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Introduction: Laplace Transform

Laplace Transform de f (x)

The Laplace Transform of a funtion f (x) is a new function
depending on a new variable, F (s), given by

L [f (x)] = F (s) =

∫ ∞
0

e−sx f (x)dx .

This is an improper integral that must be understood as

F (s) = lim
b→∞

∫ b

0
e−sx f (x)dx ,

so, the function F (s) is only well defined for those values of s
where the integral converges.

Examples. To compute the LT of:

a) f (x) = 1, b) f (x) = x , c) f (x) = ex , d) f (x) = sin(x).
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Introduction: Laplace Transform

Mathematica has a function that allows us to compute the LT of
a function, f[x]

LaplaceTransform[f [x ], x , s]

We can check easily that

LaplaceTransform[1, x , s] = 1
s

LaplaceTransform[x , x , s] = 1
s2

LaplaceTransform[Exp[x ], x , s] = 1
s−1

LaplaceTransform[Sin[x ], x , s] = 1
s2+1

Question: For which values of s the LT is well defined?
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Introduction: Laplace Transform

If we write

F (s) =

∫ N

0
e−sx f (x)dx +

∫ ∞
N

e−sx f (x)dx

with N large enough, so the integrals converge∫ ∞
N

e−sx f (x)dx : f (x) must not grow for x →∞ than the

function faster than the inverse of e−sx for some value of s.∫ N

0
e−sx f (x)dx : f (x) must have no singularities that

make the integral to be divergent. For example, if the
function be piecewise continuous.

We say that f (x) is of exponential order if
∃ γ,M,T ∈ R / |f (x)| < Meγx , ∀x > T
We say that f (x) is of exponential order γf with γf the infimum
of the values of γ.
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Introduction: Laplace Transform

xn, sin(αx), cos(αx) : γf = 0
eax : γf = a
e−x2

: γf = −∞
ex2

: γf =∞ and we say it is not of exponential order.

In addition, it is easy to deduce from the definition that if the
integral coverges for a given value of s0, then it converges for
s > s0.

Theorem
If f (x) is piecewise continuous and of exponential order γf ,
then, it exists F (s) = L[f (x)] for s > γf .
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Introduction: Laplace Transform

Theorem
If f (x) is piecewise continuous and

∫∞
0 e−s0x f (x)dx is

convergent, then ∃ F (s) = L[f (x)] for s > s0 and satisfies that
limx→∞ F (s) = 0.

Abscissa of convergence, sf : the infimum of the values of s in
which F (s) is well defined. If f (x) piecewise continuous and of
exponential order γf , then sf ≤ γf .
Then, F (s) is defined for s > sf .
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Introduction: Laplace Transform

Since the limits of the integral in the LT are [0,∞[ we will work
with causal functions, i.e.

f (x) =

{
0, x < 0
f (x), x ≥ 0

For this purpose we introduce the unit step function (often
called the Heaviside function) u(x)

u(x) =

{
0, x < 0
1, x ≥ 0

, u(x − a) =

{
0, x < a
1, x ≥ a

Then, when writing f (x) we mean

u(x)f (x)
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Introduction: Laplace Transform

The piecewise causal functions can be written using the
Heaviside function.

For example

f (x) =


0, x < 0
f1(x), 0 ≤ x < a
f2(x), a ≤ x <∞

can be written as

f (x) = u(x)f1(x)− u(x − a)f1(x) + u(x − a)f2(x)
=

(
u(x)− u(x − a)

)
f1(x) + u(x − a)f2(x)

The function (
u(x − a)− u(x − b)

)
f (x)

can be considered as the function that turn on and turn off
the function f (x) on the interval x ∈ [a,b]
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Applications

One of the most relevant applications of the LT is to solve linear
DEs that can describe an electrical circuit, a mechanical
system, etc.

any (n) + an−1y (n−1) + · · ·+ a1y ′ + a0y = e(t)

with initial conditions

y (n−1)(0) = y (n−1)
0 , . . . , y ′(0) = y ′0, y(0) = y0.

The coefficients ai depend on how the circuit is built, the
mechanical system, etc.
e(t) is the entrance of the system: the voltage that is applied to
the circuit, the external forces applied to the mechanical
system, etc.
y(t) is the response of the system.
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Applications

The LT is useful if one is interested to study the solution of a
system with many different initial conditions or different
entrance functions (for example, different external forces). In
addition, e(t) can be a piecewise continuous function, a
periodic and piecewise continuous function, a unit impulse
signal, etc.
The LT are also useful to solve involved equations like some
integro-differential equations. For example

y ′′ +
∫ x

0
e2(x−t)y(t)dt = ex

The procedure to solve the problem is:
1- To compute the LT of the whole equation.
2- To solve the equation for the LT, Y (s) = L[y(x)].
3- To find the solution y(x) whose LT is Y (s).
(ILL: It corresponds to y(x) = L−1[Y (s)])
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Properties of the LT

We now show how to compute the LT for large number of
functions by taking into account a number of propertie tha we
list as Theorems. These properties can be easily be proven by
just applying the definition of the LT and using the properties of
the integrals.

Theorem (Lineality)
If there exists L[f (x)], L[g(x)] and α, β ∈ R, then

L[αf (x) + βg(x)] = αL[f (x)] + βL[g(x)]

Find: L[cosh(ax)], L[sinh(ax)].
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Theorem (LT of a function’s derivative)
Let f a function of exponential order γf , continuous in ]0,∞[ and
f ′ being its derivative for those values of x where it exists. If f ′ a
piecewise continuous and ∃ lim

x→0+
f (x) = f (0+) ∈ R, then

L[f ′(x)] = s L[f (x)]− f (0+), s > γf .

Find, using this property L[cos(bx)],L[sin(bx)]

Theorem

If f , f ′, . . . , f (n−1) ∈ C(]0,∞[) are of exponential order, f (n)

piecewise continuous and

lim
x→0+

f (i)(x) = f (i)(0+) ∈ R, i = 0,1, . . . ,n − 1,

then

L[f (n)(x)] = sn L[f (x)]−sn−1f (0+)−· · ·−sf (n−2)(0+)−f (n−1)(0+).
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From the result of the LT of the function’s derivative it can be
easily proven that

Theorem (The LT of integrals)
If L[ϕ(x)] = F (s),

L
[∫ x

0
ϕ(t)dt

]
=

F (s)

s
.

It is also straightful to prove (making use of these theorems)
that

L[xn] =
n!

sn+1 , n = 0,1,2, . . .

This allows us to find the LT of all polynomials.
Example: Find L[x3 − 3x2 + 5]
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To find L[xn] for n a real number such that n > −1, we review
the definition of the Gama function

Γ(n) =

∫ ∞
0

xn−1e−x dx , n > 0

that satisfies Γ(1) = 1 and the recursion

Γ(n) = (n − 1)Γ(n − 1), n > 1

so Γ(n) = (n − 1)!, n ∈ N. For other values of n we need to
use the recursion relation as well as a procedure to evaluate it
on a given unit interval (it can be tabulatted on such interval). It
is easy to prove that

L[xn] =
Γ(n + 1)

sn+1 , n > −1

Example: To find L
[

4
√

x − 2
5√x

]
.
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Theorem (Change of scaling)
Given h > 0, if

L[f (x)] = F (s), s > sf ⇒ L[f (hx)] =
1
h

F
(s

h

)
, s > hsf

Theorem (First shift property)
Si a ≥ 0 y

L[f (x)] = F (s), s > sf ⇒ L[u(x−a)f (x−a)] = e−asF (s) , s > sf

Theorem (Second shift property)
If a ∈ R and

L[f (x)] = F (s), s > sf ⇒ L[eax f (x)] = F (s − a) , s > a + sf
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Theorem (Multiplication by x)
If L[f (x)] = F (s) then

L[xnf (x)] = (−1)nF (n)(s), n ∈ N

Theorem (Division by x)
If L[f (x)] = F (s) and it exists

lim
x→0+

f (x)

x
∈ R ⇒ L

[
f (x)

x

]
=

∫ ∞
s

F (s)ds
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Definition (Convolution of functions)
Given two functions f (x) and g(x), we define the convolution of
the functions, denoted by f ∗ g, as a new function given by

(f ∗ g)(x) = f (x) ∗ g(x) =

∫ ∞
−∞

f (t)g(x − t)dt

For causal functions then f ∗ g is causal and

(f ∗ g)(x) =

{
0 if x < 0∫ x

0 f (t)g(x − t)dt if x ≥ 0

Theorem (The convolution)
If F (s) and G(s) are the LT of the functions f (x) and g(x),
respectively, then

L [f (x) ∗ g(x)] = F (s)G(s)
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Theorem (Periodic functions)
If f (x) is a periodic function with period, T , (f (x + T ) = f (x)),
and it exists L [f (x)] then

L [f (x)] =
1

1− e−Ts

∫ T

0
e−sx f (x) dx , s > 0.

Example: Find the LT of the 2−periodic causal function such
that f (x) = x , 0 ≤ x < 1, f (x) = 2− x , 1 < x ≤ 2.
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Inverse Laplace Transform (ILT)

Definition (ILT)
Given the function F (s), we say that a function f (x) is the
inverse Laplace transform of F (s) if L [f (x)] = F (s). It is
denoted by f (x) = L−1[F (s)]

The table at the end of the book, reading it from right to left,
corresponds to a table of ILT. Most functions F (s) in this course
will have the form

F (s) =
P(s)

Q(s)
, o F (s) = e−as P(s)

Q(s)

with P(s),Q(s) polynomials and Q of a higher degree than P.
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Inverse Laplace Transform

Theorem (Linearity)
If c1, c2 ∈ R and F1(s),F2(s) have ILT, then

L−1 [c1F1(s) + c2F2(s)] = c1L−1 [F1(s)] + c2L−1 [F2(s)]

Let us first consider the case

F (s) =
P(s)

Q(s)

We can decompose F (s) into simple fractions and to apply the
linearity property. Then, it suffices to study each class of simple
fractions that are obtained from general decompositions, i.e.

A
s − a

,
B

(s − a)n ,
Cs + D

(s − α)2 + β2 ,
Es + F

((s − α)2 + β2)n
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L−1
[

A
s − a

]
= AL−1

[
1

s − a

]
= Aeax

L−1
[

B
(s − a)n

]
= BeaxL−1

[
1
sn

]
= Beax xn−1

(n − 1)!

Taking into account that

L [Aeαx cos(βx) + Beαx sin(βx)] =
A(s − α) + Bβ
(s − α)2 + β2

then

L−1
[

Cs + D
(s − α)2 + β2

]
= L−1

[
C(s − α) + Cα + D

(s − α)2 + β2

]
= Ceαx cos(βx) +

Cα + D
β

eαx sin(βx)
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The ILT

L−1
[

Es + F
((s − α)2 + β2)n

]
can be solved recursively by convolution. For example, if

f (x) = L−1
[

Es + F
(s − α)2 + β2

]
, g(x) = L−1

[
1

(s − α)2 + β2

]
then

L−1
[

Es + F
((s − α)2 + β2)2

]
= L−1

[
Es + F

(s − α)2 + β2
1

(s − α)2 + β2

]
= f∗g
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Heaviside method

We study the method only for the case of simple roots, i.e.

F (s) =
P(s)

Q(s)

with Q of degree q and P of degree p < q and, in addition, Q
has q distinct simple roots, i.e.

Q(s) = α(s − a1) · · · (s − aq)

We define Qai (s) = Q(s)/(s − ai), i.e. the polynomial Q where
we have eliminated the factor s − ai . Then, we have

P(s)

α(s − a1) · · · (s − aq)
=

A1

(s − a1)
+ · · ·+

Aq

(s − aq)

with
Ai =

P(ai)

Qai (ai)
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In some problems we find some instantaneous impulse or
forces and this leads to functions, F (s), that contain a constant
term. In those cases it is convenient to introduce the Dirac
delta function (also known as the unit impulse symbol)
Given ε > 0, we define the function

δε(x − x0) =


0, x < x0
1/ε, x0 ≤ x < x0 + ε
0, x ≥ x0 + ε

being a rectangle of unit area∫ ∞
−∞

δε(x − x0)dx = 1

It can be seen as the impulse caused by a constant force of
magnitude 1

ε that applies for the interval ε, i.e.

δε(x − x0) =
1
ε

(
u(x − x0)− u(x − (x0 + ε))

)
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The Dirac delta or unit impulse symbol) is defined in x0 as
the limit in which ε→ 0, i.e.

δ(x − x0) = lim
ε→0

δε(x − x0)

with the properties

a) δ(x − x0) = 0, x 6= x0, b)

∫ ∞
−∞

δ(x − x0)dx = 1

We take x0 = 0 and evaluate

L[δ(x)] = lim
ε→0
L[δε(x)] = lim

ε→0
L[

1
ε

(
u(x)− u(x − ε)

)
]

= lim
ε→0

1
ε

(
1− e−sε

s

)
= lim

ε→0

se−sε

s
= 1

so
L−1[A] = Aδ(x)
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To solve linear ODEs. Transfer function

Let us see how to solve a linear EDO using LT

y ′′′ − 6y ′′ + 12y ′ − 8y = t e2t

y(0+) = 1, y ′(0+) = 0, y ′′(0+) = −2.

If we compute the LT of the whole equation

L[y ′′′ − 6y ′′ + 12y ′ − 8y ] = L[t e2t ]

and we apply the linearity property as well as the LT of the
function’s derivative we easily find that

Y (s) = L[y(t)] =
s2 − 6s + 10

(s − 2)3 +
1

(s − 2)5

and then, we obtain the solution by evluating the ILT

y(t) = L−1
[

s2 − 6s + 10
(s − 2)3 +

1
(s − 2)5

]
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To solve linear ODEs. Transfer function

Let us consider the IVP

any (n) + an−1y (n−1) + · · ·+ a1y ′ + a0y = e(t)

with initial conditions

y (n−1)(0+) = y (n−1)
0 , . . . , y ′(0+) = y ′0, y(0+) = y0.

We have the following:

Theorem
The response y(t) of the system is

y(t) = yI0(t) + yH(t)

the sum of the response yI0(t) to e(t) under nul initial
conditions, and the response, yH(t) to the nul entrance with the
given initial conditions.
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To solve linear ODEs. Transfer function

Definition (weight function and transfer function)
Weight function : it is the response, y(t) = h(t), to the unit
impulse with null initial conditions.
Transfer function: it is the LT of h(t).
Indicial admittance: it is the response, y(t) = a(t) of the
system to the unit step function with null initial conditions, i.e.
a(t) = h(t) ∗ u(t)

Example: To find tha response of a system to the input
e(t) = cos(2t), if we know that the response to the null input is
yH = e−t , and its indicial admitance is a(t) = sin(t). To find the
response to e(t) = cos(3t) with null initial conditions.
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Equations with variable coefficients

Most equations with variable coefficients cannot be solved
using the techniques previously studied. However, some of
these equations can be solved using the LT. We study some
equations in which it appear terms of the form : t r y (n)(t), where
we know that

L[t r y (n)(t)] = (−1)r d r

dsr L[y (n)(t)]

Example: To solve the IVP

ty ′′ + (1− 2t)y ′ − 2y = 0, y(0+) = 1, y ′(0+) = 2.

Sol.: L[ty ′′] + L[y ′]− 2L[ty ′]− 2L[y ] = 0.

(−s2 + 2s)
dY
ds
− sY = 0 ⇒ Y =

C
s − 2

⇒ y = Ce2t

y(0+) = 1 ⇒ C = 1 ⇒ y(t) = e2t
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Integro-differential equations

We now show how to use the LT to solve some equations that
involve derivatives as well as integrals of the unknown function.
We use the following properties

L
[∫ x

0
y(t)dt

]
=

Y (s)

s
, L

[∫ x

0
f (t)g(x − t)dt

]
= F (s)G(s)

Example: To find m(t) where

m(t) =

∫ t

0
f (x)dx +

∫ t

0
m(t − x)f (x)dx

with f (t) = αe−αt , α = 1.6 · 10−8

Sol.: We evaluate the LT of the whole equation

M(s) =
F (s)

s
+ M(s)F (s) ⇒ M(s) =

F (s)

s(1− F (s))
=

α

s2

so
m(t) = L−1[M(s)] = α t .
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Systems of DEs

We can also use the LT to solve linear systems od DEs with
given initial conditions.
Example: To find, by applying the TL, the solution to the IVP

dx
dt

+ x = y + et , x(0+) = 1

dy
dt

+ y = y + et , y(0+) = 1

Sol.: We evaluate the LT of both equations and denote
X (s) = L[x(t)], Y (s) = L[y(t)], leading to the following
algebraic system of equations

(sX − x(0+)) + X = Y + 1
s−1

(sY − y(0+)) + Y = X + 1
s−1

with solution

X (s) =
1

s − 1
, Y (s) =

1
s − 1

⇒ x(t) = et , y(t) = et
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Application: Improper Integrals

The LT can also be used to evaluate some improper integrals.
Example: To evaluate

∫ +∞
0 x2 cos x e−3xdx .

Sol.:∫ +∞

0
x2 cos xe−sxdx = L

[
x2 cos x

]
= (−1)2 d2

ds2L [cos x ]

=
d2

ds2

(
s

s2 + 1

)
=

2s3 − 6s
(s2 + 1)3 = F (s).

Since the abscissa of convergence of f (x) = x2 cos x is sf = 0,
the integral can be evaluated as follows∫ +∞

0
x2 cos x e−3xdx = F (3) =

2 · 33 − 6 · 3
(32 + 1)3 =

9
250

.
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