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a b s t r a c t

We present a novel class of integrators for differential equations that are suitable for
parallel in time computation, whose structure can be considered as a generalization
of the extrapolation methods. Starting with a low order integrator (preferably a
symmetric second order one) we can build a set of second order schemes by few
compositions of this basic scheme that can be computed in parallel. Then, a proper
linear combination of the results (obtained from the order conditions associated to
the corresponding Lie algebra) allows us to obtain new higher order methods. In
this letter we present the structure of the methods, how to obtain several methods,
we notice some order barriers that depend on the structure of the compositions
used and finally, we show how this analysis can be further carried to obtain new
and higher order schemes.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the numerical integration of the ODE

x′ = f(t, x), x(t0) = x0, (1)

ith x ∈ Cd and formal solution given by x(t) = ϕt(x0) by using a novel class of methods that are suitable
or parallel computation and whose structure can be considered as a generalization of extrapolation methods.
xtrapolation methods are among the most efficient schemes when highly accurate results are required [1–4]
nd, in addition, they can be computed in parallel.

If there is not a constraint in the number of processors, we show that a generalization of the extrapolation
rocess (leading to a novel class of methods) can improve their accuracy while keeping the sequential cost per
tep. Different classes of parallel methods for ODEs have been frequently considered in the literature (see [2]
r the most recent review work [5]), and in this work we only consider the parallel in time integration [6–8].

In this letter we illustrate this novel procedure in very simple cases and we present new 4th and 6th-order
ethods. Closely related schemes with complex coefficients and with the goal to preserve time-symmetry and

ther qualitative properties to higher order are considered in [6]. Let us denote by Sh a symmetric second
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rder integrator in the time step, h, i.e. Sh = ϕh + O(h3) and Sh ◦ S−h = I, the identity map (explicit or
mplicit symmetric second order schemes can be easily built [2,3,9–11]). A 4th-order extrapolation method
s given by the linear combination

Φ
[4]
h = 4

3Sh/2 ◦ Sh/2 − 1
3Sh. (2)

o compute xn+1 from xn, with xk ≃ x(tk), tk = t0 + kh, each processor computes yi =
∏i

j=1 S
h/2j−1(xn),

= 1, 2 and the results are combined to get xn+1 = 4
3 y2 − 1

3 y1. The cost is dominated by the evaluation of
he most costly process, y2, i.e. two maps Sh per step (see [1,2]). If the map Sh is a geometric integrator
hat preserves some of the qualitative properties of the exact solution then, these properties are preserved
y composition leading to integrators with high performance when medium to long time integrations are
onsidered [12–14]. However, the linear combination in the extrapolation methods destroy these qualitative
roperties, although this can happen at a higher orders than the order of the method [15,16]. In addition,
variable time step procedure can be implemented if one compares the accurate 4th-order approximation,

n+1 with the second order one y2 (see [2]).
Notice that, at the same computational cost, the following more general scheme

Ψ
[4]
h = b2S(1−a2)h ◦ Sa2h + b1S(1−a1)h ◦ Sa1h (3)

(which contains the previous one as a particular case: a1 = 0, a2 = 1
2 , b1 = − 1

3 , b2 = 4
3 ) could provide

ore accurate results for appropriate choices of the coefficients a1, a2, b1, b2. This scheme can be further
eneralized to the case in which we have k available processors, as follows

Ψ
[m,2]
h =

k∑
j=1

bjS(1−aj)h ◦ Sajh.

he accuracy of the method will depend on how much the map Ψ
[m,2]
h approaches the exact solution ϕh,

nd this depends on the number of order conditions the coefficients ai, bi satisfy. Given a value of k we can
choose a set of values for the coefficients ai, i = 1, . . . , k (with ai ̸= aj , i ̸= j and taking into account
that the choice ai = 0 is equivalent to ai = 1) and then the coefficients bi have to solve a linear system
of equations. In some cases, it is possible to solve the same set of equations with a reduced value of k by
allowing some of the coefficients ai to satisfy non-linear order conditions.

We will show that this class of methods has an order barrier. One of the conditions at order h5 is not
independent. It is possible to obtain 4th-order methods that are optimized in the sense that contributions at
higher orders can be vanished leading to superior methods to (2) for a number of problems but, in general,
5th-order methods cannot be obtained. In addition, once the coefficients ai are fixed, it is also possible to
find another set of values for the coefficients bi such that the embedded method is of order three, allowing
for sharper error estimators than the estimators for extrapolation methods.

To get higher order methods one has to add another map. We illustrate the procedure by considering com-
binations of symmetric schemes (to consider symmetric schemes simplify the analysis, but a non-symmetric
sequence could be considered) as, for example

Ψ
[m,3]
h =

k∑
j=1

bjSajh ◦ S(1−2aj)h ◦ Sajh (4)

whose performance has to be compared with the 6th-order extrapolation method

Φ
[6]
h = 81

40Sh/3 ◦ Sh/3 ◦ Sh/3 − 16
15Sh/2 ◦ Sh/2 + 1

24Sh (5)

hat uses the more economical harmonic sequence (other sequences for extrapolation methods would require
ore than three maps per step and usually show slightly worst performance [2]).
2
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. Fourth and sixth-order methods

The goal of this section is not to obtain the most efficient 4th and 6th-order methods of this class but to
llustrate that the performance of the extrapolation methods can be further raised, and we illustrate it with
he following schemes:

• An optimized 2-stage 4th-order method

Ψ
[4,2]
h = b3S(1−a3)hSa3h + b2S(1−a2)hSa2h + b1S(1−a1)hSa1h, (6)

with
a1 = 0.185083473675167899, a2 = − 1

10 , a3 = 1
10 ,

b1 = 8.200177124779414591, b2 = 1.277318043040618944, b3 = 1 − b1 − b2,

b̂1 = 1, b̂2 = −0.912528759429160013, b̂3 = 1 − b̂1 − b̂2.

The embedded method, say Ψ̂
[3,2]
h is of order three and corresponds to a scheme similar to Ψ

[4,2]
h but

replacing the coefficients bi by b̂i.
• An optimized 3-stage 6th-order method

Ψ
[6,3]
h =

5∑
i=1

biSaih S(1−2ai)h Saih (7)

with an embedded method of order five

a1 = 1.128520493860176762 b1 = −0.031183710241561175 b̂1 = −1/10
a2 = 0.790595004758162983 b2 = 0.587534847838132073 b̂2 = 0.722848812595572664
a3 = 0.604432933065477058 b3 = −1.141887280735286118 b̂3 = −1.177391519427465008
a4 = −0.022021631480667294 b4 = −0.116862322614714864 b̂4 = −0.143395596461239863
a5 = 33

100 b5 = 1 − b1 − b2 − b3 − b4 b̂5 = 1 − b̂1 − b̂2 − b̂3 − b̂4.

2.1. Numerical example

Let us consider the two-dimensional Kepler problem with Hamiltonian

H(q, p) = T (p) + V (q) = 1
2pT p − 1

r
.

ere q = (q1, q2), p = (p1, p2), and we take initial conditions q1(0) = 1 − e, q2(0) = 0, p1(0) = 0, p2(0) =
1+e
1−e , so that the trajectory corresponds to an ellipse of eccentricity e and period T = 2π. We integrate until

tf = 30 with the 4th- and 6th-order methods, and compute the maximum error in the vector (q, p) along the
whole integration (we compare with a highly accurate numerical solution). Fig. 1 shows the maximum error
vs. the highest number of force evaluations of any of the processors (two and three evaluations per step for
the 4th and 6th-order methods, respectively). Solid lines correspond to the new methods and dashed lines
to extrapolation methods. Similar lines with circles show the results if the whole integration was carried out
with the associated embedded methods. The left picture shows the results of the 4th-order methods and the
right picture for the 6th-order ones. The embedded methods also provide sharper error bounds.

We clearly observe that, while the new 4th-order method is only slightly superior to the extrapolation
method, the improvement of the new 6th-order method is significant, and this is due to the fact that one
has more parameters available for optimization purposes.
3
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Fig. 1. Maximum error in positions vs. the number of evaluations of the basic S[2]
h

scheme for the Kepler problem. Solid lines
correspond to the novel 4th- and 6th-order methods and the dashed lines correspond to the extrapolation ones, and with circles are
the results if integrated only with the associated embedded methods. Left figure shows the results for the 4th-order methods while
the right figure shows the results for the 6th-order ones.

3. Order conditions

Let us consider, for simplicity in the presentation, the autonomous equation (the results remain also valid
for the non-autonomous case too)

x′ = f(x) = Y1x, Y1 ≡ f(x) ∂

∂x

hose solution can formally be written as x(t) = ϕt(x0) = etY1x0. A symmetric second order scheme, Sh,
an be seen as the exact solution of a perturbed differential equation (backward error analysis [13]) where
he perturbed vector field only has even powers of h, i.e.

x′ = fh(x) = f(x) + h2f3(x) + h4f5(x) + · · · , or x′ = (Y1 + h2Y3 + h4Y5 + · · · )x,

here f3, f5, . . . and their associated operators, Y3, Y5, . . . depend on the particular method, and formally
e can write

Sh = ehY1+h3Y3+h5Y5+···, so Sah = eahY1+a3h3Y3+a5h5Y5+···.

aking into account the BCH formula for non-commuting operators

eXeY = eX+Y + 1
12 ([X,[X,Y ]]+[Y,[Y,X]])+···

here [X, Y ] = XY − Y X, and the symmetric BCH formula

eXeY eX = e2X+Y − 1
6 [X,[X,Y ]]+ 1

6 [Y,[Y,X]]+···

e obtain that

S(1−a)hSah = exp
(

hY1 + g3,1h3Y3 + g4,1h3[Y1, Y3] + g5,1h5Y5 + g5,2h5[Y1, [Y1, Y3]] . . .
)

,

ith
g3,1 = a3 + (1 − a)3, g4,1 = 1

2 (a3(1 − a) − a(1 − a)3),
g5,1 = a5 + (1 − a)5, g5,2 = 1 (1 − 2a)(a3(1 − a) − a(1 − a)3). (8)
12
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f we now consider the symmetric BCH formula and the Taylor expansion of the exponential we have

S(1−a)hSah

= exp
(1

2hY1

)
exp

(
g3,1h3Y3 + g4,1h3[Y1, Y3] + g5,1h5Y5 + ḡ5,2h5[Y1, [Y1, Y3]] + O(h6)

)
exp

(1
2hY1

)
= exp

(1
2hY1

)(
I + g3,1h3Y3 + g4,1h3[Y1, Y3] + g5,1h5Y5 + ḡ5,2h5[Y1, [Y1, Y3]] + O(h6)

)
exp

(1
2hY1

)
,

here ḡ5,2 = g5,2 + 1
6 g3,1. Then, we can write

Ψ
[m,2]
h =

k∑
j=1

bjS(1−aj)h ◦ Sajh

= exp
(1

2hY1

)(
I + G3,1h3Y3 + G4,1h3[Y1, Y3] + G5,1h5Y5 + Ḡ5,2h5[Y1, [Y1, Y3]] + O(h6)

)
exp

(1
2hY1

)
,

we always assume the consistency condition is satisfied,
∑k

j=1 bj = 1) and

Gℓ,n =
k∑

j=1
bjgj

ℓ,n

where gj
ℓ,n denotes gℓ,n when a is replaced by aj and Ḡ5,2 = G5,2 − 1

6 G3,1. Then the 4th-order extrapolation
ethod (2) satisfies

G3,1 = G4,1 = G5,2 = 0, G5,1 = 1
4 .

The goal with the new methods is to look for a set of coefficients ai, bi such that G5,1 = 0 is also satisfied,
eading to a 5th-order method. Unfortunately, it happens that

G5,2 = 1
60 − 1

12G3,1 + 1
15G5,1

nd G5,2, G3,1, G5,1 cannot be simultaneously vanished. We considered the scheme (6) that allows to get a
ethod with

G3,1 = G4,1 = G5,1 = 0, G5,2 = 1
60

we leave two free parameters among the coefficients ai) that, in general, leads to more accurate results. In
ddition, we can easily find another set of values for the coefficients bi with the same values of ai that lead
o a third-order method as an embedded method, i.e. to consider a set of coefficients b̂i, i = 1, . . . , k such
hat

∑k
i=1 b̂i = 1 and G3,1 = 0. We have taken one solution, as an illustration, that is not necessarily the

ptimal one.
Similarly, we have that

SahS(1−2a)hSah = exp
(

hY1 + f3,1h3Y3 + f5,1h5Y5 + f5,2h5[Y1, [Y1, Y3]] . . .
)

= exp
(1

2hY1

)
(

I + f3,1h3Y3 + f5,1h5Y5 + f̄5,2h5[Y1, [Y1, Y3]] + 1
2f2

3,1h6Y 2
3 + f7,1h7Y7 + O(h7)

)
exp

(1
2hY1

)
,

ith
f3,1 = 2a3 + (1 − 2a)3, f5,1 = 2a5 + (1 − 2a)5,
f7,1 = 2a7 + (1 − 2a)7, f5,2 = 1

12 (1 − a)(1 − 2a)a(a2 − (1 − 2a)2). (9)

f we denote (as previously, f j
ℓ,n corresponds to fℓ,n when a is replaced by aj)

Fℓ,n =
k∑

bjf j
ℓ,n, with F6,1 =

k∑
bj(f j

3,n)2, F8,1 =
k∑

bj(f j
3,nf j

5,n)

j=1 j=1 j=1

5
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hen the 6th-order extrapolation method (5) satisfies

F3,1 = F5,1 = F5,2 = F6,1 = 0, F7,1 = 0.0277.

The scheme Ψ
[6,3]
h in (7) has 10 parameters to satisfy the 5 order conditions to reach order six (including

consistency). Three processors would suffice to have enough parameters, for example, by taking b4 = b5 = 0,
nd there would still have one free parameter. Such free parameter could be used, for example, to vanish
7,1 but even in this case the methods we obtain did not show in practice a higher performance than the

extrapolation method. We have added two extra processes in order to vanish higher order error contributions
as well as to have enough parameters b̂i to build a 5th-order embedded method that is different from the

ethod itself.
At order seven there are four independent terms, Y7, [Y1, [Y1, Y5]], [Y1, [Y1, [Y1, [Y1, Y3]]]], [Y3, [Y1, Y3]] whose

oefficients cannot be canceled with linear combinations of this family of 3-map symmetric compositions.
otice that each function f j

n,i is a polynomial function of degree n in the variable aj , and we can write it as
ollows

f j
n,i =

n∑
ℓ=0

Aℓa
ℓ
j so Fn,i =

k∑
j=1

bjf j
n,i =

n∑
ℓ=0

Aℓ

⎛⎝ k∑
j=1

bjaℓ
j

⎞⎠
nd only n independent conditions Fm,i = 0 can be satisfied (the same number as independent equations,

k
j=1 bjaℓ

j = 0, ℓ = 1, 2, . . . , n). This introduces a limit in the highest degree we can reach with the scheme
10), but still allows to choose which conditions at order seven or higher can be convenient to vanish for
ifferent classes of problems.

We took a5 as a free parameter and used the remaining four extra parameters to vanish the coefficients
f Y7, [Y1, [Y1, [Y1, [Y1, Y3]]]] at order seven, Y3Y5 at order eight and Y9 at order nine. Different optimization
riterion could be used for different purposes that will depend on each problem with its particular algebra.
nce the values ai are fixed, we took b̂1 as a free parameter and got the remaining coefficients b̂i, i = 2, 3, 4, 5

uch that the resulting embedded method satisfies F3,1 = F5,1 = F5,2 = 0 in addition to consistency, i.e. it
s of order five (instead of four as it happens for extrapolation).

We have shown that this new family of methods can provide highly efficient methods and the next step
s to carry a deep analysis of the order conditions and optimization procedures in order to obtain the most
fficient schemes with a moderately low number of processors. Once we have identified the problem to reach
ethods of order higher than six with the composition (7), it is then natural to consider the more general

omposition

Ψ
[m,3]
h =

k∑
j=1

cjS(1−aj−bj)hSbjhSajh. (10)

he number of order conditions increase due to the loss of symmetry of the compositions but there are more
ree parameters that could circumvent the order barrier we found in the previous symmetric compositions.
his long and elaborated analysis will be carried and published elsewhere.
If one is interested in forward integration, we can fix the values of the coefficients ai, bi to guarantee

orward integration, and then to solve the linear equations with the coefficients ci (with some few more pro-
essors). Methods with complex coefficients as well as preservation of time-symmetry and other qualitative
roperties to higher orders than the order of the method can also analyzed [6].
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