Home // COGNITIVE 2014, The Sixth International Conference on Advanced Cognitive Technologies and Applications // View article
Discriminative Learning of Relevant Percepts for a Bayesian Autonomous Driver Model
Authors:
Mark Eilers
Claus Möbus
Keywords: Probabilistic Driver Models; Bayesian Autonomous Driver Models; Machine-Learning; Structure-Learning; Discriminative Learning
Abstract:
Models of the human driving behavior are essential for the rapid prototyping of assistance systems. Based on psychological studies, various percepts and measures have been proposed for the lateral and longitudinal control in driver models without demonstrating the generalizability of results to natural settings. In this paper, we present the learning of a probabilistic driver model. It represents and mimics the lateral and longitudinal human driving behavior on virtual highways by performing situation-adequate lane-following, car-following, and lane changing behavior. Because there is considerable uncertainty about the relevant percepts in natural driving behavior, we select hypothetically relevant percepts from the variety of possibilities based on their statistical relevance. This is a new approach to generate hypothesis about the relevant percepts and situation-awareness of drivers in dynamic traffic scenes. The percepts are revealed in a structure-learning procedure using a discriminative scoring criterion based on the Bayesian Information Criterion. Discriminative learning maximizes the conditional likelihood of probabilistic models, whereas the traditional generative learning maximizes the unconditional likelihood. This way, it attempts to find the structure with the best performance for the intended use, which in our application is the best prediction of driving actions given the available percepts.
Pages: 19 to 25
Copyright: Copyright (c) IARIA, 2014
Publication date: May 25, 2014
Published in: conference
ISSN: 2308-4197
ISBN: 978-1-61208-340-7
Location: Venice, Italy
Dates: from May 25, 2014 to May 29, 2014