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The Problem

Non-autonomous separable PDE

% = A(t,u) + B(t,u),  u(0) = up

= u(x,t) € RD.

= (Possibly unbounded) Operators A, B and A + B generate C°
semi-groups for positive t over a finite or infinite Banach space.
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The Problem

Non-autonomous separable PDE

% = A(t,u) + B(t,u),  u(0) = up

= u(x,t) € RD.

= (Possibly unbounded) Operators A, B and A + B generate C°
semi-groups for positive t over a finite or infinite Banach space.

Reaction-diffusion equations

%:D(t)Au+E’(t,u), t>0,xcR? or xeT?




Introduction

For simplicity,

(Apparently) Linear form

adu

T A(t)u+ B(t)u,

— A, B are the Lie operators associated to A, B, i.e.

0 B(t) = B(t, u)% J

A(t) = A(t, u)%,

which act on functions of u.



Introduction

Simplest Methods For Autonomous Problems

= Autonomous problem

au

— =Au+8B
i u+ Bu,

= Subproblems

adu du
i Au and i Bu

= Denote by e, e/ the exact h-flows for each problem
respectively.



Introduction

= Lie-Trotter splitting

hA hB or ehB ehA’

o S(h) =eMAtB) + O(h?).
= Strang splitting
S(h) = eN/2A B h/2A or S(h) = e"/2B A eh/28
o S(h) =e"ATB) + O(h?).
= High-order approximations

W(h) = ehbssiB ghasA . hbeB ghaiA ohbiB,

at any order exist.



Introduction

= Negative coefficients for order > 2. J

@ Aand B generate C° semi-groups.
@ Flows e and/or e® may not be well-defined for negative times, for
instance, for the Laplacian operator
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= Negative coefficients for order > 2. J

@ Aand B generate C° semi-groups.

@ Flows e and/or e® may not be well-defined for negative times, for
instance, for the Laplacian operator

= Circumvent order-barrier, (Castella et al., BIT, 2009) and (Hansen
et al., BIT, 2009) presented methods with complex coefficients having
positive real parts.




Splitting methods for non-autonomous problems

= Goal evaluation A(t), B(t) at real times.

Splitting method having one set of coefficients real and positive

valued

a; € R, b; € C*, (or a eCt, b; € R™).

@ In order to numerically solve the system.



Splitting methods for non-autonomous problems

= Goal evaluation A(t), B(t) at real times.

Splitting method having one set of coefficients real and positive

valued

a; € R, b; € C*, (or a eCt, b; € R™).

@ In order to numerically solve the system.
= Take time as a new coordinate and split the system as (Blanes et
al., JCAM, 2010)

d(f) = A(ti)u & (1) = B(t)u
and
() =1 () =0




Splitting methods for non-autonomous problems

Splitting methods for non-autonomous perturbed

systems

Suppose that
1Bt < [IACH)I], Vt.

= B =¢eB. with [¢] <« 1
= A and B are qualitatively different for perturbed problems
= s-stage symmetric BAB compositions

W(h) = eMbsi1eB ghashA . ohbacB ghaiA ohby=B,

with asi1—j = 4a,, bs+2_1 = b,’, i= 1,2,...,
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Splitting methods for non-autonomous perturbed

systems

Suppose that
1Bt < [IACH)I], Vt.

= B =¢eB. with [¢] <« 1
= A and B are qualitatively different for perturbed problems
=s-stage symmetric ABA compositions

W(h) = ehds1AchbseB . charA ghiyeB ghanA

with Asio_j = 4a,, bs+1_1 = b,’, i= 1,2,....



Splitting methods for non-autonomous problems

Order conditions

= For consistent methods (};a =>_,b; = 1)

W(h) = eh(A+eB)+E(h.e) J
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Order conditions

= For consistent methods (};a =>_,b; = 1)

\U(h) _ eh(A+aB)+E(h,a) J

E(he) = b (cPavallA Bl, Al + 2 pan[[A, B], B]))
+h° (¢ PavacallllA, B, Al, Al, Al + O(c?)) + O(eh').

= Following (Blanes et al., APNUM, 2013), for the ABA composition




Splitting methods for non-autonomous problems

Order conditions

= For consistent methods (};a =>_,b; = 1)
w(h) = N(A+eB)+E(h,e) J

E(he) = b (cPavallA Bl, Al + 2 pan[[A, B], B]))
+h° (¢ PavacallllA, B, Al, Al, Al + O(c?)) + O(eh').

= Following (Blanes et al., APNUM, 2013), for the ABA composition

Paba = 1zs:bici(1—ci)_l7 ® 6i=Yj0%
24 12 @ ay = 0and Cs1
ei=1,2....s
Pabb = Z b20,+ Z bibjc; —
1<i<j<s

Pabaaa = Z b; C,4 - 5



Splitting methods for non-autonomous problems

= Fourth-order methods require to satisfy

Paba = 07 Pabb = 0 J

@ Fails a;, b; real and positive
@ Goal g ¢ Rt and b; € C+.
@ Fix a; € (0,1) and leave the b; to solve the order conditions.
= It is not usually possible to concatenate the last map in one

step with the first one in the following step in case of ABA
composition.

= In practice a ABA composition with the same number of
exponentials as a BAB composition can be computationally more
costly up to one additional stage.



Splitting methods for non-autonomous problems

= Fourth-order methods require to satisfy

Paba = 07 Pabb = 0 J

@ Fails a;, b; real and positive
@ Goal g ¢ Rt and b; € C+.
@ Fix a; € (0,1) and leave the b; to solve the order conditions.

= It is not usually possible to concatenate the last map in one
step with the first one in the following step in case of ABA
composition.

= In practice a ABA composition with the same number of
exponentials as a BAB composition can be computationally more
costly up to one additional stage.

For all these reasons we mainly focus on the BAB compositions.



Splitting methods for non-autonomous problems

New Fourth-order methods

= Fourth-order methods with a 4-stage composition

(b1 ai be a; b3 a2 bz a1 by) )

consistency conditions

]
ata =y, 2(by + b2) + b3 = 1.

@ Fix a; € (0,1/2).
@ Choice a; = } obtained in (Castella et al., BIT, 2009).

= Take aj as a free parameter to minimise the dominant error
term’

4 . 1
> Re(b)cf - 5|

i=1

min |Re = min
a1€(0,1/2)| (pabaaa)‘ a1€(0,1/2)

YUp1 = Re(W(h)un).



Splitting methods for non-autonomous problems

= A 6-stage composition

(b1 @1 bo @z bs as bs as bz ax bo a1 by) J

= The coefficients b; are used to satisfy the conditions

Paba = 07 Pabb = 07 Pabaaa = 0. J

= We just take a; = @, = as = .
= Methods which derived in this work can be seen our paper
(Blanes et al., Submitted).



Splitting methods

= Standard Strang decomposition for non-autonomous system

S(h) = N/2By1 ohAo oh/2 B

(1)
= A = A(tn + Ih), B = B(tn + /h)

Split the system

d(t)=0 and du(t) =1
(1) =1 (1) =o.

= Fourth order extrapolation method

4
¢[4](h) = 5@% B egA1/2 e% Bi /2 eng e% By %eg By ehAo eg By



Numerical example

= Following schemes are then considered:
= with real coefficients

@ Strang: The second-order symmetric Strang splitting method (1);

e (6,2): The symmetric splitting method of effective order (6,2) given
in (McLachlan, BIT, 1995);

e (EXT4): The fourth-order extrapolation method (2);

= with complex coefficients and a; € R*

o (RC4): The 4-stage fourth-order method from (Castella et al., BIT,
2009);

@ (04): The 4-stage fourth-order method built in (Blanes et al. ,
MATCMP, 2013), whose coefficients are available at
http://www.gicas.uji.es/Research/splitting-complex.html
and referred as "Order 4 (optimized)”;

@ (SM4): The new optimized 4-stage fourth-order method given in
(Blanes et al., Submitted) ;

o (SM(6,4)): The new 6-stage fourth-order method are given in
(Blanes et al., Submitted);



Numerical example

The semi-linear reaction-diffusion equation of Fisher

ou

= a(t)?Au+ F(u, t), u(x,0) = up(x),

= Periodic boundary conditions in the space domain [0, 1].
= Fisher’s potential

2-e#t
Fu)=~u(1 —u), ()= 00
= a(t) = 1 + pcos(wt).
= Discretization in space,
% _ a(tPAU + F(U, t), J

= UZ(U1,...7UN)=(U1,...,UN)ERN.
= Ais N x N circulant matrix.
= F(U,t) :y(t)(U1(1 —U),...,Un(1 - UN)).



Numerical example

Splitting technique

{ 42 (t) = a(t)PAAU { % (1) — 4, U(1 — U)
and

S =1

= 1 =7(t)

Analytic solution of scalar equations

(e 1)

u(x, h) = to(x) + U (X)(1 = to(X)) 7=, T =)

= u(x, h) is well-defined for small complex time h.



Numerical example

—— Strang
— (6.2)
-o- EXT4

RC4
—— 04
-x-  SM4
1 |-#-sM(6,4)

..'\ L N S L
12 15 18 21 24 27 3
LOG(N.EVAL)

= Up(x) = sin(2nx).

= Bg=1,u=1/8,w=4,N=100 atfinal time t = 1.

= Compute the error (in the 2-norm) at the final time t = 1 by
applying the same composition methods as in the linear case.
= N.EVAL is number of evaluations of the flow A.
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