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Introduction

The numerical integration of non-reversible systems using high
order splitting methods with complex coefficients (having
positive real part) has been recently considered
Example: The linear heat equation with potential

∂

∂t
u = 4u + V (x)u

New families of numerical methods have appeared which
deserve further analysis.
Some questions:

∃ methods at any order with coefficients having positive
real parts?
Are the new methods efficient?
Are useful for long time integrations? Backward error
analysis?
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Introduction

From the computational point of view:
– The numerical methods can be more involved and
computationally more expensive.

From the theoretical point of view:
– Singularities in the complex domain can appear
– Bounded solutions in the real space are unbounded in
the complex domain, and this can affect to the stability of
the methods
– The evolution of the solution on the extended manifold in
the complex domain needs to be studied
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Example: The Volterra-Lotka problem

Let us consider the Volterra–Lotka problem

u̇ = u(v − 2), v̇ = v(1− u)

First integral: I(u, v) = ln(uv2)− (u + v).

It can be considered as a Hamiltonian system with

H = (2p − ep) + (q − eq)

with q = ln u, p = ln v
Split: fA = (u(v − 2),0), fB = (0, v(1− u))
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A simple 4th-order method

Given a symmetric 2nd order S [2] one gets a 4th order
integrator S [4] : R2d → R2d as

S [4]
h = S [2]

αh ◦ S
[2]
βh ◦ S

[2]
αh,

2α + β = 1, 2α3 + β3 = 0

α =
1

2− 21/3 ' 1.35 > 1, β = 1− 2α ' −1.7 < 0

α ' 0.324± i0.135, β ' 0.351∓ i0.269

Initial conditions (u0, v0) = (4,2), t ∈ [0,1000]
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4th−order Methods by Composition

S [4]
h = S [2]

αk h ◦ · · · ◦ S
[2]
α1h

Order conditions

k∑
i=1

αi = 1,
k∑

i=1

α3
i = 0

If αi ∈ R then
∃ j / αj < 0

If αi ∈ C then

max
i=1,...,k

Arg(αi)− min
i=1,...,k

Arg(αi) ≥
π

3
.



4th−order Methods by Composition

S [4]
h = S [2]

αk h ◦ · · · ◦ S
[2]
α1h

Order conditions

k∑
i=1

αi = 1,
k∑

i=1

α3
i = 0

If αi ∈ R then
∃ j / αj < 0

If αi ∈ C then

max
i=1,...,k

Arg(αi)− min
i=1,...,k

Arg(αi) ≥
π

3
.



4th−order Methods by Composition

S [4]
h = S [2]

αk h ◦ · · · ◦ S
[2]
α1h

Order conditions

k∑
i=1

αi = 1,
k∑

i=1

α3
i = 0

If αi ∈ R then
∃ j / αj < 0

If αi ∈ C then

max
i=1,...,k

Arg(αi)− min
i=1,...,k

Arg(αi) ≥
π

3
.



4th−order Methods by Composition

S [4]
h = S [2]

αk h ◦ · · · ◦ S
[2]
α1h

Order conditions

k∑
i=1

αi = 1,
k∑

i=1

α3
i = 0

If αi ∈ R then
∃ j / αj < 0

If αi ∈ C then

max
i=1,...,k

Arg(αi)− min
i=1,...,k

Arg(αi) ≥
π

3
.



Given a symmetric method of order 2p,S [2p](h), we can define
a recursion by symmetric compositions

S [2p+2](h) =

mp∏
i=1

S [2p](αp,ih)

mp∑
i=1

αp,i = 1 and
mp∑
i=1

α2p+1
p,i = 0.

Starting from S [2](h), we have

S [2(p+1)](h) =

mp∏
ip=1

 mp−1∏
ip−1=1

. . .
 m1∏

i1=1

S [2](αp,ipαp−1,ip−1 · · ·α1,i1h)

 . . .


Castella, Chartier, Descombes, & Vilmart, BIT 49 (2009), 487-508,
and Hansen & Ostermann, BIT 49 (2009), 527-542, obtained
methods up to order 14 with coefs. having positive real part.

S [2]
h → S

[4]
h → S

[6]
h → S

[8]
h → . . .S [14]

h → S [16]
h
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Lemma

For k ≥ 2 and r ≥ 2, consider (z1, . . . , zk ) ∈ (C+)k such that∑k
i=1 zr

i = 0. Then we have

max
i=1,...,k

Arg(zi)− min
i=1,...,k

Arg(zi) ≥
π

r
.

Proof.
If

max
i=1,...,k

Arg(zi)− min
i=1,...,k

Arg(zi) <
π

r
.

then
max

i=1,...,k
Arg(zr

i )− min
i=1,...,k

Arg(zr
i ) < π.

and obviously
∑k

i=1 zr
i 6= 0.
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Composition Methods with Complex Coefficients

Theorem

Starting from a second-order symmetric method S [2](h), all
methods S [2p](h) of order 2p = 16,18, . . . from the previous
recursion have at least one coefficient with negative real part.



Composition Methods with Complex Coefficients

Proof.

We assume that all methods S [2q](h), q = 1, . . . ,p have all their
coefficients in C+. Using Lemma 1 we have

∀q = 1, . . . ,p, max
i=1,...,mq

Arg(αq,i)− min
i=1,...,mq

Arg(αq,i) ≥
π

2q + 1
,

so that

max
i1,...,ip

Arg

 p∏
j=1

αj,ij

− min
i1,...,ip

Arg

 p∏
j=1

αj,ij

 ≥ π

3
+ · · ·+ π

2p + 1
.

Since 1
3 + 1

5 + · · ·+ 1
15 > 1, then 2p = 14 is an upper bound.

This is a sharp bound since methods of order 14 have been
obtained
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Composition Methods with Complex Coefficients

From the computational point of view, it is more efficient to build
methods directly by the composition

S [2p](h) = S [2](γ1h) · · · S [2](γsh)

We have built methods of order 6 and 8:

S [6](h) = S [2](γ1h) · · · S [2](γ7h)

S [8](h) = S [2](γ1h) · · · S [2](γ15h)

We have also built methods of order 16 with coefficients having
their real part positive. The procedure followed is:

S [2]
h → S

[8]
h → S

[16]
h

∃ methods at all orders? We are still ignorant, but at a higher
level of ignorance!
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Example: The Volterra-Lotka problem

u̇ = u(v − 2), v̇ = v(1− u)

S [4]
h = S [2]

αh ◦ S
[2]
βh ◦ S

[2]
αh,

α ' 0.324 + i0.135, β ' 0.351− i0.269

Initial conditions (u0, v0) = (4,2), time step: h = 1
8

Measure the relative error: |I − I0|/|I0| with
I(u, v) = ln(uv2)− (u + v).

I) Projection at the end of the integration
II) Projection at each step
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Projection into the real space. Informal proof

Let Φ(h) = ehF denote the exact solution and Sr (h) a with
complex coefficients method of order r = min{q,p} such that

Sr (h) = exp
(

hF + hq+1FR + ihp+1FI

)

= exp
(

ihp+1F̂I

)
exp

(
hF + hq+1F̂R

)
=

(
I + ihp+1F̂I − h2p+2F̂ 2

I + . . .
)

exp
(

hF + hq+1F̂R

)
FR,FI are elements of the Lie algebra associated to the
components of F , but F̂ 2

I is not in the Lie algebra.
To project at the end corresponds to (t = Nh)

Re
(

SN
p (h)

)
=
(

I − t2h2pF̌ 2
I + . . .

)
exp

(
t(F + hqF̌R)

)
while to project at each step corresponds to

Re (Sp(h))N =
(

I − th2p+1F̌ 2
I + . . .

)
exp

(
t(F + hqF̌R)

)
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Some other problems of interest

(a) The linear Schrödinger equation (~ = 1):

i
∂

∂t
Ψ(x , t) =

(
− 1

2m
∇2 + V (x)

)
Ψ(x , t)

u(h) = eih(∆+V)u0

Methods with ai ∈ R+, bi ∈ C.

(b) The LSE integrated in the pure imaginary time

∂

∂τ
Ψ(x , τ) =

(
1

2m
∇2 − V (x)

)
Ψ(x , τ)

Methods with ai , bi ∈ C+.

In addition [V , [V , [V ,∇2]]] = 0
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Numerical Examples: A linear parabolic equation

Let us consider the scalar equation in one-dimension

∂u
∂t

= ∆u + (2 + sin(2πx)) u

u(x ,0) = sin(2πx)
x ∈ [0,1] with N = 100
periodic boundary conditions.
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