Geometric integrators with complex coefficients

Sergio Blanes

Instituto de Matemática Multidisciplinar
Universitat Politècnica de València

FoCM'11, Budapest, July 4-14, 2011
Joint work, at different parts, with:
P. Bader, F. Casas, P. Chartier, J. Makazaga, and A. Murua

The numerical integration of non-reversible systems using high order splitting methods with complex coefficients (having positive real part) has been recently considered Example: The linear heat equation with potential

$$
\frac{\partial}{\partial t} \mathbf{u}=\triangle \mathbf{u}+V(x) \mathbf{u}
$$

The numerical integration of non-reversible systems using high order splitting methods with complex coefficients (having positive real part) has been recently considered Example: The linear heat equation with potential

$$
\frac{\partial}{\partial t} \mathbf{u}=\triangle \mathbf{u}+V(x) \mathbf{u}
$$

New families of numerical methods have appeared which deserve further analysis.

The numerical integration of non-reversible systems using high order splitting methods with complex coefficients (having positive real part) has been recently considered Example: The linear heat equation with potential

$$
\frac{\partial}{\partial t} \mathbf{u}=\triangle \mathbf{u}+V(x) \mathbf{u}
$$

New families of numerical methods have appeared which deserve further analysis.
Some questions:

- \exists methods at any order with coefficients having positive real parts?
- Are the new methods efficient?
- Are useful for long time integrations? Backward error analysis?

Introduction

- From the computational point of view:
- The numerical methods can be more involved and computationally more expensive.
- From the computational point of view:
- The numerical methods can be more involved and computationally more expensive.
- From the theoretical point of view:
- Singularities in the complex domain can appear
- Bounded solutions in the real space are unbounded in the complex domain, and this can affect to the stability of the methods
- The evolution of the solution on the extended manifold in the complex domain needs to be studied

Example: The Volterra-Lotka problem

Let us consider the Volterra-Lotka problem

$$
\dot{u}=u(v-2), \quad \dot{v}=v(1-u)
$$

First integral: $I(u, v)=\ln \left(u v^{2}\right)-(u+v)$.

Example: The Volterra-Lotka problem

Let us consider the Volterra-Lotka problem

$$
\dot{u}=u(v-2), \quad \dot{v}=v(1-u)
$$

First integral: $I(u, v)=\ln \left(u v^{2}\right)-(u+v)$.
It can be considered as a Hamiltonian system with

$$
H=\left(2 p-e^{p}\right)+\left(q-e^{q}\right)
$$

with $q=\ln u, p=\ln v$
Split: $f_{A}=(u(v-2), 0), \quad f_{B}=(0, v(1-u))$

A simple 4th-order method

Given a symmetric 2nd order $\mathcal{S}^{[2]}$ one gets a 4th order integrator $\mathcal{S}^{[4]}: \mathbb{R}^{2 d} \rightarrow \mathbb{R}^{2 d}$ as

$$
\begin{gathered}
\mathcal{S}_{h}^{[4]}=\mathcal{S}_{\alpha h}^{[2]} \circ \mathcal{S}_{\beta h}^{[2]} \circ \mathcal{S}_{\alpha h}^{[2]}, \\
2 \alpha+\beta=1, \quad 2 \alpha^{3}+\beta^{3}=0
\end{gathered}
$$

A simple 4th-order method

Given a symmetric 2nd order $\mathcal{S}^{[2]}$ one gets a 4th order integrator $\mathcal{S}^{[4]}: \mathbb{R}^{2 d} \rightarrow \mathbb{R}^{2 d}$ as

$$
\begin{gathered}
\mathcal{S}_{h}^{[4]}=\mathcal{S}_{\alpha h}^{[2]} \circ \mathcal{S}_{\beta h}^{[2]} \circ \mathcal{S}_{\alpha h}^{[2]} \\
2 \alpha+\beta=1, \quad 2 \alpha^{3}+\beta^{3}=0 \\
\alpha=\frac{1}{2-2^{1 / 3}} \simeq 1.35>1, \quad \beta=1-2 \alpha \simeq-1.7<0
\end{gathered}
$$

A simple 4th-order method

Given a symmetric 2nd order $\mathcal{S}^{[2]}$ one gets a 4th order integrator $\mathcal{S}^{[4]}: \mathbb{R}^{2 d} \rightarrow \mathbb{R}^{2 d}$ as

$$
\begin{gathered}
\mathcal{S}_{h}^{[4]}=\mathcal{S}_{\alpha h}^{[2]} \circ \mathcal{S}_{\beta h}^{[2]} \circ \mathcal{S}_{\alpha h}^{[2]}, \\
2 \alpha+\beta=1, \quad 2 \alpha^{3}+\beta^{3}=0 \\
\alpha=\frac{1}{2-2^{1 / 3}} \simeq 1.35>1, \quad \beta=1-2 \alpha \simeq-1.7<0 \\
\alpha \simeq 0.324 \pm i 0.135, \quad \beta \simeq 0.351 \mp i 0.269
\end{gathered}
$$

A simple 4th-order method

Given a symmetric 2nd order $\mathcal{S}^{[2]}$ one gets a 4th order integrator $\mathcal{S}^{[4]}: \mathbb{R}^{2 d} \rightarrow \mathbb{R}^{2 d}$ as

$$
\begin{gathered}
\mathcal{S}_{h}^{[4]}=\mathcal{S}_{\alpha h}^{[2]} \circ \mathcal{S}_{\beta h}^{[2]} \circ \mathcal{S}_{\alpha h}^{[2]}, \\
2 \alpha+\beta=1, \quad 2 \alpha^{3}+\beta^{3}=0 \\
\alpha=\frac{1}{2-2^{1 / 3}} \simeq 1.35>1, \quad \beta=1-2 \alpha \simeq-1.7<0 \\
\alpha \simeq 0.324 \pm i 0.135, \quad \beta \simeq 0.351 \mp i 0.269
\end{gathered}
$$

Initial conditions $\left(u_{0}, v_{0}\right)=(4,2), \quad t \in[0,1000]$

Example: The Volterra-Lotka problem

Example:

4th-order Methods by Composition

$$
\mathcal{S}_{h}^{[4]}=\mathcal{S}_{\alpha_{k} h}^{[2]} \circ \cdots \circ \mathcal{S}_{\alpha_{1} h}^{[2]}
$$

4th-order Methods by Composition

$$
\mathcal{S}_{h}^{[4]}=\mathcal{S}_{\alpha_{k} h}^{[2]} \circ \cdots \circ \mathcal{S}_{\alpha_{1} h}^{[2]}
$$

Order conditions

$$
\sum_{i=1}^{k} \alpha_{i}=1, \quad \sum_{i=1}^{k} \alpha_{i}^{3}=0
$$

4th-order Methods by Composition

$$
\mathcal{S}_{h}^{[4]}=\mathcal{S}_{\alpha_{k} h}^{[2]} \circ \cdots \circ \mathcal{S}_{\alpha_{1} h}^{[2]}
$$

Order conditions

$$
\sum_{i=1}^{k} \alpha_{i}=1, \quad \sum_{i=1}^{k} \alpha_{i}^{3}=0
$$

If $\alpha_{i} \in \mathbb{R}$ then

$$
\exists j / \alpha_{j}<0
$$

4th-order Methods by Composition

$$
\mathcal{S}_{h}^{[4]}=\mathcal{S}_{\alpha_{k} h}^{[2]} \circ \cdots \circ \mathcal{S}_{\alpha_{1} h}^{[2]}
$$

Order conditions

$$
\sum_{i=1}^{k} \alpha_{i}=1, \quad \sum_{i=1}^{k} \alpha_{i}^{3}=0
$$

If $\alpha_{i} \in \mathbb{R}$ then

$$
\exists j / \alpha_{j}<0
$$

If $\alpha_{i} \in \mathbb{C}$ then

$$
\max _{i=1, \ldots, k} \operatorname{Arg}\left(\alpha_{i}\right)-\min _{i=1, \ldots, k} \operatorname{Arg}\left(\alpha_{i}\right) \geq \frac{\pi}{3} .
$$

Given a symmetric method of order $2 p, \mathcal{S}^{[2 p]}(h)$, we can define a recursion by symmetric compositions

$$
\mathcal{S}^{[2 p+2]}(h)=\prod_{i=1}^{m_{p}} \mathcal{S}^{[2 p]}\left(\alpha_{p, i} h\right)
$$

Given a symmetric method of order $2 p, \mathcal{S}^{[2 p]}(h)$, we can define a recursion by symmetric compositions

$$
\begin{gathered}
\mathcal{S}^{[2 p+2]}(h)=\prod_{i=1}^{m_{p}} \mathcal{S}^{[2 p]}\left(\alpha_{p, i} h\right) \\
\sum_{i=1}^{m_{p}} \alpha_{p, i}=1 \quad \text { and } \quad \sum_{i=1}^{m_{p}} \alpha_{p, i}^{2 p+1}=0 .
\end{gathered}
$$

Given a symmetric method of order $2 p, \mathcal{S}^{[2 p]}(h)$, we can define a recursion by symmetric compositions

$$
\begin{gathered}
\mathcal{S}^{[2 p+2]}(h)=\prod_{i=1}^{m_{\rho}} \mathcal{S}^{[2 p]}\left(\alpha_{p, i} h\right) \\
\sum_{i=1}^{m_{\rho}} \alpha_{p, i}=1 \quad \text { and } \quad \sum_{i=1}^{m_{\rho}} \alpha_{p, i}^{2 p+1}=0 .
\end{gathered}
$$

Starting from $\mathcal{S}^{[2]}(h)$, we have
$\mathcal{S}^{[2(p+1)]}(h)=\prod_{i_{\rho}=1}^{m_{\rho}}\left(\prod_{i_{\rho-1}=1}^{m_{\rho-1}}\left(\cdots\left(\prod_{i_{1}=1}^{m_{1}} \mathcal{S}^{[2]}\left(\alpha_{\rho, i_{p}} \alpha_{\rho-1, i_{p-1}} \cdots \alpha_{1, i_{1}} h\right)\right) \cdots\right)\right.$

Given a symmetric method of order $2 p, \mathcal{S}^{[2 p]}(h)$, we can define a recursion by symmetric compositions

$$
\begin{gathered}
\mathcal{S}^{[2 p+2]}(h)=\prod_{i=1}^{m_{p}} \mathcal{S}^{[2 p]}\left(\alpha_{p, i} h\right) \\
\sum_{i=1}^{m_{p}} \alpha_{p, i}=1 \quad \text { and } \quad \sum_{i=1}^{m_{p}} \alpha_{p, i}^{2 p+1}=0
\end{gathered}
$$

Starting from $\mathcal{S}^{[2]}(h)$, we have
$\mathcal{S}^{[2(p+1)]}(h)=\prod_{i_{\rho}=1}^{m_{\rho}}\left(\prod_{i_{\rho-1}=1}^{m_{\rho-1}}\left(\ldots\left(\prod_{i_{1}=1}^{m_{1}} \mathcal{S}^{[2]}\left(\alpha_{p, i_{p}} \alpha_{\rho-1, i_{p-1}} \cdots \alpha_{1, i_{1}} h\right)\right) \cdots\right)\right.$
Castella, Chartier, Descombes, \& Vilmart, BIT 49 (2009), 487-508, and Hansen \& Ostermann, BIT 49 (2009), 527-542, obtained methods up to order 14 with coefs. having positive real part.

$$
\mathcal{S}_{h}^{[2]} \rightarrow \mathcal{S}_{h}^{[4]} \rightarrow \mathcal{S}_{h}^{[6]} \rightarrow \mathcal{S}_{h}^{[8]} \rightarrow \ldots \mathcal{S}_{h}^{[14]} \rightarrow \mathcal{S}_{h}^{[16]}
$$

Lemma

For $k \geq 2$ and $r \geq 2$, consider $\left(z_{1}, \ldots, z_{k}\right) \in\left(\mathbb{C}_{+}\right)^{k}$ such that $\sum_{i=1}^{k} z_{i}^{r}=0$. Then we have

$$
\max _{i=1, \ldots, k} \operatorname{Arg}\left(z_{i}\right)-\min _{i=1, \ldots, k} \operatorname{Arg}\left(z_{i}\right) \geq \frac{\pi}{r}
$$

Lemma

For $k \geq 2$ and $r \geq 2$, consider $\left(z_{1}, \ldots, z_{k}\right) \in\left(\mathbb{C}_{+}\right)^{k}$ such that
$\sum_{i=1}^{k} z_{i}^{r}=0$. Then we have

$$
\max _{i=1, \ldots, k} \operatorname{Arg}\left(z_{i}\right)-\min _{i=1, \ldots, k} \operatorname{Arg}\left(z_{i}\right) \geq \frac{\pi}{r}
$$

Proof.

If

$$
\max _{i=1, \ldots, k} \operatorname{Arg}\left(z_{i}\right)-\min _{i=1, \ldots, k} \operatorname{Arg}\left(z_{i}\right)<\frac{\pi}{r}
$$

then

$$
\max _{i=1, \ldots, k} \operatorname{Arg}\left(z_{i}^{r}\right)-\min _{i=1, \ldots, k} \operatorname{Arg}\left(z_{i}^{r}\right)<\pi
$$

and obviously $\sum_{i=1}^{k} z_{i}^{r} \neq 0$.

Composition Methods with Complex Coefficients

Theorem

Starting from a second-order symmetric method $\mathcal{S}^{[2]}(h)$, all methods $\mathcal{S}^{[2 p]}(h)$ of order $2 p=16,18, \ldots$ from the previous recursion have at least one coefficient with negative real part.

Composition Methods with Complex Coefficients

Proof.

We assume that all methods $\mathcal{S}^{[2 q]}(h), q=1, \ldots, p$ have all their coefficients in \mathbb{C}_{+}. Using Lemma 1 we have
$\forall q=1, \ldots, p, \quad \max _{i=1, \ldots, m_{q}} \operatorname{Arg}\left(\alpha_{q, i}\right)-\min _{i=1, \ldots, m_{q}} \operatorname{Arg}\left(\alpha_{q, i}\right) \geq \frac{\pi}{2 q+1}$,
so that
$\max _{i_{1}, \ldots, i_{p}} \operatorname{Arg}\left(\prod_{j=1}^{p} \alpha_{j, i_{j}}\right)-\min _{i_{1}, \ldots, i_{p}} \operatorname{Arg}\left(\prod_{j=1}^{p} \alpha_{j, i_{j}}\right) \geq \frac{\pi}{3}+\cdots+\frac{\pi}{2 p+1}$.
Since $\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{15}>1$, then $2 p=14$ is an upper bound.

Composition Methods with Complex Coefficients

Proof.

We assume that all methods $\mathcal{S}^{[2 q]}(h), q=1, \ldots, p$ have all their coefficients in \mathbb{C}_{+}. Using Lemma 1 we have
$\forall q=1, \ldots, p, \quad \max _{i=1, \ldots, m_{q}} \operatorname{Arg}\left(\alpha_{q, i}\right)-\min _{i=1, \ldots, m_{q}} \operatorname{Arg}\left(\alpha_{q, i}\right) \geq \frac{\pi}{2 q+1}$,
so that
$\max _{i_{1}, \ldots, i_{p}} \operatorname{Arg}\left(\prod_{j=1}^{p} \alpha_{j, i_{j}}\right)-\min _{i_{1}, \ldots, i_{p}} \operatorname{Arg}\left(\prod_{j=1}^{p} \alpha_{j, i_{j}}\right) \geq \frac{\pi}{3}+\cdots+\frac{\pi}{2 p+1}$.
Since $\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{15}>1$, then $2 p=14$ is an upper bound.
This is a sharp bound since methods of order 14 have been obtained

Composition Methods with Complex Coefficients

From the computational point of view, it is more efficient to build methods directly by the composition

$$
\mathcal{S}^{[2 p]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{s} h\right)
$$

We have built methods of order 6 and 8 :

$$
\begin{aligned}
& \mathcal{S}^{[6]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{7} h\right) \\
& \mathcal{S}^{[8]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{15} h\right)
\end{aligned}
$$

Composition Methods with Complex Coefficients

From the computational point of view, it is more efficient to build methods directly by the composition

$$
\mathcal{S}^{[2 p]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{s} h\right)
$$

We have built methods of order 6 and 8 :

$$
\begin{aligned}
& \mathcal{S}^{[6]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{7} h\right) \\
& \mathcal{S}^{[8]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{15} h\right)
\end{aligned}
$$

We have also built methods of order 16 with coefficients having their real part positive. The procedure followed is:

$$
\mathcal{S}_{h}^{[2]} \rightarrow \mathcal{S}_{h}^{[8]} \rightarrow \mathcal{S}_{h}^{[16]}
$$

Composition Methods with Complex Coefficients

From the computational point of view, it is more efficient to build methods directly by the composition

$$
\mathcal{S}^{[2 p]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{s} h\right)
$$

We have built methods of order 6 and 8 :

$$
\begin{aligned}
& \mathcal{S}^{[6]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{7} h\right) \\
& \mathcal{S}^{[8]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{15} h\right)
\end{aligned}
$$

We have also built methods of order 16 with coefficients having their real part positive. The procedure followed is:

$$
\mathcal{S}_{h}^{[2]} \rightarrow \mathcal{S}_{h}^{[8]} \rightarrow \mathcal{S}_{h}^{[16]}
$$

\exists methods at all orders?

Composition Methods with Complex Coefficients

From the computational point of view, it is more efficient to build methods directly by the composition

$$
\mathcal{S}^{[2 p]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{s} h\right)
$$

We have built methods of order 6 and 8 :

$$
\begin{aligned}
& \mathcal{S}^{[6]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{7} h\right) \\
& \mathcal{S}^{[8]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{15} h\right)
\end{aligned}
$$

We have also built methods of order 16 with coefficients having their real part positive. The procedure followed is:

$$
\mathcal{S}_{h}^{[2]} \rightarrow \mathcal{S}_{h}^{[8]} \rightarrow \mathcal{S}_{h}^{[16]}
$$

\exists methods at all orders? We are still ignorant

Composition Methods with Complex Coefficients

From the computational point of view, it is more efficient to build methods directly by the composition

$$
\mathcal{S}^{[2 p]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{s} h\right)
$$

We have built methods of order 6 and 8 :

$$
\begin{aligned}
& \mathcal{S}^{[6]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{7} h\right) \\
& \mathcal{S}^{[8]}(h)=\mathcal{S}^{[2]}\left(\gamma_{1} h\right) \cdots \mathcal{S}^{[2]}\left(\gamma_{15} h\right)
\end{aligned}
$$

We have also built methods of order 16 with coefficients having their real part positive. The procedure followed is:

$$
\mathcal{S}_{h}^{[2]} \rightarrow \mathcal{S}_{h}^{[8]} \rightarrow \mathcal{S}_{h}^{[16]}
$$

\exists methods at all orders? We are still ignorant, but at a higher level of ignorance!

Example: The Volterra-Lotka problem

$$
\begin{gathered}
\dot{u}=u(v-2), \quad \dot{v}=v(1-u) \\
\mathcal{S}_{h}^{[4]}=\mathcal{S}_{\alpha h}^{[2]} \circ \mathcal{S}_{\beta h}^{[2]} \circ \mathcal{S}_{\alpha h}^{[2]}, \\
\alpha \simeq 0.324+i 0.135, \quad \beta \simeq 0.351-i 0.269
\end{gathered}
$$

Initial conditions $\left(u_{0}, v_{0}\right)=(4,2)$, time step: $h=\frac{1}{8}$ Measure the relative error: $\left|I-I_{0}\right| /\left|I_{0}\right|$ with $I(u, v)=\ln \left(u v^{2}\right)-(u+v)$.

Example: The Volterra-Lotka problem

$$
\begin{gathered}
\dot{u}=u(v-2), \quad \dot{v}=v(1-u) \\
\mathcal{S}_{h}^{[4]}=\mathcal{S}_{\alpha h}^{[2]} \circ \mathcal{S}_{\beta h}^{[2]} \circ \mathcal{S}_{\alpha h}^{[2]}, \\
\alpha \simeq 0.324+i 0.135, \quad \beta \simeq 0.351-i 0.269
\end{gathered}
$$

Initial conditions $\left(u_{0}, v_{0}\right)=(4,2)$, time step: $h=\frac{1}{8}$ Measure the relative error: $\left|I-I_{0}\right| /\left|I_{0}\right|$ with $I(u, v)=\ln \left(u v^{2}\right)-(u+v)$.

- I) Projection at the end of the integration
- II) Projection at each step

Example:

Example:

Example:

Example:

Example:

Example:

Let $\Phi(h)=e^{h F}$ denote the exact solution and $S_{r}(h)$ a with complex coefficients method of order $r=\min \{q, p\}$ such that

$$
S_{r}(h)=\exp \left(h F+h^{q+1} F_{R}+i h^{p+1} F_{l}\right)
$$

Let $\Phi(h)=e^{h F}$ denote the exact solution and $S_{r}(h)$ a with complex coefficients method of order $r=\min \{q, p\}$ such that

$$
\begin{aligned}
S_{r}(h) & =\exp \left(h F+h^{q+1} F_{R}+i h^{p+1} F_{l}\right) \\
& =\exp \left(i h^{p+1} \hat{F}_{l}\right) \exp \left(h F+h^{q+1} \hat{F}_{R}\right)
\end{aligned}
$$

Let $\Phi(h)=e^{h F}$ denote the exact solution and $S_{r}(h)$ a with complex coefficients method of order $r=\min \{q, p\}$ such that

$$
\begin{aligned}
S_{r}(h) & =\exp \left(h F+h^{q+1} F_{R}+i h^{p+1} F_{l}\right) \\
& =\exp \left(i h^{p+1} \hat{F}_{I}\right) \exp \left(h F+h^{q+1} \hat{F}_{R}\right) \\
& =\left(I+i h^{p+1} \hat{F}_{I}-h^{2 p+2} \hat{F}_{l}^{2}+\ldots\right) \exp \left(h F+h^{q+1} \hat{F}_{R}\right)
\end{aligned}
$$

Let $\Phi(h)=e^{h F}$ denote the exact solution and $S_{r}(h)$ a with complex coefficients method of order $r=\min \{q, p\}$ such that

$$
\begin{aligned}
S_{r}(h) & =\exp \left(h F+h^{q+1} F_{R}+i h^{p+1} F_{l}\right) \\
& =\exp \left(i h^{p+1} \hat{F}_{I}\right) \exp \left(h F+h^{q+1} \hat{F}_{R}\right) \\
& =\left(I+i h^{p+1} \hat{F}_{I}-h^{2 p+2} \hat{F}_{l}^{2}+\ldots\right) \exp \left(h F+h^{q+1} \hat{F}_{R}\right)
\end{aligned}
$$

F_{R}, F_{I} are elements of the Lie algebra associated to the components of F, but \hat{F}_{l}^{2} is not in the Lie algebra.

Projection into the real space. Informal proof

Let $\Phi(h)=e^{h F}$ denote the exact solution and $S_{r}(h)$ a with complex coefficients method of order $r=\min \{q, p\}$ such that

$$
\begin{aligned}
S_{r}(h) & =\exp \left(h F+h^{q+1} F_{R}+i h^{p+1} F_{l}\right) \\
& =\exp \left(i h^{p+1} \hat{F}_{l}\right) \exp \left(h F+h^{q+1} \hat{F}_{R}\right) \\
& =\left(I+i h^{p+1} \hat{F}_{I}-h^{2 p+2} \hat{F}_{l}^{2}+\ldots\right) \exp \left(h F+h^{q+1} \hat{F}_{R}\right)
\end{aligned}
$$

F_{R}, F_{I} are elements of the Lie algebra associated to the components of F, but \hat{F}_{I}^{2} is not in the Lie algebra.
To project at the end corresponds to $(t=N h)$

$$
\operatorname{Re}\left(S_{p}^{N}(h)\right)=\left(I-t^{2} h^{2 p} \check{F}_{l}^{2}+\ldots\right) \exp \left(t\left(F+h^{q} \check{F}_{R}\right)\right)
$$

Projection into the real space. Informal proof

Let $\Phi(h)=e^{h F}$ denote the exact solution and $S_{r}(h)$ a with complex coefficients method of order $r=\min \{q, p\}$ such that

$$
\begin{aligned}
S_{r}(h) & =\exp \left(h F+h^{q+1} F_{R}+i h^{p+1} F_{l}\right) \\
& =\exp \left(i h^{p+1} \hat{F}_{l}\right) \exp \left(h F+h^{q+1} \hat{F}_{R}\right) \\
& =\left(I+i h^{p+1} \hat{F}_{I}-h^{2 p+2} \hat{F}_{l}^{2}+\ldots\right) \exp \left(h F+h^{q+1} \hat{F}_{R}\right)
\end{aligned}
$$

F_{R}, F_{I} are elements of the Lie algebra associated to the components of F, but \hat{F}_{I}^{2} is not in the Lie algebra.
To project at the end corresponds to $(t=N h)$

$$
\operatorname{Re}\left(S_{p}^{N}(h)\right)=\left(I-t^{2} h^{2 p} \check{F}_{l}^{2}+\ldots\right) \exp \left(t\left(F+h^{q} \check{F}_{R}\right)\right)
$$

while to project at each step corresponds to

$$
\operatorname{Re}\left(S_{p}(h)\right)^{N}=\left(I-t h^{2 p+1} \check{F}_{l}^{2}+\ldots\right) \exp \left(t\left(F+h^{q} \check{F}_{R}\right)\right)
$$

Some other problems of interest

(a) The linear Schrödinger equation $(\hbar=1)$:

$$
\begin{aligned}
& i \frac{\partial}{\partial t} \Psi(x, t)=\left(-\frac{1}{2 m} \nabla^{2}+V(x)\right) \Psi(x, t) \\
& \mathbf{u}(h)=e^{i h(\Delta+\mathbf{V})} \mathbf{u}_{0}
\end{aligned}
$$

Methods with $\quad a_{i} \in \mathbb{R}^{+}, b_{i} \in \mathbb{C}$.

Some other problems of interest

(a) The linear Schrödinger equation $(\hbar=1)$:

$$
\begin{aligned}
i \frac{\partial}{\partial t} \Psi(x, t) & =\left(-\frac{1}{2 m} \nabla^{2}+V(x)\right) \Psi(x, t) \\
\mathbf{u}(h) & =e^{i h(\Delta+\mathbf{V})} \mathbf{u}_{0}
\end{aligned}
$$

Methods with $\quad a_{i} \in \mathbb{R}^{+}, b_{i} \in \mathbb{C}$.
(b) The LSE integrated in the pure imaginary time

$$
\frac{\partial}{\partial \tau} \Psi(x, \tau)=\left(\frac{1}{2 m} \nabla^{2}-V(x)\right) \Psi(x, \tau)
$$

Methods with $a_{i}, b_{i} \in \mathbb{C}_{+}$.
In addition

$$
\left[V,\left[V,\left[V, \nabla^{2}\right]\right]\right]=0
$$

References

R．I．McLachlan and R．Quispel，Splitting methods，Acta Numerica 11 （2002），pp．341－434．

囦 SB，F．Casas，and A．Murua，Splitting and composition methods in the numerical integration of differential equations．Bol．Soc． Esp．Math．Apl．， 45 （2008），87－143．

國 F．Castella，P．Chartier，S．Descombes，and G．Vilmart，Splitting methods with complex times for parabolic equations，BIT 49 （2009），487－508．

嗇 E．Hansen and A．Ostermann，High order splitting mehtods for analytic semigroup exist，BIT 49 （2009），527－542．

RB，F．Casas，and A．Murua，Splitting methods with complex coefficients．Bol．Soc．Esp．Math．Apl．， 50 （2010），47－61．

E－SB，F．Casas，P．Chartier，and A．Murua，Splitting methods with complex coefficients for some classes of evolution equations． Submitted．

Numerical Examples: A linear parabolic equation

Let us consider the scalar equation in one-dimension

$$
\frac{\partial u}{\partial t}=\Delta u+(2+\sin (2 \pi x)) u
$$

$u(x, 0)=\sin (2 \pi x)$
$x \in[0,1]$ with $N=100$
periodic boundary conditions.

Example:

Example:

