Home // COMPUTATION TOOLS 2018, The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking // View article
Deep Learning: A Tool for Computational Nuclear Physics
Authors:
Gianina Alina Negoita
Glenn R. Luecke
James P. Vary
Pieter Maris
Andrey M. Shirokov
Ik Jae Shin
Youngman Kim
Esmond G. Ng
Chao Yang
Keywords: Nuclear structure of 6Li; ab initio no-core shell model; ground state energy; point proton root-mean-square radius; artificial neural network.
Abstract:
In recent years, several successful applications of the Artificial Neural Networks (ANNs) have emerged in nuclear physics and high-energy physics, as well as in biology, chemistry, meteorology, and other fields of science. A major goal of nuclear theory is to predict nuclear structure and nuclear reactions from the underlying theory of the strong interactions, Quantum Chromodynamics (QCD). With access to powerful High Performance Computing (HPC) systems, several ab initio approaches, such as the No-Core Shell Model (NCSM), have been developed to calculate the properties of atomic nuclei. However, to accurately solve for the properties of atomic nuclei, one faces immense theoretical and computational challenges. The present study proposes a feed-forward ANN method for predicting the properties of atomic nuclei like ground state energy and ground state point proton root-mean-square (rms) radius based on NCSM results in computationally accessible basis spaces. The designed ANNs are sufficient to produce results for these two very different observables in 6Li from the ab initio NCSM results in small basis spaces that satisfy the theoretical physics condition: independence of basis space parameters in the limit of extremely large matrices. We also provide comparisons of the results from ANNs with established methods of estimating the results in the infinite matrix limit.
Pages: 20 to 28
Copyright: Copyright (c) IARIA, 2018
Publication date: February 18, 2018
Published in: conference
ISSN: 2308-4170
ISBN: 978-1-61208-613-2
Location: Barcelona, Spain
Dates: from February 18, 2018 to February 22, 2018