Lemma 6. Let P be an E-unification problem. If B is cyclic, then P is not
solvable.

Therefore we can define the following failure rule which deals with infinite split-
ting.
(i) Infinite Splitting:

£Q

FAIL if B is cyclic in V

Lemma 7. Unification modulo € is decidable using rules (a)-(i) above.

3 Conclusion

We have shown decidability of unification modulo a theory with a single axiom
which is a property of the El-Gamal public key cryptosystem.

In [3], we show decidability of unification for a theory with symbols B and
% through a similar outline of the results using the fact that the number of
~ip(B)-Classes remain same. On the other hand, the number of ~j,p)-classes
here does not remain the same in general; only the number of ~j,p)-classes in
a special subclass, that we identified through a type system, is non-decreasing.
Introducing types, which are not originally defined for the equational theory,
proved useful to show termination of the algorithm. Furthermore, the version of
& which has the same multiplication operator on the right, has an undecidable
unification problem as shown recently in [1].

References

1. S. Anantharaman, S. Erbatur, C. Lynch, P. Narendran, M. Rusinowitch. “Uni-
fication modulo Synchronous Distributivity”. Technical Report SUNYA-CS-
12-01, Dept. of Computer Science, University at Albany—SUNY. Available at
www.cs.albany.edu/ ncstrl/treports/Data/README.html (An abridged version to
be presented at IJCAR 2012.)

2. F. Baader, W. Snyder. “Unification Theory”. Handbook of Automated Reasoning,
pp- 440-526, Elsevier Sc. Publishers B.V., 2001.

3. S. Erbatur, C. Lynch, P. Narendran. “Unification in Blind Signatures”. Presented
at FTP 2011. Available at www.cs.albany.edu/"se/blindsig_ftp2011.pdf

4. S. Escobar, C. Meadows, J. Meseguer. “Maude-NPA: Cryptographic Protocol Anal-
ysis Modulo Equational Properties”. In: Foundations of Security Analysis and De-
sign V, FOSAD 2007/2008/2009 Tutorial Lectures (A. Aldini, G. Barthe, and R. Gor-
rieri, eds.) LNCS 5705, pages 1-50.

5. S. Escobar, C. Meadows, D. Kapur, C. Lynch, C. Meadows, J. Meseguer, P. Naren-
dran, R. Sasse. “Protocol analysis in Maude-NPA using unification modulo homo-
morphic encryption”. In: Proceedings of the 13th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, July 20-22, 2011,
Odense, Denmark (P. Schneider-Kamp and M. Hanus, eds.), pages 65-76.

6. J.-P. Jouannaud, C. Kirchner. “Solving equations in abstract algebras: a rule-based
survey of unification.” Computational Logic: Essays in Honor of Alan Robinson, pp.
360-394, MIT Press, Boston (1991).

7. C. Meadows. “Formal Verification of Cryptographic Protocols: A Survey” ASI-
ACRYPT , pp. 135-150 (1994).

