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Numerical Integration of Differential Equations

Goal: The numerical integration of the IVP

x ′ = f (x , t), x(0) = x0

where f (x , t) is a perturbation of an exactly solvable problem
(this also includes some evolutionary PDEs).

In the past, researchers were looking for few numerical
methods to solve most problems, i.e. to build a black box with a
few number of methods implemented.

Soon, it was clear that this was too optimistic due to the huge
variety of problems of very different nature, and it was started
to look for methods tailored for different classes of problems
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Different families of methods

Runge–Kutta methods
Multistep methods
Extrapolation methods
etc.

However, most equations originate from physical problems
through First Principles ⇒ the solutions have relevant
qualitative properties. Geometric Integration

Symplectic Integrators
Lie group methods
Volume-preserving methods
Variational integrators
etc.
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The numerical Solution of particular problems

The development of computers allowed to researchers in
physics, chemistry, engineering, etc. to study more challenging
problems from the computational point of view.

Most of these problems can not be solved by the computer just
by using brute force or buying expensive computers. The actual
economical situation invites us to develop tailored methods for
different classes of problems.
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Example of a particular perturbed problem

The numerical integration of the whole Solar System
for 60 Myrs
Backward in time
to very high accuracy

This problem comes from a research collaboration between
geologists and astronomers (talk by A. Farrés).

Actual methods (already tailored for this problem) allowed for a
faithful integration over 40 Myrs, with good agreement with
observations by geologists.

Question: How to develop new methods with better
performance than the existing ones for this particular problem?
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Example of a particular perturbed problem
Motivation Intro. Sympl. Specific Sympl. Test

A. Farrés (IMCCE) Symplectic Integrators Long-term Integrations January 26, 2012 3 / 88

Laskar et al., A long-term num. sol. for the insolation quantities
of the Earth, Astron. Astroph. (2004) (553 cites at JCR)
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Example of a very particular perturbed problem

B, Casas, Farrés, Laskar, Makazaga and Murua:
APNUM (2013) and Cel. Mech. & Dyn. Astron. (2013)
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We have moved from

Numerical Methods valid for most problems
Numerical methods useful for a class of problems
Numerical methods tailored for one problem

We present with some detail the steps to follow in order to look
for efficient splitting methods to solve perturbed problems.
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Steps to follow

1 To define mathematically the physical problem

2 To look for The State of the Art on methods to solve the
problem

3 To use your knowledge on the physical problem, scientific
computation, abstract and applied algebra, functional
analysis, differential equations, optimization, etc. to see if it
is possible to improve the existing methods

4 (Ideally) To collaborate with experts on these fields
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Back to the problem: The autonomous case

x′ = f [a](x) + ε f [b](x)

where |ε| � 1 and each part is exactly solvable

x ′ = f [a](x) −→ x(h) = ϕ
[a]
h (x0)

x ′ = ε f [b](x) −→ x(h) = ϕ
[b]
h (x0)

with h being the time step.
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Basic splitting methods

We can use splitting methods

Ψ[1] : ϕ
[a]
h ◦ ϕ

[b]
h , ϕ

[b]
h ◦ ϕ

[a]
h → O(εh2)

Ψ[2] : ϕ
[a]
h/2 ◦ ϕ

[b]
h ◦ ϕ

[a]
h/2, ϕ

[b]
h/2 ◦ ϕ

[a]
h ◦ ϕ

[b]
h/2 → O(εh3)

(
ϕ

[a]
h/2 ◦ ϕ

[b]
h ◦ ϕ

[a]
h/2

)N
= ϕ

[a]
h/2

(
ϕ

[b]
h ◦ ϕ

[a]
h

)N−1
ϕ

[b]
h ◦ ϕ

[a]
h/2

= ϕ
[a]
h/2

(
ϕ

[b]
h ◦ ϕ

[a]
h

)N (
ϕ

[a]
h/2

)−1
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Test bench: perturbed harmonic oscillator

Linearly perturbed problem

H =
1
2

(
p2 + q2

)
+
ε

2
q2

(0)

Hamilton equations

d
dt

{
q
p

}
=

(
0 1
−1 0

){
q
p

}
+ ε

(
0 0
−1 0

){
q
p

}
i.e. x ′ = Ax + εBx , whose solution is{

q(t)
p(t)

}
=

(
cos(θεt) χε

−1 sin(θεt)
−χε sin(θεt) cos(θεt)

){
q0
p0

}
with

θε =
√

1 + ε, χε =
√

1 + ε.
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The perturbed harmonic oscillator

Splitting methods are given by

Ψh =
s∏

i=1

ebi hεB eai hA =
s∏

i=1

(
1 0

−bihε 1

)(
cos(aih) sin(aih)
− sin(aih) cos(aih)

)

so Ψh =

(
Ah Bh
Ch Dh

)
, AhDh − BhCh = 1.

Time symmetric ⇒ Ah = Dh.
Stability ⇒ |Ah| < 1 or |Ah| = 1, |Bh|+ |Ch| = 0

Ψh =

(
cos(θε,hh) χε,h

−1 sin(θε,hh)
−χε,h sin(θε,hh) cos(θε,hh)

)

ΨN
h =

(
cos(θε,hNh) χε,h

−1 sin(θε,hNh)
−χε,h sin(θε,hNh) cos(θε,hNh)

)
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Back to the basic methods for the perturbed HO

Ψ
[2]
BAB = e

h
2 εB ehA e

h
2 εB, Ψ

[2]
ABA = e

h
2 A ehεB e

h
2 A, Ψ

[1]
BA = ehεB ehA ??

Ψ
[2]
BAB =

(
1 0
−h

2ε 1

)(
cos(h) sin(h)
− sin(h) cos(h)

)(
1 0
−h

2ε 1

)
=

(
cos(θbh) χ−1

b sin(θbh)
−χb sin(θbh) cos(θbh)

)

Ψ
[2]
ABA = e

h
2 A ehεB e

h
2 A =

(
cos(θah) χ−1

a sin(θah)
−χa sin(θah) cos(θah)

)

Ψ
[1]
BA = ehεB ehA =

(
cos(θch) + χc sin(θch) χd sin(θch)

−χe sin(θch) cos(θch)− χc sin(θch)

)
where θa = θb = θc!! All methods are conjugate to each other.
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Simple numerical example

0 2 4 6
−5

−4

−3

−2

−1

0

1

h

Lo
g 1

0(
A

v.
 E

rr
. P

os
.)

ε=0.1

LT 
ABA
BAB

0 2 4 6
−5

−4

−3

−2

−1

0

1

h

Lo
g 1

0(
A

v.
 E

rr
. E

ne
rg

y)

(q0,p0) = (1,1), tf = 2π Why? a) There is a singularity at
h = π, ∀ε; b) χα = O(ε), θα = O(ε2)
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Stability limit

If h = π

Ψ
[2]
BAB =

(
1 0
−h

2ε 1

)(
cos(h) sin(h)
− sin(h) cos(h)

)(
1 0
−h

2ε 1

)
=

(
1 0
−π

2 ε 1

)(
−1 0
0 −1

)(
1 0
−π

2 ε 1

)
=

(
−1 0
πε −1

)
Unstable ∀ε.
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Simple numerical example
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Applications to perturbed systems

Classical Hamiltonian systems (Solar system)
Quantum Mechanics

Linear and non-linear Schrödinger equationF

The eigenvalue problem

Hybrid Monte Carlo
Optimal control problemsF

Scaling-Splitting-Squaring to compute eA+εB

Parabolic linear and non-linear PDEsF

F With possible explicit time-dependent dominant part.
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Algebraic structure of the problem

We can write the system as follows

x′ = Ax + εBx

where
A = f [a](x) · ∇, B = f [b](x) · ∇

are Lie operators acting on smooth functions, and the solution
can formally be written as

ϕh(x0) = eh(A+εB)x0
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Back to the problem

Ψ(h) = ea1hA eb1hεB · · · eashA ebshεB

By applying repeatedly the Baker–Campbell–Hausdorff (BCH)
formula to a consistent method we can formally write

Ψ(h) = eh(A+εB+E(h,ε))

where

E = h εpab[A,B] + h2 εpaba[[A,B],A] + h2 ε2 pabb[[A,B],B])

+h3 εpabaa[[[A,B],A],A] + h3ε2pabba[[[A,B],B],A]

+h3ε3 pabbb[[[A,B],B],B] + . . .

Here [A,B] = AB − BA (commutator of Lie operators) and
pab,pabb,paba,pabbb, . . . are polynomials in the ai ,bi .
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Here [A,B] = AB − BA (commutator of Lie operators) and
pab,pabb,paba,pabbb, . . . are polynomials in the ai ,bi .
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Back to the problem

Ψ(h) = ea1hA eb1hεB · · · eashA ebshεB

By applying repeatedly the Baker–Campbell–Hausdorff (BCH)
formula to a consistent method we can formally write
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E = h εpab[A,B]+ h2 εpaba[[A,B],A] + h2 ε2 pabb[[A,B],B])

+h3 εpabaa[[[A,B],A],A]+h3ε2pabba[[[A,B],B],A]

= O(εh2)

Here [A,B] = AB − BA (commutator of Lie operators) and
pab,pabb,paba,pabbb, . . . are polynomials in the ai ,bi .
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Back to the problem

Ψ(h) = ea1hA eb1hεB · · · eashA ebshεB

By applying repeatedly the Baker–Campbell–Hausdorff (BCH)
formula to a consistent method we can formally write
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E = h εpab[A,B]+ h2 εpaba[[A,B],A]+ h2 ε2 pabb[[A,B],B])

+h3 εpabaa[[[A,B],A],A]+h3ε2pabba[[[A,B],B],A]

= O(εh4 + ε2h2)

Method of generalised order (4,2). In general (McLachlan):
O(εhr1 + ε2hr2 + · · ·+ εmhrm ) → (r1, r2, . . . , rm) (ri ≥ ri+1)
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Generalized order conditions

We make use of the following properties

C(h) = ehABe−hA = B+[A,B]+
1
2!

[A, [A,B]]+
1
3!

[A, [A, [A,B]]]+. . .

eahA eεbhB e−ahA = exp
(
εb h eahABe−ahA) = eεb h C(ah)

(a1 + a2 = 1)

ea1hA eεb1hB ea2hA eεb2hB

= ea1hA eεb1hB e−a1hA e(a1+a2)hA eεb2hB

= eε b1hC(a1h) eε b2hC((a1+a2)h) ehA ' eh(A+εB)

eε b1hC(ha1) eε b2hC(h(a1+a2)) ' eh(A+εB) e−hA
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Generalized order conditions

In general

eε b1hC(c1h) · · · eε bshC(csh) ' eh(A+εB) e−hA

ck = a1 + · · ·+ ak .

We expand both sides as power series of ε
(Thalhammer, SINUM (2008)). We get generalised order
(r1, . . . , rm) if and only if∑
1≤i1≤···≤ik≤s

bi1 · · · bik
σi1···ik

c j1−1
i1
· · · c jk−1

ik
=

1
(j1 + · · ·+ jk ) · · · (j1 + j2)j1

(σi1···ik are given constants) for each k = 1, . . . ,m and each
multi-index (j1, . . . , jk ) such that j1 + · · ·+ jk ≤ rk .
Lyndon multi-indices allow to find a set of independent order
conditions (Murua)
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Generalized order conditions

Gen. order Conditions

(2n,2)
s∑

i=1

bi c j−1
i =

1
j
, j = 1, . . . ,n, quad. rule

(2n,4)
s∑

i=1

1
2

b2
i ci +

∑
1≤i<j≤s

bibjcj =
1
3

(2n,6,4)
s∑

i=1

1
2

b2
i c3

i +
∑

1≤i<j≤s

bibjc3
j =

1
5

s∑
i=1

1
2

b2
i c3

i +
∑

1≤i<j≤s

bibjcic2
j =

1
10

(B, Casas, Farrés, Laskar, Makazaga and Murua, APNUM (2013)).

Valid if x ′ = f [a](x), x ′ = εf [b](x) are exactly solvable
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Generalized order conditions

Heliocentric coordinates are very useful for the Solar system,
but in these coordinates the Hamiltonian takes de form

H = HK (q,p) + ε
(

p2 + VI(q)
)

or equivalently

x ′ = f [a](x) + ε
(
f [b,1](x) + f [b,2](x)

)

The simplest solution

eεbi h(B1+B2) ⇒ eεbi h/2B1 eεbi hB2 eεbi h/2B1

and to add the following order condition to the previous Table

s∑
i=1

b3
i = 0
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Generalized order conditions for Heliocentric coord.
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List of methods

Methods: (2n,2)n, (6,4)4, (8,4)5: (McLachlan, BIT (1995))
New methods optimised for given problems:

Solar System
Jacobi coordinates: (10,4)7, (8,6,4)7, (10,6,4)8
Helioc. coord. (

∑
i b3

i = 0): (8,4)6, (8,6,4)8, (10,6,4)9

Parabolic problems
Quantum Mech.: Schrödinger eq. in the imaginary time
(6,4)4, (8,4)5, (8,6,4)7, (8,6)9 with ai ,bi ∈ C

Scaling-Splitting-Squaring to: eA+εB with ai ∈ C, bi ∈ R
Hybrid Monte Carlo: work in progress
Other families of methods

Methods using derivatives (gradient) of the perturbation.
Methods using processor/corrector

Time-dependent problems ??
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Time-dependent problems:

Non-autonomous problems:

x ′ = f [a](x) + εf [b](x)

←− x ′ = f [a](x) + εf [b](x , t),
∦

x ′ = f [a](x , t) + εf [b](x) ←− x ′ = f [a](x , t) + εf [b](x , t).

Let us first consider

x ′ = Ax + εB(t)x

To take the time as a new coordinate and to split as follows
dx
dt

= Ax

dt1
dt

= 1

and


dx
dt

= εB(t1)x

dt1
dt

= 0.

Autonomous system: x̃ ′ = Ãx̃ + εB̃x̃
CAUTION: if ai ∈ C then B(t) is evaluated at t ∈ C.
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Autonomous system: x̃ ′ = Ãx̃ + εB̃x̃
CAUTION: if ai ∈ C then B(t) is evaluated at t ∈ C.
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Time-dependent problems:

Consider now
x ′ = A(t)x + εB(t)x

The simplest trick: to take the time as two new coordinates

dx
dt

= A(t1)x

dt1
dt

= 0

dt2
dt

= 1

and



dx
dt

= εB(t2)x

dt1
dt

= 1

dt2
dt

= 0.

Autonomous system:
x̃ ′ = Ãx̃ + B̃(ε)x̃ but B̃(ε) 6= O(ε) !!!
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Time-dependent problems:

Solution: to take the time as only one new coordinate as
follows (B, Diele, Marangi, Ragni, JCAM (2010))


dx
dt

= A(t1)x

dt1
dt

= 1

and


dx
dt

= εB(t1)x

dt1
dt

= 0.

x̃ ′ = Ãx̃ + εB̃x̃

It requires to solve
x ′ = A(t)x

to sufficient accuracy. One can use a time-averaging method
(e.g. Magnus integrators).
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Quantum Mech.: perturbed time-dependent harmonic trap

i
∂

∂t
ψ(x , t) =

(
−1

2
∂2

∂x2 +
w(t)

2
x2 + εV (x , t)

)
ψ(x , t)

After spatial discretisation we have

iu′ =

(
1
2

P2 +
w(t)

2
X 2
)

u + εV (t)u

The dominant part can be solve with one FFT

iu′ =

(
1
2

P2 +
w(t)

2
X 2
)

u

Bader & B, Phys. Rev. E (2011)
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Time-dependent reaction-diffusion equation

∂u
∂t

= α(t)2∆u + γ(t)u(1− u)

Splitting methods such that: ai ∈ R+, bi ∈ C+.

To solve exactly
with ai ∈ R+

∂u
∂t

= α(t)2∆u,

and, with the time frozen, solve using bi ∈ C+

∂u
∂t

= γ̃u(1− u)

One can use methods such that ai ∈ R+, bi ∈ C+. (B &

Seydaoğlu (2013) Submitted)
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Available programs: http://personales.upv.es/ serblaza

H =
1
2

(
p2 + q2

)
+ ε

1
2

q2

1 (2s,2)n, (8,4)5, (10,4)7, (8,6,4)7, (10,6,4)8
2 (ai ,bi ∈ C+): (6,4)4, (8,4)5, (8,6,4)7, (8,6)9
3 (ai ∈ R+, bi ∈ C+): (4∗,4)4, (6,4)6

H =
1
2

(
p2 + q2

)
+ ε

(
1
2

p2 +
1
4

q4
)

4 (
∑

i b3
i = 0): (8,4)6, (8,6,4)8, (10,6,4)9

H =
1
2

(
p2 + w(t)2q2

)
+ εf (t)q2

5 Methods processors: (6,4)2, (7,6,4)3, (7,6,5)3
6 New methods for Hybrid Monte Carlo (soon) (with Casas

and Sanz-Serna)
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Numerical Tests:

Solar System with 8 planets in Heliocentric coordinates.
qi ,pi : relative positions of each planet with respect to the Sun
and conjugate momenta. The Hamiltonian is given by

HHe =
8∑

i=1

(
m0 + mi

2m0mi
‖pi‖2 −G

m0mi

‖qi‖

)
+

∑
0<i<j≤n

(
pi · pj

m0
−G

mimj

∆ij

)
where ∆ij = ‖qi − qj‖ for i , j > 0.

2-dimensional pert. Kepler (e = 0.2, ε = 10−3)

H =

(
1
2
‖p‖2 − 1

‖q‖

)
+ ε

(
‖p‖2 − 1

‖q‖3

(
1−

q2
1

‖q‖2

))

Perturbed oscillator ((q,p) = (1,1), ε = 10−3)

H =
1
2

(
p2 + q2

)
+ ε

(
1
2

p2 +
1
4

q4
)
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Example:
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Conclusions

1 To split a perturbed system into its dominant part and the
perturbation is usually convenient even for not necessarily
very small perturbations

2 The best splitting method very much depend on the
problem to be solves (error in energy or in position, high or
low accuracy, short or long time integrations, real or
complex coefficients, etc.)

3 We have provided a set of methods tailored for different
purposes and implemented in very simple problems to test
of their performances as well as their applications on more
realistic problems.
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Thank you for your attention and
Happy Birthday
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